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A UNIQUENESS THEOREM
FOR THE MINIMAL SURFACE EQUATION

ON AN UNBOUNDED DOMAIN IN R2

Chin-Chuan Lee

In this paper, we give a variation on Nitsche’s result on
solutions to the minimal surface equation in sectors.

In 1965, Nitsche [1] announced the following result:

Theorem 1. Let Ω be a sector domain of opening angle smaller than π. If
u = u(x, y) ∈ C2(Ω) ∩ C0(Ω) is a solution of{

div Tu = 0 in Ω

u = 0 on ∂Ω

then u ≡ 0 in Ω. Here Tu = ∇u√
1+|∇u|2 .

In this paper, we give a variation of Theorem 1 as follows:

Theorem 2. Let Ω be a sector domain of opening angle smaller than π. If
u = u(x, y) ∈ C2(Ω) ∩ C1(Ω\{vertex}) is a solution of{

div Tu = 0 in Ω

Tu · ν = 0 on ∂Ω\{vertex}

where ν is the exterior unit normal on ∂Ω\{vertex} then u ≡ constant
in Ω.

Proof. First, we notice that, although we make no assumptions at the vertex,
in fact, we can show that u ∈ C2(Ω) ∩ C1(Ω) as follows: Denote by m and
M the lower and upper bounds for u on a fixed arc separating the vertex
from infinity. Then, by Theorem 5.1 of [2] the two planes v = m and v = M

lie respectively below and above u in the entire domain between the vertex
and the arc, and thus u is bounded above and below at the vertex. It then
follows directly from Simon’s theorem [5], that u is C1 to the vertex. Thus
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u ∈ C2(Ω) ∩ C1(Ω). Since every solution u ∈ C2(Ω) ∩ C1(Ω) of div Tu = 0
satisfies 
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∂x
, q = ∂u

∂y
, w =

√
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If we set {
ξ = x+ F (x, y)

η = y +G(x, y)
(2)

then ξ, η are isothermal coordinates. (c.f. [3, p. 31])
We will show that the image of Ω under the transformations ξ, η is again

a sector domain of opening angle smaller than π. (Ω is the closure of Ω).
Define a mapping ψ : Ω −→ R2 by ψ(x, y) = (ξ, η), where ξ, η are defined by
(2). Without loss of generality, we may assume Ω is symmetric with respect
to the y-axis. If 〈a, b〉 is the unit tangent vector of the right side of ∂Ω (that
is, a2 + b2 = 1; a, b > 0) and s is the arc-length function of ∂Ω, then

∂ξ
ds

= 〈ξx, ξy〉 · 〈a, b〉 = a+ a+ p2a+ pqb
w

∂η
ds

= 〈ηx, ηy〉 · 〈a, b〉 = pqa+ b+ bq2

w + b

on the right side of ∂Ω.

Since Tu · ν = 0 on ∂Ω, we have
〈
p
w ,

q
w

〉
· 〈b,−a〉 = 0 on the right side of

∂Ω, which implies pb = qa on the right side of ∂Ω. Substituting this into
dξ
ds

, dη
ds

, we obtain
dξ
ds

= a(1 + w)

dη
ds

= b(1 + w)

on the right side of ∂Ω.

Since 1 + w > 1, ψ maps the right side of ∂Ω linearly into R2. For the left
side of ∂Ω, we have the similar result. Thus ψ maps Ω into a sector domain
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Ω′ in R2 and ψ is a one-one, onto map from ∂Ω to ∂Ω′. Next, we show
that ψ is a one-one, onto map from Ω to Ω′. Let P0(x0, y0), P1(x1, y1) be
two points in Ω, with ψ(x0, y0) = (ξ0, η0) and ψ(x1, y1) = (ξ1, η1). Consider
Pt(xt, yt) = (x0 + t(x1 − x0), y0 + t(y1 − y0)), 0 ≤ t ≤ 1. Since Ω is convex,
Pt(xt, yt) ∈ Ω.

By (1), there exists a function E(x, y) such that

∂E

∂x
= F and

∂E

∂y
= G.

Following the method of Lemma 5.1 in [3], we define a function h : [0, 1] −→
R by

h(t) = E(xt, yt).

Then

h′(t) = (x1 − x0)p̄+ (y1 − y0)q̄

h′′(t) = (x1 − x0)2r̄ + 2(x1 − x0)(y1 − y0)s̄+ (y1 − y0)2 l̄

where

p̄ =
∂E

∂x
(xt, yt)

q̄ =
∂E

∂y
(xt, yt)

r̄ =
∂2E

∂x2
(xt, yt)

s̄ =
∂2E

∂x∂y
(xt, yt)

l̄ =
∂2E

∂y2
(xt, yt).

So, h′′(t) is a quadratic form in (x1−x0) and (y1− y0), and since the matrix(
p̄ s̄

s̄ q̄

)
is positive definite, we have h′′(t) > 0. This implies h′(t) is an

increasing function, thus h′(0) < h′(1), that is,

(x1 − x0)(p̄1 − p̄0) + (y1 − y0)(q̄1 − q̄0) > 0

where

p̄1 = p̄(x1, y1) p̄0 = p̄(x0, y0)

q̄1 = q̄(x1, y1) q̄0 = q̄(x0, y0).



106 CHIN-CHUAN LEE

From (2), we have

(x1 − x0)(ξ1 − ξ0) + (y1 − y0)(η1 − η0) > (x1 − x0)2 + (y1 − y0)2.

By the Cauchy-Schwarz inequality, we have

(ξ1 − ξ0)2 + (η1 − η0)2 > (x1 − x0)2 + (y1 − y0)2.(3)

Thus, if (x0, y0) 6= (x1, y1), then (ξ0, η0) 6= (ξ1, η1), so ψ is a one-one map
from Ω to Ω′.

To show ψ is an onto map, let ψ(Ω) = K ⊂ Ω′. Because
∂(ξ, η)
∂(x, y)

6= 0, ψ is

locally one-one. Thus every neighborhood of (ξ0, η0) ∈ K belongs to K, that
is, K is relatively open to Ω′. On the other hand, if (ξ0, η0) ∈ Ω′ is the limit
of sequence of points (ξi, ηi) ∈ K, we will show (ξ0, η0) ∈ K. But ξi = xi +
F (x, y), ηi = yi + G(x, y), and bounded (because limi→∞(ξi, ηi) = (ξ0, η0)).
By (3), we see that (xi, yi) is also bounded. So, there exists a convergent
subsequence (xni , yni) of (xi, yi) such that limn→∞(xni , yni) = (x0, y0). Now,
since ψ is continuous on Ω, we obtain

ξ0 = lim
i→∞

ξni = lim
i→∞

(xni + F (xni , yni))

= x0 + F (x0, y0)

and η0 = lim
i→∞

ηni = lim
i→∞

(yni +G(xni , yni))

= y0 +G(x0, y0).

Because ψ is a one-one, onto map from ∂Ω to ∂Ω′, and ψ is continuous
on Ω and (ξ0, η0) ∈ Ω′, it follows that (x0, y0) ∈ Ω. Since ψ(Ω) = K and
ξ0 = x0 + F (x0, y0), η0 = y0 + G(x0, y0), we have (ξ0, η0) ∈ K. Thus K
is relatively closed to Ω′. Therefore, ψ(Ω) = K 6= φ is relatively open and
closed to Ω′. On the other hand, ψ(Ω) = K is connected in Ω′, which implies
ψ(Ω) = K = Ω′, so ψ is an onto map from Ω to Ω′.

We have shown that the image of Ω under the transformations ξ, η is
again a sector domain Ω′ of opening angle smaller than π.

Because div Tu = 0, there exists a function v(x, y) such that

∂v

∂x
=
q

w
and

∂v

∂y
=
−p
w
.

Therefore, |∇v| < 1, which implies v(x, y) <
√
x2 + y2. Now, by (3), we

have v(ξ, η) <
√
ξ2 + η2, that is, v = O(r), where r =

√
ξ2 + η2.

Also

∆(ξ,η)v = 0 in Ω′,

v
∣∣
∂Ω′ = constant
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where ∆(ξ,η) is the Laplacian with respect to (ξ, η).
Thus, using the Phragmén-Lindelöf theorem for harmonic function on a

sector domain ( c.f. [4, p. 94]), we have

v(ξ, η) ≡ constant in Ω′

this implies ũ(ξ, η) ≡ constant in Ω′, so u(x, y) ≡ constant in Ω.
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