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GEODESIC FLOWS ON HYPERBOLIC ORBIFOLDS, AND
UNIVERSAL ORBIFOLDS

Maŕia Teresa Lozano and José Maŕia Montesinos-Amilibia

The geodesic flow of a compact hyperbolic 2-orbifold is de-
scribed. It is a flow in a 3-manifold which is Anosov out of a
finite number of orbits. We study this class of flows (singu-
lar Anosov flows) and prove the existence of singular Anosov
flows on every 3-manifold.

Introduction.

Anosov flows form a well-known class of flows. This class contains the
geodesic flow of a hyperbolic surface ([1], [6]); the suspension flow of an
Anosov diffeomorphism of the torus; and quotients of an Anosov flow by
some flow-preserving group (algebraic flows). Methods have been devel-
opped to obtain Anosov flows by surgery ([10], [5], [8]), or by pasting two
manifolds with Anosov flows together by Anosov diffeomorfism along bound-
ary tori [15]. In all these examples the involved manifolds are closed and
three-dimensional. However, not every 3-manifold admits an Anosov flow:
for instance, no Anosov flow can exist in the sphere S3 ([16]).

It is natural to study geodesic flows of hyperbolic 2-orbifolds. They belong
to a class of flows (Anosov flows with singular orbits), which we call V-
Anosov flows to convey the idea that the 2-fold covering of a V-Anosov flow
branched over the singular set is an Anosov flow. It turns out that this
class of flows can be placed in a more general class, (the class of singular
Anosov flow) which are Anosov out of a finite number of closed orbits. An
important reason to define this more general class is that the suspension flow
of a generalized pseudo-Anosov diffeomorphism (in the sense of Laudenbach
[7]) is a singular Anosov flow.

In this paper we introduce these concepts and show the following:
Section 1: Definition of singular Anosov and V-Anosov flows.

Section 2: Characterization of transitive Anosov flow in 3-manifolds (cor-
recting a result of Fried [8]).

Section 3: Description of the geodesic flows of hyperbolic orbifolds.
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Section 4: Study of the singular links of geodesic flows of hyperbolic orb-
ifolds (when the underlying 3-manifold is S3). Constructions of V-
Anosov flows in S3 by other procedures. As an application we give a
result about links in S3 (Corollary 4.2.2).

Section 5: Proof that every 3-manifold has a singular Anosov flow (with
some extra-control of the flow). This is done after proving the existence
of links L in S3 both universal and singular set of V-Anosov flows. (A
link is universal if every 3-manifold is covering of S3 branched over L.)

Known concepts of flows not defined in this paper can be found in [22].
References for concepts related with links are [23] and [4]. For a 3-manifold
we usually mean a closed, orientable 3-manidold, but 2-orbifolds do not
need to be orientable; on the contrary, the interesting examples arise from
the geodesic flows of non-orientable hyperbolic orbifolds.

§1. Singular Anosov flows.

The concept of pseudo-Anosov diffeomorphism of a surface was introduced
by Thurston in [24], for the classification of diffeomorphisms of surfaces. It
was soon generalized by Laudenbach [7] by allowing a new kind of singular
points (1-prong singularities, see Definition 1.1 below) which is basic in our
work.
Definition 1.1 [7, p. 243]. A generalized pseudo-Anosov diffeomorphism is
a diffeomorphism f : S → S of a surface S having two mutually transverse
measured foliations, (Fs, µs), (Fu, µu) and a real number λ > 1 satisfying
f(Fs, µs) = (Fs, λ−1µs) and f(Fu, µu) = (Fu, λµu). The foliations Fs,Fu

mitght have a finite number of k-prong singularities (k = 1, or k ≥ 3) which
form the singular set of f . (Fig. 1.1.)

Figure 1.1.

Note that:
1) A point in the singular set of f is a k-prong of both foliations Fs,Fu

since they are transverse. Such a point will be called a k-singular point of f .
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2) The restriction of f to S\P , where P is the set of 1-prong singularities,
is a pseudo-Anosov diffeomorphism. (See [24], [21], [7].)

3) Let S′ be a double cover of S branched over a finite set of points P ′

including P . A lifting f ′ of f to S′ is a pseudo-Anosov diffeomorphism,
because the singularities of f ′ are k-prong, k ≥ 3.

Definition 1.1.2. A flow ϕ on a closed 3-manifold M is a singular Anosov
flow if, first, there exists a union Γ of a finite number of periodic orbits
γ1, . . . γn, such that the restriction of ϕ to M\Γ is an Anosov flow, and,
second, a Poincaré map for a transversal local section to γi in a point pi,
i = 1, . . . , n, is a generalized pseudo-Anosov diffeomorphism whose singular
set consists of the ki-prong singular point pi.

The orbits of Γ form the singular set of the flow. We will say that γi is a
ki-singular orbit of ϕ. A 1-singular orbit will be called a thorn.

A V-Anosov flow is a singular Anosov flow, whose singular set consists
only of thorns.

The concept of singular Anosov flow is important in relation with the
construction of all transitive Anosov flows in 3-manifolds (see §2). We will
see that singular Anosov flows appear in a natural way as the geodesic flows
of 2-hyperbolic orbifolds (see §3). It is shown in §5 that every closed oriented
3-manifold admits singular Anosov flows.

Note that the suspension construction applied to a generalized pseudo-
Anosov diffeomorphisms yields a singular Anosov flow. Indeed, let S be a
closed surface, and let f : S → S be a generalized pseudo-Anosov diffeo-
morphism. Consider the 3-manifold M = S × [0, 1]/(x, 1) ∼ (f(x), 0). The
suspension flow ϕ on M is defined by ϕ((x, s), t) = (f [t](x), s + t − [t + s]),
where (x, s) is a point of M and [∗] denotes the integer part of ∗. Then, ϕ
is a singular Anosov flow.

§2. Transitive Anosov flows in 3-manifolds.

2.1. Dehn surgery on periodic orbits of singular Anosov flows.

Construction 2.1.1. Let ϕ be a singular Anosov flow in a 3-manifold M3,
and let γ be a periodic orbit of ϕ. We describe now, a process that (while
changing the manifold by Dehn surgery along γ) it modifies the flow in a
neighborhood of γ. (Compare [10], [8], [5].) Note that if this process is
applied to an Anosov flow whose stable foliations are infinitely smooth, the
stable foliations of the new flow might not be infinitely smooth any more
([9]).

The process is done in two steps:
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A. Blowing up. A tubular neighborhood of γ,N(γ), is homeomorphic to
D2×S1 , where γ corresponds to (0, 0)×S1 . The diskD2 can be considered as
the quotient of S1×[0, 1] by the relation (θ, 0) ∼ (θ′, 0). In this step we forget
the relation ∼ in D2 × S1

∼= N(γ), so that the manifold M is transformed
in M∗, where the curve γ has been replaced by a boundary torus T . In M∗

there exists a flow ϕ∗ such that ϕ|M\γ ≡ ϕ∗|M\T , and the restriction of ϕ∗ to
T is a Morse Smale flow with atractors and repellers alternating as in Fig.
2.1. Let (µ, λ) be a homology basis in T , where µ ∼ ∂D2 and λ ∼ γ in N(γ).
The number of intersection points of µ with the set of atractors is either 2,
if γ is an ordinary orbit, or k, if γ is a k-singular orbit. (See Fig. 2.1.)

Note that in the case of an ordinary orbit, for instance, the number of
attractors of ϕ∗|T can be one or two, according as if the component of the
intersection of N(γ) with the stable leaf of γ in ϕ,W s

γ [22, p. 98], is a
Möebius band or an annulus. (See Fig. 2.1.a).) The Möebius band case was
not considered neither by Christy [5] nor Fried [8].

Figure 2.1. a) Ordinary orbit

Figure 2.1. b) 1-singular orbit (k = 1)
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Figure 2.1. c) 3-singular orbit (k = 3)

B. Blowing down. Consider the torus T fibred by curves Q = pλ + qµ,
where p and q are relative prime integers, and collapse each fiber to a point.
Let γ′ be the set of these points. The resulting manifold M ′ = M(q/p)
is homeomorphic to the manifold obtained from M by Dehn surgery along
γ, with coefficient r = q/p. The flow ϕ∗ induces a flow ϕ′ on M ′ such
that ϕ′|M ′\γ′ ≡ ϕ∗|M\T ≡ ϕ|M\γ . Let (p0, q0) be the couple (well defined
up to change of sign) of relatively prime integers such that Q0 = p0λ + q0µ

is homologous to an atractor of the Morse Smale flow in T , (thus Q0 is
homologous to every attractor and repeller of the Morse Smale flow in T ).
Then the flow ϕ′ in M(p0, q0) has fixed points, namely the images in γ′ of
the attractors and repellers of T . Only in this case ϕ′ is not a singular
Anosov flow in M ′. For (p, q) 6= (p0, q0), γ′ is a periodic orbit of ϕ′, ordinary
or singular, depending on the choice of (p, q) and ϕ∗|T , and ϕ′ is again a
singular Anosov flow. To see this, just consider an appropriate local section
to γ′.

2.2. Construction of Anosov flows.

Construction 2.2.1. Let S be a closed surface, and let f : S → S be a
generalized pseudo-Anosov diffeomorphism.

Let p ∈ S be a k-singular point of f, k = 1 or k ≥ 3. The smallest period
of p is denoted by m(p). This is the smallest natural number m such that
fm(p) = p. Let j = j(p) be the smallest integer such that fmj carries each
prong at p into itself (each singular leaf going to itself). Clearly, j|k. We
assume that the diffeomorphism f is such that k

j
∈ {1, 2} for every k-singular

point p. This hypothesis is necessary for the following construction.
Let F be a finite set of points of S invariant for f and containing the

singular set of f . We consider the 3-manifoldM = S×[0, 1]/(x, 1) ∼ (f(x), 0)
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endowed with the suspension flow ϕ, which is a singular Anosov flow (see
§1). Let (M∗, ϕ∗) be obtained from (M,ϕ) by blowing up the set of orbits
F×[0, 1]/(x, 1) ∼ (f(x), 0) (see §2.1). The flow ϕ∗ restricted to the boundary
of M∗ is a Morse-Smale flow. We choose a homology basis (λ, µ) for each
boundary component, and we call H the homology class represented by
an attractor of the flow (and therefore by any attractor or repeller). For a
suitable λ, the coordinates of H, which depend on k and j, are the following:{

H = k
2
λ− µ j = k

2
, 2 attractors and 2 repellers

H = kλ− µ j = k, 1 attractor and 1 repeller.

Fig. 2.2 represents the particular cases k = 1, 2.

Figure 2.2.

We blow down every boundary component of M∗ choosing a couple (p, q)
such that the new orbit is an ordinary orbit of the flow ϕ′ in the resulting
manifold M ′. The couple (p, q) is obtained by requiring that the number of
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intersection points of Q = pλ+ qµ with the set of attractors and repellers is
4. The possibilities are the following:

for k = 1 p odd, q = 2

for k even and j =
k

2
kq + 2p = 2, g.c.d(p, q) = 1

for any k and j = k kq + p = 2, g.c.d(p, q) = 1.

The flow ϕ′ in the new closed 3-manifold M ′ is an Anosov flow because it is
a singular Anosov flow with empty singular set.

Theorem 2.2.2. Let ϕ be a transitive Anosov flow on a closed 3-manifold
M . If ϕ has a surface of section then ϕ is topologically conjugate to one
obtained by the above construction.

Proof. Let S be a surface of section for the flow ϕ and let Γ be the set of
the n periodic orbits constituting the boundary of S. Let f be the Poincaré
map of S\∂S. Let M∗ be the result of blowing up the orbits contained in Γ.
There is a unique compactification, Ŝ, of S\∂S with a point Pi on each end
(Freudenthal compactification). On each boundary component Ti of M∗,
(i = 1, . . . , n), consider the well defined curve Qi = Ti ∩ S. Let M1 be the
manifold obtained by blowing down every boundary torus Ti of M∗, using
Qi as fiber, (i = 1, . . . , n). Let ϕ1 be the induced flow on M1. Note that
M1 contains the closed surface Ŝ as a global section of the flow ϕ1. Then,
the manifold M1 is Ŝ × [0, 1]/(x, 1) ∼ (f1(x), 0), where the extension f1 of
f to Ŝ is a generalized pseudo-Anosov diffeomorphism. It follows that the
suspension flow ψ in M1 is topologically equivalent to ϕ1. Note that this
process might create 1-prong singularities in f1. (See Note 1 below.)

Now, we prove that the flow ϕ on M is topologically conjugate to one ob-
tained by Construction 2.2.1: We start from the mapping torus M1 of f1, and
the corresponding suspension flow ψ. Then, we perform Construction 2.2.1
by reversing the precedent process, as follows:
a) Blow up the periodic orbits of ψ passing through the points Pi, (i =
1, . . . , n), of Ŝ, to obtain M∗.
b) Blow down the boundary components of M∗ to obtain M . The induced
flow in M is topologically conjugate to ϕ.

Corollary 2.2.3. Any transitive Anosov flow on a closed 3-manifold is
topologically conjugate to one obtained by Construction 2.2.2.

Proof. Theorem 2 of [8] establishes that every transitive Anosov flow on
a closed 3-manifold has a surface of section. Then, apply the precedent
Theorem 2.2.1.
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Notes. 1). Fig. 2.3 shows an example of a boundary torus Tof a manifold
M∗ obtained by blowing up a periodic orbit which is a boundary component
of a surface of section of a flow ϕ in a 3-manifold M . The Morse-Smale flow
in T has an attractor and a repeller. The line R is the intersection of T
and S. It is clear that the process of blowing down defined by R produces a
singular Anosov flow with a thorn. Concrete examples of this situation can
be constructed from the flows of section 4. (See 4.4.2 ii).) This case was no
considered by Fried [8].

Figure 2.3.

2). Theorem 1 of [8] would be correct if it were always possible to find a
surface of section such that the flow ϕ1 in the manifold M1 has no thorns.
This still is an open question.

§3. ST (Q) and its geodesic flow.

3.1. Geodesic flow of compact hyperbolic 2-orbifolds. Let Q be a
compact hyperbolic 2-orbifold. There exists a subgroup Γ of the group
Iso(H2) of isometries of the hyperbolic plane H2 such that Γ acts on H2

on the left as a properly discontinuous transformation group, and the quo-
tient Γ\H2 is Q. The total space ST (Q) of the spherical tangent bundle of
Q, is a 3-manifold, which is the quotient of the total space ST (H2) of the
spherical tangent bundle of H2 by the action of Γ on the tangent space of
H2 on the left (i.e. ST (Q) = Γ\ST (H2)). (See, for instance [19, p. 91].)

The geodesic flow ϕ for H2 is defined on ST (H2) by

ϕ : ST (H2)× R→ ST (H2)

((x, v), t)→ (x′, v′).

Here x′ = γvx(t), where γvx is the geodesic defined by (x, v), and v′ is the
tangent vector to γvx at x′. Clearly, the orbit of a point (x, v) consists of the
tangent vectors to the geodesic defined by (x, v).

The isometries of Γ map geodesics of H2 onto geodesics, and therefore the
geodesic flow ϕ is Γ-equivariant. The quotient of the geodesic flow ϕ for H2
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by the action of Γ is, by definition, the geodesic flow for the 2-orbifold Q. It
is a flow ψ on ST (Q). We are interested in the study of this flow.

First, we recall the properties of the geodesic flow for H2. It is obviously a
flow in the 3-manifold ST (H2). This manifold can be identified with H2×S1

by the diffeomorphism

ST (H2)→ H2 × S1

(x, v)→ (x, θ)

where θ ∈ S1 is the α-limit point of (x, v) (i.e. θ = limt→∞ γvx(t), where γvx
is the geodesic defined by (x, v)). (See Fig. 3.1.) The geodesic flow defines
a foliation on ST (H2), such that each orbit of the flow is a leave of the
foliation. Then, the leaves of the foliation are diffeomorphic to R, and each
H2 × {θ} is foliated by all the geodesics with θ as α-limit point.

Figure 3.1.

The geodesic flow ϕ on ST (H2) is globally hyperbolic, which means that:
(i) The unstable submanifold Wϕu

(x,v) through the point (x, v) consists, by
definition, of the tangent vectors to the geodesics γ with θ = limt→−∞ γvx(t)
as ω-limit point (i.e. θ = limt→−∞ γ(t)). (See Fig. 3.2 a).)
(ii) The stable submanifold Wϕs

(x,v) through the point (x, v) consists, by defi-
nition, of the tangent vectors to the geodesics γ′ with θ = limt→+∞ γvx(t) as
α-limit point (i.e. θ = limt→+∞ γ′(t)). (See Fig. 3.2 b).)
(iii) The unstable and stable manifolds Wϕu

(x,v) and Wϕs
(x,v) intersect transver-

sally along to the tangent vectors of the geodesic γvx, as it is shown in Fig.
3.2 c), in a neighborhood of (x, v).
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Figure 3.2.

Let g be an isometry of H2. The action of g on ST (H2) is given by
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g(x, v) = (g(x), dg(v)). The image of (γvx(t), v′) ⊂ H2 × {θ}by g is(
γ
dg(v)
g(x) (t), v′′

)
⊂ H2 × {θ′},

where v′ is the tangent vector to γvx at γvx(t), and v′′ is the tangent vector to
γ
dg(v)
g(x) at γ

dg(v)
g(x) (t). Note that g acts on ∂H2 sending θ to θ′. (Fig. 3.3.)

Figure 3.3.

The isometries of H2 acting with fixed points are reflections and
2π

n
-

rotations, n ∈ Z. We now analyze its action on ST (H2) and the effect on the
projected flow ψ.

Lemma 3.1.1. Let g be a reflection. Then the geodesic flow ψ in g \H2, is
a V -Anosov flow. The singular set consists of two thorns.

Proof. Let g be a reflection on a geodesic γ of H2. The fix points of g on H2

are the points of γ. Let γ1 be the geodesic γ endowed with one of the two
possible orientations, and let γ2 be the geodesic γ endowed with the other
possible orientation. The set Ai ⊂ ST (H2) of tangent vectors to γi is the
copy of γ contained in H2 × {θi}, i = 1, 2, where θ1 and θ2 are the α-limit
point and the ω-limit point , respectively, of the geodesic γ1.

Next we prove that the set F of fixed points of g on ST (H2) is A1∪A2 : The
point (x, v) is an element of F, if and only if (x, v) = g(x, v) = (g(x), dg(v)).
This equality holds if and only if x ∈ γ and v is a tangent vector to γ, which
is equivalent to (x, v) ∈ A1 ∪A2.

The natural projection π : ST (H2) −→ g \ST (H2) is a covering, branched
over π(A1 ∪ A2). Therefore the restriction of π to ST (H2) − (A1 ∪ A2) is a
local diffeomorphism and the projected flow on (g\ST (H2))−π(A1∪A2) has
the same local properties that ϕ, i.e. it is hyperbolic. The set Ai, i = 1, 2,
which is an orbit of ϕ, projets onto the orbit π(Ai) of the projected flow
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ψ. Let Ni be the neighborhood of Ai in ST (H2) formed by the tangent
vectors to geodesics with θi ± ε as α-limit point and with base point in a
neighborhood of γ invariant by the action of g on H2. Ni is invariant by the
action of g on ST (H2). Actually, the action of g on Ni is a π-rotation around
Ai. Figure 3.4 shows the neighborhood Ni and the action on a transversal
section to Ai. Then π(Ai) is not hyperbolic in the projected flow ψ, but it is
a thorn. We have prove that ψ is a V -Anosov flow with two thorns, π(A1)
and π(A2).

Figure 3.4.

Lemma 3.1.2. If g is a
2π

n
-rotation around a point P or an isometry

without fixed points, then the geodesic flow ψ in g \H2, is a singular Anosov
flow with empty singular set.

Proof. Let g be a
2π

n
- rotation around a point P of H2 or an isometry

without fixed points. Then g acts on ST (H2) without fixed points, therefore
the natural projection π : ST (H2) −→ g \ ST (H2) is a local diffeomorphism
and thus the projected flow on g \ ST (H2) is globally hyperbolic.
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Theorem 3.1.3. The geodesic flow of a compact hyperbolic 2-orbifold Q is
a V -Anosov flow on the closed 3-manifold ST (Q).

Proof. Let Γ be the subgroup of isometries of the hyperbolic plane H2, such
that Q = Γ \ H2. The group Γ is finitely generated because Q is compact.
Then there exists a fundamental domain D for the action of Γ on the plane
H2 which is a polygon with a finite number of edges. Therefore ST (Q) is
obtained from D×S1 by identifyng its faces by the action of a finite number
of elements of Γ. It follows from Lemma 3.1.1 and Lemma 3.1.2 that the
geodesic flow for Q on the manifold ST (Q) is a V -Anosov flow.

Note that if a discrete group of isometries Γ acts freely on H2, it acts also
freely on ST (H2). In this case Q = Γ \ H2 is a non singular 2-orbifold. In
addition, if Γ is cocompact, Γ \H2 is a compact surface S and the geodesic
flow ψ for S is an Anosov flow [1]:

1) It is globally hyperbolic.
2) Per = ST (S), where Per is the set of periodic orbits.

3.2. Seifert fibration on ST (Q). The manifold ST (Q) has the structure of
a Seifert fibred orbifold which is the quotient of the trivial S1-fibred bundle
structure on ST (H2) = H2 × S1. The manifold ST (Q) has a decomposition
into circles and compact intervals, corresponding to the fibers of the tangent
bundle, with base the 2-orbifold Q. We will calculate the signature of this
structure of ST (Q) in the classification given by Bonahon-Siebenmann [3].
This signature generalizes the signature of a Seifert manifold to Seifert fibred
orbifolds.

The signature consists of:
(i) A slope β/α (we write also (α, β)) associated to each cone point with

isotropy group cyclic of order α, and to each corner point with isotropy group
dihedral of order 2α.

(ii) A parity ε ∈ Z2 associated to each mirror cycle.
(iii) The Euler class e ∈ 1

2
Z.

Let P be a cone point whose isotropy group is the cyclic group Cα of order
α. Then (α, β) defines the exceptional fiber over P. To compute this slope
we analyze the fibration in a neighborhood of the exceptional fiber. Let h

be the hyperbolic
2π

α
-rotation around P, where α ∈ N, and let D2×S1 be a

neighborhood of P × S1 in ST (H2). The action of h on D2 × S1 is given by
(h, dh).

D2 × S1 −→ D2 × S1

((r, θ1), θ2) −→
((

r, θ1 +
2π

α

)
, θ2 +

2π

α

)
.
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It rotates D2 and S1 an angle
2π

α
. Thus β = α− 1 because the angle

2π

α
is equal to −2π(α− 1)

α
= −2πβ

α
.

Let P be a corner point whose isotropy group is the dihedral group ∆2α

of order 2α. Then (α, β) is also (α, α− 1) , because the generator of

Cα ≤ ∆2α produces a
2π

α
-rotation around P, and each element of ∆2α \ Cα

acts by reflection on D2 and S1. The neighborhood of the fiber over P in the
quotient (a compact interval), is the rational tangle (α, α− 1).([3].)

Let C be a mirror cycle in Q. Let N(D) be a neighborhood in C of the
set of corner points. Let Σ be the surface obtained by the union of the fibres
over the mirror points of C−N(D), together with topological squares in the
rational tangles at the corner points. Then ε is 1 if Σ is a Mœbius band,
and 0 if it is an annulus.([3].)

The Euler class e is the obstruction to extend a certain 2-fold partial
section. It coincides with the number −b in the signature of Seifert for
Seifert manifolds.

The rational Euler class e0 is defined by:

e0 = e− Σ

{
m(P )

β(P )

α(P )
; P a cone or corner point

}

where m(P ) = 1
2

if P is a corner point, and m(P ) = 1 if P is a cone point.
The following result is well known:

Proposition 3.2.1. Let Q be a 2-orbifold. Then χ(Q) = e0(ST (Q)).

Theorem 3.2.2. a) Figure 3.5 shows a surgery presentation of ST (Q),
where Q is the hyperbolic orbifold consisting of the orientable surface of genus
g ≥ 0, s cone points with isotropy group Cαi , (i = 1, . . . , s), m mirror edges
`1, `2, . . . , `m, and rj corner points with isotropy group ∆2βjn , (n = 1, . . . , rj)
in each `j, (j = 1, . . . ,m). The singular orbits of the geodesic flow on Q form
the link L1 ∪ L2 ∪ . . . ∪ Lm, and every Lj is a thorn.

b) Figure 3.6 shows a surgery presentation of ST (Q), where Q is the
hyperbolic orbifold consisting of the non-orientable surface of genus k ≥
0, s cone points with isotropy group Cαi , (i = 1, . . . , s), m mirror edges
`1, `2, . . . . , `m, and rj corner points with isotropy group ∆2βjn , (n = 1, . . . , rj)
in each `j, (j = 1, . . . ,m). The singular orbits of the geodesic flow on Q form



GEODESIC FLOWS ON HYPERBOLIC ORBIFOLDS 123

the link L1 ∪ L2 ∪ . . . ∪ Lm, and every Lj is a thorn.

Proof. For m = 0, ST (Q) is the Seifert manifold

M = (0, n,k0,g : −e; (α1, α1 − 1), . . . , (αs, αs − 1))

and Fig. 3.5 or 3.6 is a surgery presentation for it ([19, p. 146]).
Then it is enough to prove that Fig. 3.7 is a surgery presentation of

ST (U), where U is a neighborhood in Q of a mirror edge having r cor-
ner points with isotropy groups ∆2β1

, . . . ,∆2βr , and to check that L is the
set of fixed points for the reflection.

Figure 3.5.
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Figure 3.6.

Where ([17], [18])

Let m be a boundary component of Q. Then, each fiber {x} × S1 of the
fibred torus m×S1 (Fig. 3.8a)) must be folded to a closed interval, and thus
the torus m×S1 becomes a I-fibred anulus A. To do that, we first change the
surgery instructions as it is shown in Fig. 3.8b). Fig. 3.8c) stands for the
final result when there are no corner points in m. The boundary of A forms
the fixed points for the reflection. If there are corner points in m, and Pi is
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one of them with isotropy group ∆2βi, we must substitute a neighborhood
of Pi × I by the rational tangle (βi, βi − 1). Therefore the final result is as
in Fig. 3.7.

Figure 3.7.

Figure 3.8.

§4. V -Anosov flows in S3.

4.1. Geodesic flows of orbifolds, in S3. The following theorem gives a
family of V -Anosov flows in S3. The flow is Anosov in the exterior of a
Montesinos link L. The double cover of S3 branched over L is a 3-manifold
ML with an Anosov flow ϕM . This gives a structure of 3-orbifold to S3 with
L as singular locus and where the isotropy group of each singular point is
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cyclic of order 2. This structure on S3 is the quotient of ML by an involution
commuting with the flow.

Theorem 4.1.1. Let L be the Montesinos link of Fig. 4.1, where r, αi (i =
1, . . . , r) are natural numbers such that 2 +

∑r
i=1

1
αi
< r. Then there exists a

V -Anosov flow in S3 whose singular set is the link L.

Figure 4.1.

Proof. Let Q be the hyperbolic orbifold consisting of a disk D with mirror
boundary and r corner points with isotropy groups ∆2α1

, . . . ,∆2αr , where
αi ∈ Z. We denote Q by Dα1α2...αr . Then 2+

∑r
i=1

1
αi
< r, because, the Euler

characteristic of the (hyperbolic) Q is negative.
To construct ST (Q), we start considering the solid torus D2 × S1. In the

boundary torus ∂D2 × S1 (set of fibers over the mirror boundary ∂D), each
fiber {x} × S1 must be folded to an interval. That operation transforms
∂D2 × S1 in a I-fibred annulus A. The resulting underlying manifold is S3.

(Fig. 4.2.)

Figure 4.2.
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We have to replace a neighbourhood of {Pi}×I by a fibred tangle (αi, αi−
1), where Pi is a corner point with isotropy group ∆2αi . The underlying
manifold is again S3.

We compute the Euler class e by the formula: χ(Q) = e0, where

χ(Q) =
1

2

(∑
i

1

αi
− r + 2

)
and e0 = e− 1

2

∑
i

αi − 1

αi
= e− r

2
+

1

2

∑
i

1

αi
.

This implies that e = 1 . One obtains e = 1 by doing (−1)-surgery

in a general fibre. Then Fig. 4.3 is a presentation of ST (Q). Using Hempel
trick [11] (Fig. 4.4) we obtain Fig. 4.5. As isotropy transforms the link of
Fig. 4.5 in the link L. This shows that the underlying space of ST (Q) is S3.

The geodesic flow of ST (Q) is a V -Anosov flow and L is the singular set of
the flow because it is the set of fixed points for the action on ST (H) of the
subgroup Γ of isometries of H2 defining Q.

Figure 4.3.

Figure 4.4.

Note that the thesis of the theorem could have also been obtained as a
consequence of Theorem 3.2.2 and Kirby calculus.
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The manifold ML, double cover of S3 branched over L, has an Anosov
flow invariant under the involution u of ML such that S3 = ML/u. Moreover
ML is the Seifert manifold (O, o, 0| − 2; (α1, α1 − 1), . . . , (αr, αr − 1)). This
structures S3 as a Seifert orbifold with singular locus of order 2 in L.

Figure 4.5.

4.2. Braided V -Anosov flows in S3. We will construct a family of V -
Anosov flows in S3. Each of these will be the quotient of an Anosov suspen-
sion flow in certain torus bundle over S1. The flow singularity is a certain
3-braid link with or without its axis.

Every element B of SL(2,Z) is the matrix of a linear map fB in R2 leaving
Z2 invariant. It induces a diffeomorphism, still called fB, in the quotient
manifold F1 = R2/Z2. The diffeomorphism fB is the diffeomorphism on F1

associated to B. Note that the point x0 ∈ F1, which is the orbit of (0, 0), is
a fixed point of the diffeomorphism fB of F1.

Let f be an Anosov diffeomorphism on the torus F1. It is well known that
there exists an Anosov matrix Af ∈ SL(2,Z) such that f is isotopic to the
diffeomorphism associated to Af .

Every Anosov matrix is similar over the integers to a matrix with all its
entries positive [26].

Every matrix B =

(
a b

c d

)
∈ SL(2,Z), where a, b, c, d > 0, is hyperbolic

(because a+d > 2), and it is the image by the reduced Burau representation
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ρ, of a hyperbolic pure 3-braid

γ0 = σp1

1 σ
q1
2 . . . σpr1 σ

qr
2 r ≥ 1, pi, qi ∈ N.

Recall that ρ(σ1) =

(
1 0
1 1

)
and ρ(σ2) =

(
1 1
0 1

)
. ([2].)

Geometrically, B represents also the following two diffeomorphisms:
(i) A diffeomorphism on a one-puntured sphere F0,1 with three distin-

guished points as follows. Consider F0,1 as the orbit space (R2 − Z2)/G,
where G is the group generated by π-rotation of R2 about the points with
coordinates (m

2
, n

2
), m, n ∈ Z. The action gB of B ∈ SL(2,Z) on F0,1 is the

quotient of the action of B on R2. The three distinguished points x1, x2, x3

in F0,1 are the orbits of ( 1
2
, 0), (0, 1

2
) and ( 1

2
, 1

2
). Note that the set {x1, x2, x3}

is invariant by gB.
(ii) A diffeomorphism on a one-puntured torus F1,1. This is the restriction

hB of fB to F1,1 assuming that the punctured point of F1,1 is x0.

Let No
B be the mapping torus over F0,1 with monodromy gB. N

0
B = F0,1×

[0, 1]/(x, 1) ≡ (gB(x), 0). Topologically No
B is an open solid torus, containing

every closed braid γ̂, where γ is a geometric 3-braid represented by B (see
[2, p. 40]). Fig. 4.6 shows the geometric 3-braid generators.

Figure 4.6.

Let M o
B be the mapping torus over the once-punctured torus F1,1 with mon-

odromy hB. M
o
B = F1,1 × [0, 1]/(x, 1) ≡ (hB(x), 0).

Then there exists a map p : Mo
B −→ N0

B which is a double covering
branched along the closed braid represented by B.

To prove it note that both manifolds, M o
B and N o

B have an open book
structure with deleted binding, and monodromies hB, gB associated to B.

The map p on each sheet of M o
B (once-punctured torus F1,1) is the dou-

ble cover of the sheet of N o
B (once-punctured sphere F0,1) branched over

{x0, x1, x2}. Then the branching set of p forms a closed braid γ̂, whose preim-
age is a closed orbit of the suspension flow ϕM in M o

B. The flow ϕM , being
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the suspension flow by an Anosov diffeomorphism, is an Anosov flow. The
suspension flow ϕN in N o

B is a V -Anosov flow, it is the projection by p of
the Anosov flow ϕM . The singular set of ϕN is γ̂. The compactification of
No
B with the axis Eγ of the braid γ̂ is S3. We want the extension of the flow

ϕM to S3 to be a V -Anosov flow. That depends on the braid γ as follows.
For the hyperbolic pure 3-braid

γ0 = σp1

1 σ
q1
2 . . . σpr1 σ

qr
2 r ≥ 1, pi, qi ∈ N,

such that ρ(γ0) = B we can isotope hB slightly, in a neighbourhood of
(m,n), m, n ∈ Z, so that hB is the identity near (0, 0) and such that every
meridian curve of the axis Eγ0

is an orbit of the suspension flow ϕM . Then
the extension of the flow ϕM to S3 has the axis Eγ0

as a set of fixed points,
so that it is not a V -Anosov flow.

Note that in the Burau representation ρ :

σ1σ2σ1 −→
(

1 0
−1 1

)(
1 1
0 1

)(
1 0
−1 1

)
=

(
0 1
−1 0

)

(σ1σ2σ1)2 −→
(
−1 0
0 −1

)
.

Then ∆4 = (σ1σ2σ1)4 is represented by the matrix

(
1 0
0 1

)
, whose effect

in a neighbourhood of (0, 0) is a 2π-rotation. Thus ρ(∆±4γ0) = B. Let
γ = ∆±4γ0. In the S3 which is the compactification of N o

B with the axis Eγ
of the braid γ̂, the extension of the flow ϕM is a V -Anosov flow, where the
axis is an ordinary orbit and the singular set of the flow is γ̂.

The above flow can be obtained directly from γ0 as follows. Let L and
M be the canonical longitude and meridian, respectively, of the axis of the
closed braid γ̂0. If we compactify N o

B in such a way that the meridian of the
added solid torus Q is Q = ±2L+M, the result is again S3. The extended
flow has the closed braid corresponding to ∆±4γ0 as a thorn, and now the
axis is a regular periodic orbit.

Other possibility is to consider Q = ±L + M. In this case the manifold
is still S3, and the extended flow is a V -Anosov flow with singular set the
closed braid corresponding to ∆±2γ0 together with its axis.

We have proved the following theorem

Theorem 4.2.1. Let γ be a hyperbolic braid:

γ = σp1

1 σ
q1
2 . . . σpr1 σ

qr
2 r ≥ 1, pi, qi ∈ N.

There exists a singular flow in S3, with singular set L, where L is



GEODESIC FLOWS ON HYPERBOLIC ORBIFOLDS 131

a) the closed braid corresponding to ∆±4γ, or
b) the closed braid corresponding to ∆±2γ and its axis.

Corollary 4.2.2. No rational knot K is isotopic to the closed 3-braid L

corresponding to ∆±4σp1

1 σ
q1
2 . . . σpr1 σ

qr
2 , where r ≥ 1, pi, qi ∈ N.

Proof. The knot L is the thorn of a V -Anosov flow. Then the double cover
of S3 branched over L has an Anosov flow. Margulis [16] proved that in
a manifold having an Anosov flow, the fundamental group has exponential
growth. (A finitely generated group G is said to have exponential growth if
given a finite set of generators, there exist two positive real numbers a and
A such that Γ(n) > Aean, where Γ(n) is the number of different elements of
G of word-length ≤ n.) But the double cover of S3 branched over a rational
knot is a lens space, which has finite fundamental group, hence does not
have exponential growth.

4.3. Relation between the set of thorns of geodesic flows and the
set of thorns of braided V -Anosov flows in S3. The following examples
show that the set of thorns of the geodesic flows obtained in 4.1 is different
from the set of thorns of the braided V -Anosov flows obtained in 4.2.

1) Let γ = ∆−4σ3
1σ2σ1σ2. (Fig. 4.7 shows that γ̂ is the knot 10152 [23].)

Theorem 4.2.1 affirms that the knot 10152 is the thorn of a V -Anosov flow
ϕ in S3. The double cover of S3 branched over the knot 10152 is a graph
manifold, which is not a Seifert manifold. Then the flow ϕ in S3 is not a
geodesic flow.

2) Let γ = ∆−2σ1σ2. Consider the link L composed by the closed braid
γ̂ and its axis. Theorem 4.2.1 shows that L is the singular set of a V -Anosov
flow ϕ in S3. Fig. 4.8 shows the isotropy transforming L into the closed braid
γ̂′ and its axis, where γ′ = σ5

1σ2. This link is the Montesinos link of Theorem
4.1.1 for r = 3, α1 = 2, α2 = 4, α3 = 5. (Fig. 4.9.) Therefore L is also the
singular set of the geodesic flow of the orbifold D245.
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Figure 4.7.

Figure 4.8.

3) The singular set of the geodesic flow of the orbifold D222222 is a 6-
component link L. Then it can not be a 3-braid or a 3-braid together with
its axis. Therefore L is not the singular set of a braided V -Anosov flow.
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Figure 4.9.
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4.4. New V -Anosov flows from old ones. The following transformations
produce new V -Anosov flows.

1)Surgery. A periodic orbit γ of a V -Anosov flow in a 3-manifold M3 has
a well-defined pseudo-framing associated to the flow, this is the intersection
of the boundary of a tubular neighbourhood N(γ) of γ, with the stable leaf
W S(γ) containing γ.

If γ is a thorn or a regular periodic orbit such that N(γ) intersects W S(γ)
in an annulus, this pseudo-framing defines coordinates in the boundary torus
of N(γ) as follows. M = ∂D, where D is a meridian disk of N(γ), and L

equals one of the two components of ∂N(γ) ∩W S(γ).
If γ is a regular periodic orbit such that N(γ) intersects W S(γ) in a

Mœbius band B, we choose L such that ∂B = 2L+M, where M = ∂D, and
D is a meridian disk of N(γ).

In both cases we orient M and L such that L ∼ γ oriented by the flow,
and M.L = +1 in the orientation of M3.

Then “admissible Dehn surgery” in M3 along γ, produces a new manifold
N3 with a V -Anosov flow. We say that a Dehn surgery along γ is admissible
if the new periodic orbit γ′ is regular or thorn. (Recall Construction 2.1.1.)

In particular, if M3 = S3 and γ is the unknot, N 3 is still S3, with a new
V -Anosov flow.

2)Covering. Any covering of a 3-manifold with a V -Anosov flow branched
over a set of thorns with branching indices 1 or 2, induces a V -Anosov flow
in the covering. Here we consider some particular cases.

i) Let ϕ be a V -Anosov flow in S3, and let γ1 and γ2 be thorns of ϕ
such that γ1 and γ2 are unlinked and unknotted. S3 is the covering of
S3 (p : S3 −→ S3) branched over γ1 ∪ γ2 defined by the monodromy:

w(m1) = (1 2)(3 4) · · · (2k− 1 2k) and w(m2) = (2 3)(4 5) · · · (2k 2k+ 1),

where m1 and m2 are the meridians of γ1 and γ2, respectively.
The branching indices are 1 and 2. Then there is a V -Anosov flow ψ in

the cover S3 such that the singular set is composed by the pseudo-branching
(preimage of γ1 and γ2 with branching index 1) and the preimage of the
singular set of ϕ different from γ1 and γ2.

In particular we can apply this procedure to the double cover of S3

branched over an unknotted thorn.
ii) Next we construct an Anosov flow on a manifold M, such that there

exist a periodic orbit such that the component of the intersection of it stable
submanifold with a regular neighbourhood containig p−1(γ) is a Mœbius
band. Consider the V -Anosov flow in S3 whose singular set is the Montesinos
link L of Fig. 4.10. It is the geodesic flow of the orbifold D444.
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Figure 4.10.

The curve s is the intersection of the stable submanifold of the thorn
γ with the boundary of a tubular neighbourhood of γ. Let p : M −→ S3

be the double covering of S3 branched over L. Then p−1(γ) is an ordinary
orbit of the Anosov flow induced in M, such that the component of the
intersection of it stable submanifold with a regular neighbourhood containig
p−1(γ) is a Mœbius band. This is because p−1(γ) is connected. (Compare
Construction 2.2.1 and Note 1 of Corollary 2.2.3.)

§5. Singular Anosov Flows in 3-manifolds.

5.1. The universal orbifolds (L, 2). Let (L, s) denote S3 structured as a
3-orbifold with singular locus a link L and isotropy cyclic of order s ∈ N.
Definition 5.1.1. The orbifold (L, s) is a universal orbifold if every 3-
manifold is a cover of S3 branched over L such that the branching indices
divide s.

In this section we will obtain some universal orbifolds (L, 2). The interest
on universal orbifolds with isotropy cyclic of order 2 was pointed out by
Thurston [25]. We will use them in Section 5.2, to obtain singular Anosov
flows in 3-manifolds.

Definition 5.1.2. Let p : M 3 −→ N3 be a finite covering branched over a
link L. Let L′ be a sublink of L. The least common multiple of the branching
indices of the points of p−1(L′) will be called branching index of L′, and will
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be denoted by b(L′). The branching index of p is b(L).

Figure 5.1.

Let Lm,n be the link in S3 showed in Fig. 5.1, where m is the number of
meridian components of Lm,n and n is the number of longitude components
of Lm,n.

Theorem 5.1.3. Let M 3 be a closed oriented 3-manifold. Then there exist
two natural numbers m and n, and a covering map p : M3 −→ S3 branched
over the link Lm,n such that the branching index of p is 2.

Proof. [14, proof of Theorem 1.1].

Note that Lm,n is placed in such a way that it remains invariant under the
action of Zm × Zn in S3 generated by a 2π/m-rotation rm around the core
cm of the unbounded solid torus, and by a 2π/n-rotation rn around the core
cn of the bounded solid torus (this is the main idea of Thurston in [25]).

The 2π/m-rotation rm generates the group of covering transformations of
an m-fold cyclic covering fm : S3 −→ S3, whose branching set is fm(cm). We
can modify fm into f ′m : S3 −→ S3, branched along two curves c1, c2 parallel
to fm(cm) and not linking each other. The modification takes place in a reg-
ular neighbourhood of fm(cm), outside of which the covering remains cyclic.
Fig. 5.2 shows the branching set and the monodromy of both coverings (see
[20]). Note that f ′m is a covering with branching index 2. Let f ′n be the
analogous branched covering constructed from fn.
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Figure 5.2.

The composition p1 = f ′m ◦ p is a covering map from M 3 to S3 branched
over the link f ′m(Lm,n) with branching index 2. The 2π/n-rotation rn around
the core of the solid torus permutes the components of the link f ′m(Lm,n).
Then the composition p2 = f ′n◦p1 is a covering map from M3 to S3 branched
over the link L1 = f ′n(f ′m(Lm,n)) with branching index 2. (See Fig. 5.3.)

Figure 5.3.

Adding new components to L1 we obtain a link invariant for the π-rotation
around the axis passing through the point A (Fig. 5.4). This produces a
covering map p3 : M 3 −→ S3, branched over the link L2, with branching
index 2.
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Figure 5.4.

Remark. Using the approach to obtain universal links given in [13] and
the same ideas as above we obtain L3 and L4. (Fig. 5.5.)

Figure 5.5.

Adding components to the links L3 and L4 so that they become symmetric
with respect to the 2π/3-rotation (or 2π/6-rotation) around the axis passing
through A and using f ′3 for L3 and f ′2, f

′
3, f
′
6 for L4 we obtain again L2, and

L5, L6, L7. (Fig. 5.6.)
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Figure 5.6.

The link L7 is symmetric with respect to the π-rotation around the axis
passing through A. Using f ′2 we obtain L8. The symmetry of L2 produces L9

by using an f ′3. The symmetry of L9 produces L10. (Fig. 5.7.)

Figure 5.7.

We have proved the following theorem:

Theorem 5.1.4. The orbifolds (Li, 2), (i = 1, . . . , 10), are universal orb-
ifolds.
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We now define a move M on the class of the orbifolds (L, s).

Figure 5.8.

Definition 5.1.5. Let K1,K2 be two unknotted components of a link L

linked as a (2, 2n) toroidal link (see Fig. 5.8a)). Place the components of
L different from K1,K2 in the interior of the box B of Fig. 5.8a). The link
ML is obtained from L by the replacement of the components K1,K2 by
K3,K4 of Fig. 5.8b). Observe that ML is equal to L in the interior of B.

Lemma 5.1.6. Let (L, s) be a universal orbifold. Let K1 and K2 be two
unknotted components of L linked as a (2, 2n) toroidal link. Then (ML, λs)
is also a universal orbifold, where λ = 1 if s is even, and λ = 2 if s is odd.

Proof. Figure 5.9 shows the 2-fold covering p : S3 −→ S3 branched overML

such that L ⊂ p−1(ML), as follows. Consider the projection of L depicted in
a), where the components of L different from K1,K2 are placed in the interior
of the box B. An isotropy out of B changes a) in b). By the addition of
new components in the interior of a new box B′ we obtain a link symmetric
with respect to the π-rotation around the axis A. c). The covering p is the
quotient of S3 by this π-rotation. The component K4 is p(A).

Corollary 5.1.7. The orbifold (L, 2), where L is any link of Fig. 5.10, is
a universal orbifold.
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Figure 5.9.
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Figure 5.10.
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5.2. Flows in 3-manifolds. Let p : M 3 −→ N3 be a covering branched
over a link L ⊂ N3. Suppose that L is a set of closed orbits of a flow ϕ

in N3. Then there exists a flow ψ in M3 inducted by ϕ and p. Moreover,
if the flow ϕ is hyperbolic in the exterior of L, ψ is also hyperbolic in the
exterior of p−1(L). Note that if the covering p has a finite number of sheets,
the preimage by p of every closed orbit for the flow ϕ is a finite set of closed
orbits and the preimage of a dense orbit is a finite set of dense orbits. This
implies that if ϕ is a singular Anosov flow, ψ is again a singular Anosov flow.
The kind of the singular set of ψ depends of the kind of the singular set of
ϕ and of the branched index of the points of L.

It is known [16] that not all 3-manifolds have Anosov flows. Using
branched covering over S3 we obtain some results about flows which can
be defined in every 3-manifold.

Theorem 5.2.1. Every closed and orientable 3-manifold M3 has a transi-
tive Anosov flow in the exterior of a link.

Proof. Let M 3 be a closed and orientable 3-manifold. There exists a finite-
fold covering p : M3 −→ S3 branched over the figure eight knot (41). [13].
The exterior of the knot 41 is a torus bundle over S1 with Anosov monodromy(

2 1
1 1

)
. Therefore S3 \ 41 has a transitive Anosov flow ϕ that induces a

transitive Anosov flow ψ on M3 \ p−1(41).

Theorem 5.2.2. Every closed and orintable 3-manifold M 3 has a singular
Anosov flow.

Proof. The closed braid γ̂ associated to the braid γ = ∆4σ4
1σ2σ

4
1σ2 is the sin-

gular set of a V -Anosov flow ϕ on S3 (Theorem 4.2.1). (Fig. 5.11.) We will
prove that γ̂ is also a universal link. The double cover of S3 branched along
the component K of γ̂ is S3 and the preimage of γ̂ is the link L of Fig. 5.12.
The sublink of L made up of K1,K2 and K3 is universal [12, Figure 11].

Then given a closed oriented 3-manifold M3 there exists a finite fold cov-
ering map p : M3 −→ S3 branched over the link γ̂. The flow inducted on M 3

by ϕ and p is a singular Anosov flow whose singular set p−1(γ̂) is a finite set
of closed orbits.

Theorem 5.2.3. Every closed and orientable 3-manifold M 3 has a singular
Anosov flow, where the number of singular orbits which are not thorns is
smaller or equal to 6.

Proof. The link L of Fig. 5.13 is the singular set of the geodesic flow of the
orbifold D2222222222.
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Figure 5.11.

Figure 5.12.

L is a universal link, such that b(Ki) = 2, i = 3, . . . , 10. To prove that L
is a universal link, recall that given a closed oriented 3-manifold M 3, there
exists a simple 3-fold covering map pM : M3 −→ S3 branched over a link
LM of the following special form. LM can be placed in a neighbourhood of
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a torus. It has m meridian components and n longitude components and on
each crossing of meridian components and longitude components is placed
the pattern of Fig. 5.14. [12]. Observe that the link LM has a (Zm × Zn)-
symmetry. Then the composition p′ = fn ◦ fm ◦ p : M 3 −→ S3 is a covering
branched over L = fn ◦ fm(LM). The components K1 and K2 of L are the
image by fn ◦ fm of the 2π/m-rotation and 2π/n-rotation axis, respectively.
Thus b(K1) = m, b(K2) = n and b(Ki) = 2, (i = 3, . . . , 10). Note that
(fn ◦ fm ◦ p)−1(K1 ∪ K2) has at most 6 components because p is a 3-fold
covering. These are the only k-singular orbits, k ≥ 3, in the inducted flow
in M3. The other singular orbits are thorns.

Figure 5.13.

Figure 5.14.
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We end this paper with the following

Conjecture. Every closed and orientable 3-manifold M 3 has a V -Anosov
flow.
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