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OSCILLATORY INTEGRALS AND SCHRÖDINGER
MAXIMAL OPERATORS

Lawrence A. Kolasa

In this paper we consider smooth analogues of operators
studied in connection with pointwise convergence of the so-
lution of the free Schrödinger equation to the given initial
data. Such operators are interesting examples of oscillatory
integral operators with degenerate phase functions, and we
obtain sharp L2 → L2 bounds.

0. Introduction.

We begin this paper by giving motivation for the objects we will study,
placing them in their proper context.

Consider the initial value problem for the Schrödinger equation with no
potential, {

i∂tu(x, t) + ∆xu(x, t) = 0 (x, t) ∈ Rn × R
u(x, 0) = f(x) ∈ L2(Rn).

(1)

Then

u(x, t) = (2π)−n
∫
Rn
eix·ξeit|ξ|

2

f̂(ξ) dξ = (eit| · |
2

f̂( · ))ˇ(x)(2)

defines a (weak) solution of (1) such that limt→0 u(x, t) = f(x) in the L2

sense. When the integral in (2) is absolutely convergent the limit is a point-
wise limit. However, if f is an arbitrary L2 function the integral in (2) may
not be absolutely convergent, and we must take the right hand side of (2)
as the definition of u(x, t). It is not self-evident that u converges pointwise
to the initial data in this case, and in fact it sometimes does not. The ques-
tion of what extra smoothness conditions on f will guarantee the existence
pointwise a.e. of limt→0 u(x, t) arises.

For a given s ≥ 0 let Hs(Rn) denote th e L2-Sobolev space,

Hs(Rn) =

{
f ∈ L2(Rn) : ‖f‖Hs =

(∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ
)1/2

<∞
}
.
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In the context of L2-Sobolev spaces the question of pointwise convergence
to the initial data is completely understood when n = 1. It was shown
by Carleson [C] that limt→0 u(x, t) = f(x) whenever f ∈ Hs(R), s ≥ 1/4.
Moreover Dahlberg and Kenig [DK] demonstrated that for all s < 1/4 there
are functions f ∈ Hs(R) such that lim t→0u(x, t) =∞ a.e..

The higher dimensional cases, n ≥ 2, are not completely understood. For
these cases Vega [V] and Sjölin [Sj] independently proved that the pointwise
limit exists for all f ∈ Hs(Rn) provided s > 1/2, while there are counterex-
amples just as in the 1-dimensional case when s < 1/4. But the question
of what happens when 1/4 ≤ s ≤ 1/2 is in general unanswered. However,
in [B], Bourgain shows that there is an ε > 0 such that f ∈ H1/2−ε(R2)
guarantees pointwise convergence to the initial data. The value of this ε,
although in principle calculable, is not given (although ε << 1/4). The point
here is not what the value of ε is, but that there is some improvement of the
above results when n = 2.

The study of the pointwise behavior of u(x, t) as t→ 0 involves the study
of the corresponding maximal operator, the Schrödinger maximal operator,

u∗(x) = sup
|t|≤1

|u(x, t)|

with regard to its mapping properties—i.e., finding weak type or strong type
inequalities for u∗.

The idea in [B] is to replace the nonlinear operator u∗ by a family of
linear operators. For each measurable function t(x), defined say on Dn, the
unit disk in Rn, with the property that |t(x)| ≤ 1, one considers the linear
operator

f 7−→
∫
ei(x·ξ+t(x)|ξ|2)f̂(ξ) dξ = u(x, t(x)),

and shows that for some constant C, which is independent of all such t,

‖u( · , t( · ))‖L2(Dn) ≤ C ‖f‖Hs .

In practice one looks at integral operators of the form

Rkf(x) =

∫
ei(x·y+t(x)|y|2)θk(y)f(y) dy k = 1, 2, . . . ,

where
{
θk
}∞

0
is a partition of unity such that supp(θk) ⊂ { y : 2k−1 ≤ |y| ≤

2k+1 } when k ≥ 1.
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Proposition .1 Suppose there is a C and s0 ≥ 0 such that

‖Rkf‖L2(Dn) ≤ C2s0k.(3)

Then for any s > s0 there is a Cs, depending on C and s, such that

‖u( · , t( · ))‖L2(Dn) ≤ Cs ‖f‖Hs .

Thus we have reduced to the case of finding L2 to L2 estimates on a family
of linear operators. This is a common task in harmonic analysis, and this
particular one is aided by the similarites between the Rk’s and a general
class of operators, Tλ : L2(Rn)→ L2(Rn), of the form

Tλf(x) =

∫
Rn
eiλφ(x,y)a(x, y)f(y) dy.

Such operators, called oscillatory integral operators, are usually studied
when the amplitude a ∈ C∞0 (Rn×Rn) and the phase function φ ∈ C∞(Rn×
Rn), and one is concerned with the behavior of ‖Tλ‖ as λ→∞.

There are two major differences, though, between Tλ and Rk that must be
considered. Firstly, since the phase function in Rk is not homogeneous, we
cannot do a change of variables y → 2ky to get into the form of Tλ. However,
for the purpose of obtaining an ε-improvement in pointwise convergence
results when n = 2, it is pointed out in [B] that it is sufficient to consider
operators of the form

Tλf(x) =

∫
Rn

exp

(
iλ
|x− y|2

t(x)− t̄(y)

)
a(x, y)f(y) dy,(4)

where a ∈ C∞0 and t and t̄ are measurable functions such that 1 ≤ |t(x) −
t̄(y)| ≤ 2, and show that there exists an ε > 0 such that

‖Tλf‖2 ≤ Cλ−ε ‖f‖2 , C independent of t and t̄.(5)

Such a result then implies an inequality as in (3) with s0 < 1/2.
The second and more important difference is that the phase function in

Rk (and Tλ) is not smooth. The main results about Tλ in [GS], [PS] and
[H1] involve only those cases when φ is smooth. Nevertheless (5) is plausible
due to the following theorem, whose proof is based on ideas in [B].

Theorem 1. If Tλ is as above then

‖Tλf‖L2(Rn) ≤ Cλ−
n−2

4 ‖f‖L2(Rn) ,(6)

1See [K] or [B].
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where C is uniform over all measurable t and t̄ such that 1 ≤ |t(x)−t̄(y)| ≤ 2.

Of course when n = 2 the estimate in (6) is trivial. The heart of [B] lies
in dealing with the non-smoothness in the phase function of Tλ to get the
estimate in (5), which is an ε improvement of (6).

In this paper we discuss operators of the form Tλ when the functions t
and t̄ are assumed to be smooth. We begin by considering a special case of
Tλ when t̄ ≡ 0.

Theorem 2. Let Tλ be as in (4) where t is a smooth function such that
t 6= 0, and t̄ ≡ 0.

(i) If
∇t(x)

t(x)
· (x − y) − 1 6= 0 on supp(a), then ‖Tλf‖2 . λ−n/2 ‖f‖2.

Moreover the exponent of λ is sharp.

(ii) In general, ‖Tλf‖2 . λ−n/2+1/4 ‖f‖2.

(iii) For a given amplitude function a 6≡ 0, there are functions t ∈ C∞ such
that the exponent of λ in II is sharp.

This result follows from a more general theorem in [GS].2 The proof given
in this paper uses a similar approach to that in [GS], but our execution
is different, and this difference allows us to consider operators, which are
not oscillatory integral operators, like Rk, in another paper. And although
Theorem 2 is a special case, an analogous theorem in its statement and
proof is given, which is then used to prove Theorem 3—the main result of
this paper.

Theorem 3. Let Tλ be as in (4) where t and t̄ are smooth functions such
that 0 < |t(x)− t̄(y)|. Then
(i) ‖Tλf‖2 . λ−n/2+1/2.

(ii) For a given amplitude function a 6≡ 0, there are t and t̄ such that the
bound in I is sharp.

1. Preliminaries.

Before proving our main theorems, we catalogue a number of important lem-
mas used in their proofs. These lemmas are variations of standard material,
so their proofs are omitted and can be found in [K].

The following notation is used throughout.
x, y, z and ξ will denote variables in Rn.

x · y is the inner product in Rn: x · y =
∑n

1 xiyi.

2See also [K] for details.
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M t denotes the transpose of the matrix M .

H f will denote the Hessian of f .

f̂(ξ) =
∫
e−ix·ξa(x) dx is the Fourier transform of f .

f̌(ξ) = (2π)−n
∫
eix·ξf(x) dx is the inverse Fourier transform of f .

∂j is the differential operator ∂/∂xj.

S(Rn) is the Schwartz class of functions on Rn.

Br(p) = {x ∈ Rn : |x− p| < r}.
Dn denotes the unit ball in Rn.

If E ⊂ Rn is measurable, then |E| denotes the Lebesgue measure of E.
If a(x, y) is a function of x ∈ Rn and y ∈ Rm, then denote by suppy(a)

the projection onto the y-coordinates of the support of a. Let ∇ya(x, y)
denote the gradient of a as a function of y with x held fixed. Similarly
∆ya(x, y) =

∑
∂2/∂y2

j a(x, y).
The expression x . y will mean that there is a constant C, which does

not depend on quantities that are otherwise to be kept track of, such that
x ≤ C y. Dependence on such quantities will be explicitly noted.

Given x, y ∈ Rn, write x = (x′, xn) and y = (y′, yn), where x′ and y′ are
in Rn−1. Let K(x, y) be a given bounded measurable function, which for our
purposes will be assumed to have compact support, and define an operator
T : L2(Rn)→ L2(Rn) by

Tf(x) =

∫
Rn
K(x, y)f(y) dy,

whose adjoint is

T ∗f(y) =

∫
Rn
K(z, y)f(z) dz.

If we fix xn and yn and let Kxnyn(x′, y′) = K(x′, xn, y′, yn), then we get a
family of frozen operators, Txnyn : L2(Rn−1)→ L2(Rn−1) defined by

Txnynf(x′) =

∫
Rn−1

Kxnyn(x′, y′)f(y′) dy′.

Lemma 1.1. Suppose there exists a measurable function η(xn, yn) such
that for all g ∈ Lp(Rn−1) and for all h ∈ Lp(R)

‖Txnyng‖Lq(Rn−1) ≤ η(xn, yn) ‖g‖Lp(Rn−1) ,∥∥∥∥∫ η(xn, yn)h(yn) dyn

∥∥∥∥
Lq(R)

≤ C ‖h‖Lp(R).
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Then for all f ∈ Lp(Rn)

‖Tf‖Lq(Rn) ≤ C ‖f‖Lp(Rn) .

Now consider

TT ∗f(x) =

∫
f(z)

(∫
K(x, y)K(z, y) dy

)
dz.

If Txn : L2(Rn)→ L2(Rn−1) is the operator

Txnf(x′) =

∫
Rn
K(x′, xn, y)f(y) dy,

and T ∗zn : L2(Rn−1)→ L2(Rn)

T ∗znf(y) =

∫
Rn−1

K(z′, zn, y)f(z′) dz′

is its adjoint, then clearly

(TT ∗)xnzn = TxnT
∗
zn
,

‖Txn(Tzn)∗f‖L2(Rn−1) ≤ ‖Txn‖ ‖T ∗zn‖ ‖f‖2.(1.1)

Lemma 1.2.

∥∥T ∗znf∥∥L2(Rn)
≤ ‖f‖L2(Rn−1)

(∫ ∞
−∞
‖(T ∗)znyn‖2 dyn

)1/2

.

‖Txnf‖L2(Rn−1) ≤ ‖f‖L2(Rn)

(∫ ∞
−∞
‖Txnyn‖2 dyn

)1/2

.

The method of stationary phase is of crucial importance to our endeavors.

Theorem 1.3. Suppose that a ∈ S(Rn). Then for any positive integer k,

(1.2)

∫
Rn
eiλ|y|

2

a(y) dy

=

(
iλ

π

)−n/2k−1∑
j=0

(4iλ)−j∆ja(0)/j! +

∫
Rn
rk(i|ξ|2/4λ)ǎ(ξ) dξ

 ,
where rk(x) is the remainder of the k-th degree Taylor polynomial of ex.

This well-known result is not usually expressed in this form. We find
it convenient to include a form of the remainder term in the asymptotic
expansion of the left hand side of (1.2) in powers of λ. See [H1], [St].
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Remark 1.4. Note that |rk(x)| ≤ |x|k/k! whenever Rex ≤ 0. Then an
application of the Cauchy-Schwartz inequality shows that for any integer
s > n/2, ∣∣∣∣∫

Rn
rk(i|ξ|2/4λ)ǎ(ξ) dξ

∣∣∣∣ . λ−k ∑
|α|≤2k+s

‖Dα a‖2 .(1.3)

A corollary of Theorem 1.3 is needed to prove Theorem 3, which is a
variable parameter version of Theorem 1.3.

Corollary 1.5. Suppose that a is contained in a bounded subset X of
S(Rn×Rm). Then for any multi-index α and any λ ≥ 1 there is a constant
C = C(α,X) such that

sup
z
λn/2

∣∣∣∣Dα
z

∫
Rn
eiλ|y|

2

a(y, z) dy

∣∣∣∣ ≤ C.
We continue with a couple of lemmas about about n× n matrices.

Lemma 1.6. Let M be an n×n matrix with entries Mij = δji +aibj, where
δji is the Kronecker delta and ai, bj ∈ R. Then
(1) detM = 1 +

∑n
i=1 aibi,

(2) rank(M) ≥ n− 1.

Lemma 1.7. Let M be an n × n matrix of the form Mij = δji+1 + aibj.
Then det(M) = anb1.

Finally we finish this section with a standard theorem about oscillatory
integral operators

Tλf(x) =

∫
Rn
eiλφ(x,y)a(x, y)f(y) dy,

where the amplitude a ∈ C∞0 (Rn × Rn), and the real-valued phase function
φ ∈ C∞(X) with X a neighborhood of supp(a). Just how rapidly ‖Tλ‖
decays depends on the mixed Hessian of φ, the n×n matrix Hφ(x, y) defined
by

(Hφ(x, y))i,j =
∂2φ

∂xi∂yj
(x, y).

The following is a sharpening of the result in [H2].

Theorem 1.8. Suppose that Hφ is non-singular on supp(a) and that the
following quantities are uniformly bounded on supp(a):
(i) ‖H−1

φ (x, y)‖
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(ii) ‖∇y Dα
x φ‖L∞(X)

for all α with |α| = 2

(iii)
∥∥∥∇x Dα

y φ
∥∥∥
L∞(X)

for all α with |α| ≤ n+ 2.

Then if M = max { 1, | suppx(a)| } and

Ma = ‖a‖∞

M | suppy(a)|
 ∑
|α|≤n+1

sup
xyz
|Dα

y a(x, y)a(z, y)|


n
n+1


1/2

,

(1.4)

then

‖Tλf‖2 ≤ CMaλ
−n/2 ‖f‖2 ,(1.5)

where C is bounded.

Remark 1.9. When bounding ‖H−1
φ ‖ uniformly from above it is con-

venient to use the classical theorem for the inverse of a matrix, H−1
φ =

(detHφ)−1 adjHφ. Then we need only bound detHφ uniformly from below
and the entries of Hφ uniformly from above.

2. Main Theorem: A Special Case.

We let a ∈ C∞0 (Rn × Rn) be a fixed given function, and let t ∈ C∞(Rn) be
such that 0 6= t(x) on suppx(a). We shall consider oscillatory integral oper-

ators Tλ with phase function φ(x, y) =
|x− y|2
t(x)

and catalogue the behavior

of ‖Tλ‖ below.

Remark 2.1. Since suppx(a) is compact and 0 6= t(x) ∀x ∈ suppx(a),
there is a constant c > 0 such that c ≤ |t(x)| ∀x ∈ suppx(a).

The best possible case is when Hφ is non-degenerate, and this situation is
characterized in Theorem 2.2 below.

Theorem 2.2. Suppose 1− ∇t(x)

t(x)
· (x− y) 6= 0 on supp(a). Then for all f

‖Tλf‖2 ≤ Cλ−n/2 ‖f‖2, and the exponent of λ is sharp. Moreover if we fix
c1 > 0, then ∃ c2 (which depends on c1 and supp(a)) such that the constant
C above is uniform over the set 3

Σ = Σ(c1, c2)

= { t ∈ C∞ : c1 ≤ |t(x)|, |∇t(x)| ≤ c2, and ‖H t(x)‖ ≤ c2 ∀x ∈ supp(a)}.
3Here ‖H t‖ denotes the matrix norm of the n× n matrix H.
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Proof. It is easy to calculate that

∂2φ

∂xi∂yj
(x, y) =

−2

t(x)

(
δij − (xj − yj)∂it(x)

t(x)

)
.(2.1)

Then we see that Hφ is of the form described in Theorem 1.8, and we con-
clude that

detHφ(x, y) =

( −2

t(x)

)n (
1− ∇t(x)

t(x)
· (x− y)

)
.(2.2)

The first part of the theorem follows now form Theorem 1.8; the second part
will follow after a careful examination of the hypotheses in (i), (ii) and (iii)
of Theorem 1.8 as they relate to φ.

First note that if c2 is chosen to be small enough, and |∇t| ≤ c2, then∣∣∣∣∇t(x)

t(x)
· (x− y)

∣∣∣∣ ≤ c−1
1 |∇t(x)| 2 diam(supp(a)) ≤ 1/2.

So if we assume that t ∈ Σ for this choice of c2 (and c1), then |detHφ| ≥
c−n1 2n−1, and, given (2.1) and Remark1.9, ‖H−1

φ ‖ is uniformly bounded on

supp(a) and over all t ∈ Σ. We claim also that
∥∥∥∇x Dα

y φ
∥∥∥
L∞

is uniformly

bounded for all α with |α| ≤ n+ 2. In fact |α| ≤ 2 will suffice as all higher
order derivatives vanish. The claim is evident from the form of φ as

∂

∂xj
Dα
y φ(x, y) = − ∂jt(x)

(t(x))2
Dα
y (|x− y|2),

and t ∈ Σ. Finally we check that ‖∇y Dα
x φ‖L∞ is also uniformly bounded

when α = 2 since

∂3φ(x, y)

∂xi∂xj∂yk
=
−2

t(x)2

(
∂jt(x)δki −δkj ∂it(x)−(xk−yk)+(xk−yk)∂it(x)∂jt(x)

t(x)

)
.

The hypotheses of Theorem 1.8 being satisfied, the theorem is proven.

The more interesting case is when detHφ = 0. Lemma 1.6 readily gives
the estimate ‖Tλf‖ . λ−n/2+1/2 ‖f‖2 in this case. But before proving a
stronger estimate, a few remarks are in order.

Remark 2.3. If we cover suppx(a) with balls of radius δ and take a parti-
tion of unity subordinate to these balls, we may assume that diam(suppx(a))
< δ without any loss of generality if we provide that δ does not depend on λ.
Then δ is chosen to be as small as necessary to assist in technical matters.
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Remark 2.4. (2.2) says that we may assume (after a partition of unity)
that on the support of a, 1 . |∇t(x)|. Otherwise Hφ is non-singular, and we
may again appeal to Theorem 1.8.

Remark 2.5. If A is a rotation then the change of variables (x, y) →
(Ax,Ay) “preserves” φ in the sense that φ(Ax,Ay) = |x−y|2

t ◦A is of the same
form as φ(x, y), the form of phase function presently under consideration,
with t replaced by t◦A. Similarly if A is a translation, φ is again “preserved”
under the operation φ(x, y) → φ(Ax,Ay). Since such transformations are
measure preserving, the norm of the oscillatory integral operator with phase
function φ(x, y) and amplitude a(x, y) is the same as the one with phase
φ(Ax,Ay) and amplitude a(Ax,Ay).

Theorem 2.6. Let φ be as above. Then in general

‖Tλf‖2 ≤ Cλ−n/2+1/4 ‖f‖2 .

Proof. Let x ∈ suppx(a) be given. By Remark 2.4 we may find a rotation
Ax such that ∇t(x)Ax is parallel to the n-th unit vector en in Rn. Let
z = A−1

x x and tAx = t ◦ Ax. Then ∇tAx(z) is parallel to en, and so we
may assume without loss of generality that ∇tAx(z) = en. Furthermore it
is clear that |∇tAx | & 1 on supp(a). Then there is a neighborhood Ux of
z, a neighborhood Vx of x and a diffeomorphism ρx : Vx → Ux such that
tAx ◦ ρx(w) = wn for all w ∈ Vx. Moreover Dρx(z) = I, and we may assume
that diam(Ux) and diam(Vx) are as small as necessary. Let Ũx = A(Ux), and
take a finite subcover

{
Ũxi
}m
i=1

of suppx(a). By Remark 2.3 we may assume

that suppx(a) ⊂ Ũx1
for example. Since Ax1

is a rotation, by Remark 2.5
we may assume therefore that there is a ball Bδ(x0) and a diffeomorphism
ρ : Bδ(x0)→ suppx(a) such that t ◦ ρ(x) = xn, and Dρ(x0) = I.

Given this, it suffices after a change of variables to consider the operator

T̃λf(x) =

∫
Rn
e
iλ

(
|ρ(x)−y|2

xn

)
a(ρ(x), y)f(y) dy.

If Sλ = T̃λT̃
∗
λ , then Sλ is an integral operator with kernel

Kρ(x, z) =

∫
Rn

exp

(
iλ

{ |ρ(x)− y|2
xn

− |ρ(z)− y|2
zn

})
a(ρ(x), y) a(ρ(z), y) dy.

We must show that

‖Sλf‖2 . λ−n+1/2 ‖f‖2 .(2.3)
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Let ψ ∈ C∞0 (B1(0)) be such that ψ ≡ 1 on B1/2(0), and let ψ̃ = 1−ψ. Then

Sλf(x) =

∫
Rn
f(z)Kρ(x, z)ψ

(
xn − zn

ε

)
dz

+

∫
Rn
f(z)Kρ(x, z)ψ̃

(
xn − zn

ε

)
dz

= S1
λf(x) + S2

λf(x),

(2.4)

where ε is to be chosen.
First consider S1

λ and its corresponding frozen operators

(S1
λ)xnznf(x′) = ψ

(
xn − zn

ε

)∫
Rn−1

f(z′)(Kρ)xnzn(x′, z′) dz′

= ψ

(
xn − zn

ε

)(
T̃λT̃

∗
λ

)
xnzn

f(x′).(2.5)

We consider
(
T̃λ
)
xnyn

for fixed xn and yn. The (n− 1)× (n− 1) matrix

(
∂2

∂xi∂yj
|ρ(x)− y|2

)n−1

i,j=1

=
(−2Diρj(x)

)n−1

i,j=1

is the mixed Hessian for
(
T̃λ
)
xnyn

. As noted above, when x = x0 this is −2

times the (n − 1) × (n − 1) identity matrix. So in a small neighborhood of
x0 the determinant of the above matrix does not vanish (see Remark 2.3).
Hence ∥∥∥∥(T̃λ)

xnyn

∥∥∥∥ . λ−(n−1)/2 χ(xn, yn) ‖f‖2 ,
where χ is compactly supported. Then this along with (1.1) and Lemma 1.2
implies that∥∥(S1

λ)xnynf
∥∥
L2(Rn−1)

. λ−n+1 χ′(xn, zn)ψ

(
xn − zn

ε

)
‖f‖L2(Rn−1) ,

where χ′ is also compactly supported. By Schur’s Lemma and Lemma 1.1
we have ∥∥S1

λf
∥∥

2
. λ−n+1ε ‖f‖2 .(2.6)

Now consider S2
λ and its corresponding frozen operators (S2

λ)xnzn for fixed
xn and zn. Note that

(2.7)
|ρ(x)− y|2

xn
− |ρ(z)− y|2

zn

=

(
1

xn
− 1

zn

)
|y − F (x, z)|2 − |ρ(x′, xn)− ρ(z′, zn)|2

xn − zn ,
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where

F (x, z) =
znρ(x)− xnρ(z)

xn − zn .(2.8)

Let

A(x, z, y) = a(ρ(x), y) a(ρ(z), y),(2.9)

µ = λ

(
1

xn
− 1

zn

)
.

Then

Kρ(x
′, z′)xnzn = ψ̃

(
xn − zn

ε

)
exp

(
i

λ

zn − xn |ρ(x)− ρ(z)|2
)

·
∫
Rn
eiµ|y|

2

A(x, z, y + F (x, z)) dy

(2.10)

is the kernel of (S2
λ)xnzn . By Theorem 1.3, for fixed N to be chosen,∫

Rn
eiµ|y|

2

A(x, z, y + F (x, z)) dy(2.11)

=

(
iµ

π

)−n/2(N−1∑
j=0

(4iµ)−j∆j
yA(x, z, F (x, z))/j!

+

∫
Rn
rN(i|ξ|2/4µ)e−iξ·F (x,z)Ǎ(x, z, ξ) dξ

)
,

where Ǎ denotes the inverse Fourier transform in the last variable. In view
of (2.10) and (2.11), (S2

λ)xnzn is a sum of oscillatory integral operators

(
i

π

)−n/2
ψ̃

(
xn − zn

ε

) N∑
j=0

µ−n/2−j

(4i)j!
Rjλ′ , λ′ =

λ

xn − zn ,(2.12)

where

Rj
λ′f(x′) =

∫
Rn
eiλ
′|ρ(x)−ρ(z)|2(∆j

yA)(x, z, F (x, z))f(z′) dz′

j = 1, . . . , N − 1(2.13)

RNλ′f(x′) =

∫
Rn
eiλ
′|ρ(x)−ρ(z)|2µN

·
(∫

Rn
rN(i|ξ|2/4µ)e−iξ·F (x,z)Ǎ(x, z, ξ) dξ

)
f(z′) dz′.
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Each Rj
λ′ has phase function of the form |ρ(x′, xn) − ρ(z′, zn)|2 for fixed xn

and zn. Look at the mixed Hessian:

(
∂2

∂xi∂zj
|ρ(x′, xn)− ρ(z′, zn)|2

)n−1

i,j=1

=

(
−2
∑
k

∂iρk(x)∂jρk(z)

)n−1

i,j=1

.

Since Dρ(x0) = I,

det

(
∂2

∂xi∂zj
|ρ(x′, xn)− ρ(z′, zn)|2

)n−1

i,j=1

= (−2)n−1 when x = z = x0.

So we may assume that this mixed Hessian is non-degenerate (see Remark 2.3).
Now for j = 1, . . . , N − 1, Rj

λ′ has amplitude ∆j
yA(x, z, F (x, z)). Since

|Dα
z′ F (x, z)| . |xn − zn|−1,(2.14)

we see that

sup
x′z′

∣∣∣Dα
z′

(
∆j
yA(x, z, F (x, z)) ∆j

yA(w, z, F (w, z))
)∣∣∣ . |xn − zn|−|α|.(2.15)

To apply Theorem 1.8 we must calculate, for fixed xn and zn, the volume of
suppz′(∆

j
yA(x, z, F (x, z))). Note that by the properties of supp(A) we must

have that |F (x, z)| . 1 — i.e., |xnρ(z)− znρ(x)| . |xn − zn|. This says that

for fixed x, ρ(z) is in the ball of radius
1

xn
|xn−zn| centered at

zn

xn
ρ(x). Since

|xn| is bounded from below (see Remark 2.1) and ρ is a diffeomorphism, z
lies in a set of diameter ∼ |xn − zn|. So

| suppz′ ∆
j
yA(x, z, F (x, z))| ∼ |xn − zn|n−1 for j = 0, . . . , N − 1.

(2.16)

Putting (2.15) and (2.16) into (1.4)

(
recalling that λ′ =

λ

(xn − zn)

)
gives

that for j = 1, . . . , N − 1,∥∥∥Rj
λ′f
∥∥∥
L2(Rn−1)

. λ
−(n−1)

2 |xn − zn|
(n−1)

2 χ(xn, zn) ‖f‖L2(Rn−1) ,(2.17)

where χ has compact support.
Coming to RNλ′ , it has amplitude, call it AN(x, z), equal to

µN
∫
Rn
rN(i|ξ|2/4µ)e−iξ·F (x,z)Ǎ(x, z, ξ) dξ.
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This means that in view of the Remark 1.4 and (2.14)

sup
z′

∣∣∣Dα
z′AN(x, z)AN(w, z)

∣∣∣ . |xn − zn|−|α|.(2.18)

Then (2.18) implies that∥∥RN
λ′f
∥∥
L2(Rn−1)

. λ
−(n−1)

2 χ(xn, zn) ‖f‖L2(Rn−1) .(2.19)

Looking at (2.12), (2.17) and (2.19) we see that

∥∥(S2
λ)xnznf

∥∥
L2(Rn−1)

. ψ̃
(
xn − zn

ε

)
χ(xn, zn)

·
(
λ−n+1/2|xn − zn|−1/2(2.20)

+
N−1∑
j=1

λ−n+1/2−j|xn − zn|−1/2−j(2.20′)

+ λ−n+1/2−N |xn − zn|−n/2−N
)
‖f‖L2(Rn−1)(2.20′′)

where χ is compactly supported. Now we apply Lemma 1.1 to obtain∥∥S2
λf
∥∥
L2(Rn)

. ‖f‖L2(Rn)

·
(
λ−n+1/2(2.21)

+
N−1∑
j=1

λ−n+1/2−jε1/2−j(2.21′)

+ λ−n+1/2−Nε−n/2−N+1

)
.(2.21′′)

In consideration of (2.6) and (2.21′′) set

ε = λ−
2N+1
n+2N .(2.22)

In this case

λ−n+1ε = λ−n+1/2−Nε−n/2−N+1 = λ−n+1/2λ
n−2(N+2)
2(n+2N) .

Also, it is easy to check, in consideration of (2.21′), that

λ−n/2+1/2−jε1/2−j ≤ λ−n+1/2

for this choice of ε. Evidently (2.21) is the main term in the estimate of
‖Sλ‖ provided that n ≤ 2(N + 2). We choose N as so and then let ε be as
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in (2.22) for this choice of N . Now (2.3) is demonstrated, and the proof of
Theorem 2.6 is complete.

Given the general nature of Theorem 2.6, it is natural to ask whether or
not the result is sharp. We shall find in the next theorem that we may not
always be able to improve the exponent of λ in Theorem 2.6.

Theorem 2.7. For a given amplitude function a 6≡ 0, there are t ∈ C∞
such that the exponent of λ in Theorem 2.6 is sharp.

Proof. By assumption there is a point (x0, y0) such that a(x0, y0) 6= 0. After
perhaps a translation and a rotation—in view of Remark 2.5 — we may
assume that x0 = en, the n-th unit vector in Rn, and y0 = 0. Then let t(x) =
xn, and note that we may assume xn 6= 0 on supp(a). Let fε(y) = f(y′)f̃(yn),
where 0 ≤ f ∈ C∞0 (Rn−1), f ≡ 1 on supp(a) and f̃(yn) = ei2λynχ[−ε,ε](yn).
Then

e−iλxnTλf(x) =

∫
Rn−1

e
λ
xn
|x′−y′|2f(y′)

∫ ε

−ε
eiλ

y2
n
xn a(x, y′, yn) dyn dy

′

=

(
iλ

xnπ

)−(n−1)/2

2εf(x′)
1

2ε

∫ ε

−ε
a(x, x′, yn) dyn

+

(
iλ

xnπ

)−(n−1)/2

f(x′)
∫ ε

−ε

(
eiλ

y2
n
xn − 1

)
a(x, x′, yn) dyn

+

(
iλ

xnπ

)−(n−1)/2

2ε

∫
Rn−1

r1(ixn|ξ′|2/4λ)

·
(
f(x′ + · ) 1

2ε

∫ ε

−ε
eiλ

y2
n
xn a(x, ·+ x′, yn) dyn

) ̂(ξ′) dξ′

= I + II + III .

Now it is easily seen that

| II | . λ−n/2+3/2ε3,

and by (1.3)

| III | . ελ−n/2−1/2
∑

|α|≤2+n/2

∥∥∥∥Dα
y′ f(x′ + · ) 1

2ε

∫ ε

−ε
eiλ

y2
n
xn a(x, · , yn) dyn

∥∥∥∥
L2(Rn−1)

. ελ−n/2−1/2.

Supposing that ε is small we have that

| I | & ελ−n/2+1/2

∣∣∣∣ 1

2ε

∫ ε

−ε
a(x, x′, yn) dyn

∣∣∣∣ & ελ−n/2+1/2
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on a set of positive measure in x-space. If we let ε = cλ−1/2 where c is a
small constant independent of λ (i.e. let ελ−n/2+1/2 = ε3λ−n/2+3/2), then
clearly

‖T ′λfε‖2 & λ−n/2 and ‖fε‖2 = λ−1/4.

So

‖T ′λfε‖2
‖fε‖2

& λ−n/2+1/4

as desired.

Remark 2.8. Using a result of Pan and Sogge [PS] it is a routine matter
to show that if Ht(x)(x − y) · (x − y) 6= 0 on supp(a) where Ht(x) denotes
the Hessian of t at x, then ‖T ′λf‖2 ≤ Cλ−n/2+1/6 ‖f‖2.

To conclude this section we consider a variant of the operator previously
considered. We let a ∈ C∞0 (Rn × Rn) be a given fixed amplitude function,
but we let t denote any smooth function. Now we shall study the oscillatory
integral operator T ′λ, with phase function φ(x, y) = −2x · y + t(x)|y|2. Its
purpose is to provide a means of understanding Tλ in its full generality.
The phase function involved is more suited to this task from a technical
standpoint. We could have just as easily applied Theorem 2.6 to the more
general case of Tλ, but the proofs of Theorems 2.9, 2.10 and 2.11 follow
closely those of their counterparts, Theorems 2.2, 2.6 and 2.7, and we get
these results almost for free. The proofs are therefore omitted and can be
found in [K].

Theorem 2.9. If 1−∇t(x) ·y 6= 0 on supp(a) then ‖T ′λf‖2 ≤ Cλ−n/2 ‖f‖2,
and the exponent of λ is sharp. Moreover ∃ c such that the constant C is
uniform over the set

Σ = Σ(c) = { t ∈ C∞ : |∇t(x)|, ‖H t‖ ≤ c ∀x ∈ supp(a) }.

Theorem 2.10. Let φ be as above. Then in general

‖T ′λf‖2 ≤ Cλ−n/2+1/4 ‖f‖2 .

Theorem 2.11. For a given amplitude function a 6≡ 0, there are t ∈ C∞
such that the exponent of λ in Theorem 2.10 is sharp.
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3. Main Theorem.

We now turn our attention to the family of operators Tλ with phase function
of the form φ(x, y) = |x−y|2

t(x)−t̄(y)
where t and t̄ are smooth functions such that

0 < |t(x)−t̄(y)|. In what follows we will always take a to be a fixed amplitude
function with compact, connected support. Hence we may assume without
loss of generality that there is a constant c > 0 such that c ≤ t(x)− t̄(y) on
supp(a). This will be our general setup through this section.

We shall find it to be possible that rankHφ = n−2, and therefore the ideas
in Section 2 do not carry over into the analysis of ‖Tλ‖. Instead, we would
like to consider Tλ as a composition of operators whose factors are known to
us, these factors already having been studied in the previous section. We may
then use the estimate in Theorem 2.10 to get sharp results for Tλ. In actual
fact, though, we will not realize Tλ directly as a composition, but nearly
so. The composition of operators we consider has the same phase function
as Tλ but has a different amplitude. The transition to Tλ in Theorem 3.3
from Theorem 2.10 is facilitated by Lemma 3.2, which allows us to compare
oscillatory integral operators with the same phase function but different
amplitudes.

We begin with the following result about the singularities of Hφ.

Proposition 3.1. Let φ be as above. Then rankHφ(x, y) ≥ n − 2, and
moreover we have that rankHφ(x, y) = n− 2 if and only if

(i) 1− ∇t(x) · (x− y)

t(x)− t̄(y)
= 0.

(ii) 1− ∇t̄(y) · (x− y)

t(x)− t̄(y)
= 0.

(iii) ∇t(x) · ∇t̄(y) = 0.

Proof. We begin by noting that

∂2φ(x, y)

∂xi∂yj
=

−2

t(x)− t̄(y)

(
δji −

1

t(x)− t̄(y)

·
(
∂

∂yj
t̄(y)(xi − yi) +

∂

∂xi
t(y)(xj − yj)− |x− y|2∂it(x)∂j t̄(y)

t(x)− t̄(y)

))
.(3.1)

Suppose first that ∇t̄(y) = 0. Then from (3.1),

(Hφ(x, y))ij =
−2

t(x)− t̄(y)

(
δji −

(xj − yj)
t(x)− t̄(y)

∂it(x)

)
,

and such a matrix has rank ≥ n− 1 by Lemma 1.6. So we may assume that
∇t̄(y) 6= 0. In fact we may assume that ∇t̄(y) ‖ en. For let A be a rotation of
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Rn such that∇t̄(y)A ‖ en. Consider φA(z, w) = φ(Az,Aw) =
|z − w|2

tA(z)− t̄A(w)
,

tA = t ◦ A, t̄A = t̄ ◦ A. Then HφA = AtHφ(Az,Aw)A. For given x and y,
let z = A−1x, w = A−1y. Then clearly rankHφ(x, y) = rankHφA(z, w).
Moreover, it is routine to check that

(i′) 1− ∇t(x) · (x− y)

t(x)− t̄(y)
= 1− ∇tA(z) · (z − w)

tA(z)− t̄A(w)
.

(ii′) 1− ∇t̄(x) · (x− y)

t(x)− t̄(y)
= 1− ∇t̄A(w) · (z − w)

tA(z)− t̄A(w)
.

(iii′) ∇t(x) · ∇t̄(y) = ∇tA(z) · ∇t̄A(w).

Since ∇t̄(y) ‖ en, we have that the (n − 1) × (n − 1) submatrix H ′φ of Hφ

formed by deleting the last row and last column is of the form

(H ′φ(x, y))ij =
−2

t(x)− t̄(y)
(δji−(xj−yj)∂jt(x)) 1 ≤ i ≤ n−1, 1 ≤ j ≤ n−1.

This submatrix has rank ≥ n− 2 (by Lemma 1.6); hence so does Hφ.
Suppose that (i), (ii) and (iii) are satisfied. Since ∇t̄(y) ‖ en and (iii)

holds, we have that ∂nt(x) = 0. So by (ii),

Hφ(x, y) =


∗

H ′φ(x, y)
...
∗

0 · · · 0 0

 .
Since (i) (or (ii)) holds, x− y 6= 0. Clearly,

(0, 0, . . . , xn − yn)Hφ(x, y) = 0,

while by (i)
(x′ − y′, 0)Hφ(x, y) = 0.

So rankHφ(x, y) = n− 2.
Now suppose that rankHφ(x, y) = n−2 (assuming again that ∇t̄(y) 6= 0).

In particular, by Lemma 1.6, H ′φ has rank n − 2, and ∇x′t(x) · (x′ − y′) =
t(x)− t̄(y) 6= 0. So we know that x′−y′ 6= 0. Now it is clear that (i), (ii) and
(iii) hold if we know that ∂nt(x) = 0. The claim is that indeed ∂nt(x) = 0,
for suppose not. Consider the (n − 1) × (n − 1) submatrix of Hφ given by
deleting the first row and n-th column. It is of the type described in Lemma
1.7. Thus (x1 − y1)∂nt(x) = 0, and hence (x1 − y1) = 0. Now delete the
second row and n-th column from Hφ. After switching two columns, we may
again apply Lemma 1.7 to obtain that x2 − y2 = 0, and continuing in this
way we find that x′ − y′ = 0 which is a contradiction.
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It is easy now to construct t and t̄ such that (i), (ii) and (iii) of Proposition 3.1
are satisfied, and we give a simple example to demonstrate this fact. Let
t(x) = x1 and t̄(y) = yn; then (i)–(iii) are satisfied on the set { (x, y) :
x1 = xn, y1 = yn }. Suffice it to say that there are many t and t̄ such that
rank(Hφ) = n − 2, and we reserve a more detailed discussion of this for a
future publication preferring to move on to the main technical lemma of this
chapter.

Lemma 3.2. Let K1, K2 ∈ C∞0 (Rn × Rn) and let

Tjf(x) =

∫
Rn
f(y)Kj(x, y) dy j = 1, 2.

Suppose that there is an open set U ⊂ Rn such that

supp(K2) ⊂ U and K1 6= 0 on Ū .(3.2)

If there are constants C1, C2 and C3 > 0 such that

‖K2/K1‖L1(Rn×Rn) ≤ C1,∥∥∥∥∥∥
∑
|α|=s

Dα(K2/K1)

∥∥∥∥∥∥
L2(Rn×Rn)

≤ C2 for some s > n,(3.3)

supp(K2) ⊂ BC3
(0)×BC3

(0).

Then

‖T2‖ ≤ C ‖T1‖ ,

where C = C(C1, C2, C3) is bounded once C1, C2 and C3 are bounded.

The proof of this lemma is simple: we write K2 as the product of K1

and an absolutely convergent sum of compactly supported tensors via an
application of the Fourier transform in the two variables x, y. Then T2 is
the absolutely convergent sum of operators each one being obtained from
T1 by composition with unitary operators. A full proof may be found in
[K], and I am indebted to T. Wolff for pointing out the existence of such a
lemma.

If we let K1(x, y) = eiλφ(x,y)b(x, y) and K2(x, y) = eiλφ(x,y)a(x, y), the
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conditions (3.2) and (3.3) in this case translate as

∃U ⊂ Rn open, supp(a) ⊂ U and b 6= 0 on Ū ,(3.2′)

‖a/b‖L1(Rn×Rn) ≤ C1,∥∥∥∥∥∥
∑
|α|=s

Dα(a/b)

∥∥∥∥∥∥
L2(Rn×Rn)

≤ C2 for some s > n,(3.3′)

supp(a) ⊂ BC3
(0)×BC3

(0).

From Proposition 3.1 and Theorem 1.8 we readily obtain the result
‖Tλf‖2 ≤ Cλ−(n−2)/2 ‖f‖2, and although it is possible to find functions which
satisfy conditions (i), (ii) and (iii) of Proposition 3.1 at a point, or on even
larger varieties, it is not possible that Hφ should be so singular that such an
estimate is sharp. This is the content of our main theorem.

Theorem 3.3. Let Tλ be the oscillatory integral operator with phase func-
tion φ as above. Then

‖Tλf‖2 ≤ Cλ−(n−1)/2 ‖f‖2 .

Proof. Let BR = {x ∈ Rn : |x| < R}. Suppose with out loss of generality
(after perhaps a dilation) that supp(a) ⊂ B1 × B1. Assume also (after a
change of the parameter λ) that 1 ≤ t(x)− t̄(y). Choose ψ ∈ C∞0 (B5) with
ψ ≡ 1 on B4. Consider the following operators:

S1
λf(x) =

∫
Rn
eiλ(−2x·y+t(x)|y|2)ψ(x)ψ(y)f(y) dy,(3.4)

S2
λf(x) =

∫
Rn
eiλ(−2x·y+t̄(x)|y|2)ψ(x)ψ(y)f(y) dy.(3.5)

We know that

‖Sjλ‖ . λ−n/2+1/4 j = 1, 2.

Thus

‖λn/2S1
λ(S2

λ)∗‖ . λ−n/2+1/2.

Now

λn/2S1
λ(S2

λ)∗f(x) =

∫
Rn
eiλ

|x−z|2
t(x)−t̄(z) bλ(x, z)f(z) dz,
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where

bλ(x, z) = λn/2
ψ(x)ψ(z)

(t(x)− t̄(z))n/2
∫
Rn
eiλ|y|

2

ψ2

·
(

y

(t(x)− t̄(z))1/2
+

x− z
t(x)− t̄(z)

)
dy.(3.6)

We wish to apply Lemma 3.2 to finish the proof; this amounts to checking
(3.2′) and (3.3′) for a and bλ. Let U = B2×B2, and suppose that (x, z) ∈ Ū
— i.e.|x| ≤ 2, |z| ≤ 2. We apply Theorem 1.3 to the integral in (3.6) to
obtain that

bλ(x, z) = π
n
2 e−i

n
4 π

ψ(x)ψ(z)

(t(x)− t̄(z))n/2
(
ψ2

(
x− z

t(x)− t̄(z)
)

+ E(x, z)

)
,

where E(x, z) is the first-order remainder in (1.2). Now since∣∣∣∣ x− z
t(x)− t̄(z)

∣∣∣∣ ≤ 4 when (x, z) ∈ Ū ,

then

ψ2

(
x− z

t(x)− t̄(z)
)

= 1 when (x, z) ∈ Ū .

Moreover by 1.3,

|E(x, z)| ≤ Cλ−1
∑

|α|≤n/2+2

∥∥Dα ψ2
∥∥

2
≤ 1/2 when λ� 1.

So for large λ (depending only on φ), |bλ(x, z)| ≥ 1/2 on Ū . We also see
from Corollary 1.5 that

‖Dα bλ‖∞ . 1 for |α| ≤ n+ 1

then (3.2′) and (3.3′) are satisfied with C1, C2 and C3 . 1.

Again, we may not make an improvement in Theorem 3.3 as evidenced
by the follwing.

Theorem 3.4. For a given amplitude function a 6≡ 0, we may find t and t̄
such that the exponent of λ in Theorem 3.3 is sharp.

Proof. For some x̃, ỹ ∈ Rn, a(x̃, ỹ) 6= 0. Following Remark 2.5 we may
assume that ỹ = 0 and x̃ = (0, · · · , 0, x̃n) for some x̃n > 0, and furthermore
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we may reduce the size of supp(a) so that c−1 ≤ xn − yn ≤ c for some fixed
constant c > 0. Finally we may assume that a(x, y) ≥ 0.

Let t(x) = xn and t̄(y) = yn, and choose f̃ to be a C∞0 function which is
unity on suppy(a) and such that ‖f̃‖2 = 1. Noting that

|x− y|2
xn − yn =

|x′ − y′|2
xn − yn + xn − yn,

take f(y) = eiyn f̃(y). Then by (1.2) and (1.3)

|Tλf(x)| =
∣∣∣∣∫ ∫ ei

λ
xn−yn |x

′−y′|2 dy′ dyn

∣∣∣∣
=

∣∣∣∣∣
∫ (

iλ

π

)−n−1
2

a(x, (x′, yn)) dyn +O(λ−(n−3)/2)

∣∣∣∣∣ .
Thus ‖Tλf‖2 & λ−n/2+1/2 as desired.

We finish this section by noting that the estimate in Theorem 3.3 may be
improved when we have a better bound on one of the “factors” S1

λ or S2
λ of

Tλ. If for example t and t̄ satisfy the hypothesis of Theorem 2.9 then in fact
‖Tλ‖ . λ−n/2. More precisely we have the following theorem whose proof is
simply that of Theorem 3.3.

Theorem 3.5. Let t, t̄ and φ be as above. For a given amplitude a with
support contained in B1 ×B1, let

Tλf(x) =

∫
Rn

expiλ
|x−y|2
t(x)−t̄(y) a(x, y)f(y) dy.

If S1
λ and S2

λ in (3.4) and (3.5) are such that∥∥S1
λ

∥∥ . λ−p and
∥∥S2

λ

∥∥ . λ−q,
then

‖Tλf‖2 . λ−p−q+n/2 ‖f‖2 .

4. Appendix.

We finish this paper with a few concluding remarks.
In the introduction we stated the following theorem.
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Theorem 4.1. Let

Tλf(x) =

∫
Rn

exp

(
iλ
|x− y|2

t(x)− t̄(y)

)
a(x, y)f(y) dy,

where a ∈ C∞0 (Rn × Rn) and t and t̄ are measurable functions defined on
suppx(a) and suppy(a) respectively such that 1 ≤ |t(x)− t̄(y)| ≤ 2. Then

‖Tλf‖2 ≤ Cλ−
n−2

4 ‖f‖2 .(4.1)

Although this theorem does not appear in [B], some of the ideas in the
proof may be found there. It is interesting to note that in spite of the
non-smoothness of the phase function, ‖Tλ‖ → 0 as λ→∞ when n > 2.

Proof. For ε to be chosen, let

Uj = {x ∈ suppx(a) : jε ≤ t(x) < (j + 1)ε }
Ūk = {x ∈ suppy(a) : kε ≤ t̄(y) < (k + 1)ε }.

Letting χj(x) and χ̄k(y) be the characteristic functions of Uj and Ūk respec-
tively, we see that

Tλf(x) =
∑
j k

∫
Rn

exp

(
iλ
|x− y|2

t(x)− t̄(y)

)
χj(x)a(x, y)χ̄k(y)f(y) dy

=
∑
j k

∫
Rn

exp

(
iλ
|x− y|2
tj − t̄k

)
χj(x)a(x, y)χ̄k(y)f(y) dy

+

∫
Rn

∑
j k

(
exp

(
iλ
|x− y|2

t(x)− t̄(y)

)

− exp

(
iλ
|x− y|2
tj − t̄k

))
χj(x)a(x, y)χ̄k(y)f(y) dy

= Tλ1f(x) + Tλ2f(x),

where tj ∈ [jε, (j + 1)ε) and t̄k ∈ [kε, (k + 1)ε). When x ∈ Uj and y ∈ Ūk
it is clear that∣∣∣∣exp

(
iλ
|x− y|2

t(x)− t̄(y)

)
− exp

(
iλ
|x− y|2
tj − t̄k

)∣∣∣∣ . λε.
Then by Schur’s Lemma

‖Tλ1f‖2 . λε ‖f‖2 .(4.2)
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Now we estimate ‖Tλ2‖ by duality. Let g ∈ L2 be such that ‖g‖2 = 1. First
notice that the number of indices j or k is comparable to ε−1, and let Tj k be

the oscillatory integral operator with phase function exp

(
iλ
|x− y|2
tj − t̄k

)
and

amplitude χj(x)a(x, y)χ̄k(y). Then∣∣∣∣∫
Rn
Tλ2f(x)g(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∑
j k

∫
Rn

∫
Rn

exp

(
iλ
|x− y|2
tj − t̄k

)
g(x)χj(x)a(x, y)χ̄k(y)f(y) dx dy

∣∣∣∣∣∣
≤
∑
j k

‖gχ̄k‖2 ‖Tj k(fχj)‖2 ≤
∑
j

(∑
k

‖gχ̄k‖22
)1/2(∑

k

‖Tj k(fχj)‖22
)1/2

. ‖g‖2 ‖f‖2 λ−n/2ε−1.

So

‖Tλ2f‖2 . λ−n/2ε−1 ‖f‖2 .(4.3)

Choosing ε = λ−n/4−1/2 in (4.2) and (4.3) yields (4.1).

Further study involves relaxing the smoothness assumption on t and t̄.
One would like to drop all smoothness assumptions in order to prove point-
wise convergence results in higher dimensions. The scheme in [B] can cer-
tainly be carried out in three space dimensions. In higher dimensions it
seems more likely that one will have to study directly the operator Rk men-
tioned in the introduction, without recourse to Tλ. Preliminary results in
this direction can be found in [K].
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