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BERGMAN ISOMETRIES BETWEEN CONVEX DOMAINS
IN C2 WHICH ARE POLYHEDRAL

Andrea Pagano

This article deals with the problem of analyticity of Berg-
man isometries. One of the most important properties of the
Bergman metric of a bounded domain is that it is invariant
under the action of the group of biholomorphic maps. One
then can ask if all the isometries are indeed complex analytic
up to an obvious complex conjugation. There are several af-
fermative answers to this question. In the present work, we
study the case of convex polyhedral domains in C2 and we
prove that any Bergman isometry of such a domain is ana-
lytic up to a complex conjugation.

1. Introduction.

Let Ω be a bounded domain in Cn, we call it a polyhedral domain if there
exist k real valued functions ρ1, . . . , ρk : Cn → R such that

Ω = {z ∈ Cn : ρ1(z) < 0, . . . , ρk(z) < 0}
where the gradient vectors

∇ρi1 , . . . ,∇ρil
are linearly independent over C at every p ∈ Cn satisfying ρi1(p) = · · · =
ρil(p) = 0, for all possible choices of indices {i1, . . . , il} ⊂ {1, . . . , k}. This
guarantees that the singularities of the boundary are generated only by a
normal crossing.

As for a bounded symmetric domain we can use the properties of the
Hessian (both real and complex) of the defining functions ρi to define various
notions of convexity.

A point p ∈ ∂Ω, is called point of (Levi) pseudoconvexity if the Levi form

n∑
k=1

∂2ρl

∂zk∂z̄k
dzk ⊗ dz̄k

is positive semi-definite at p. The point p is called a strongly pseudoconvex
point if the Levi form is postive definite.
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In addition to this, we say that the boundary ∂Ω is piecewise Levi flat if
the Levi form is zero along the complex directions tangential to the surface
defined by ρl(z) = 0 for any l.

As any bounded domain in Cn Ω can be equipped with the Bergman metric
which is a positive definite Hermitian metric. For a detailed discussion on
the properties of the Bergman kernel and Bergman metric we refer to [1],
[9], Section 1.4, and to [3].

Perhaps the most important property of the Bergman metric is that all
biholomorphic maps are isometries. From a geometric viewpoint, it is there-
fore natural to ask if all Bergman isometries are biholomorphic up to obvious
complex conjugations.

In this article, we study the problem of complex analyticity of Bergman
isometries for convex polyhedral domains.

Our main result is:

Theorem. Let F : Ω→ Ω′ be a C∞ Bergman isometry between two convex
polyhedral domains in C2. Then F is complex analytic up to a combination
of complex conjugations.

Our discussion starts from a brief analysis of the first example of such
domains, the bidisc ∆2. In [11] Satake showed that for any symmetric
domain D (reducible or not) equipped with the Bergman metric the index
[Iso(D) : Aut(D)] of the group of automorphisms Aut(D) in the group of
isometries Iso(D) equals 2n, where n is the number of irreducible components
of D. In his proof, Satake uses properties of D which are related to the
nature of the Lie Algebra associated to D. This result can also be seen
as an application of a more general method due to Kobayashi and Nomizu
([7]) which also can be related to the work of Schouten and Yano ([12]).
Under the assumption of non-degeneracy of the Ricci tensor, Kobayashi and
Nomizu proved that the identity component of the group of isometries of an
arbitrary Kähler manifold consists only of holomorphic maps.

Due to the lack of homogeneuoity and to the lack of information about
the Ricci tensor, neither approach seem to work for an arbitrary polyhedral
domain.

Another approach to the problem of analyticity of isometries has been
devoloped by Greene and Krantz ([2]). They proved that all the Bergman
isometry of a C∞ strongly pseudoconvex domain are actually holomorphic up
to a conjugation. To get this result, they used a theorem by Klembeck ([6])
which proves that the asymptotic values of the holomorphic sectional curva-
ture of a strongly pseudoconvex domain tend to the curvature of Bergman
metric of the unit ball. For a more general description of the asymptotic
behavior of the curvature tensor we refer to the work of Kim and Yu ([5],



ISOMETRIES BETWEEN POLYHEDRAL DOMAINS 151

also [4]).
For a polyhedral domain Ω we have a result by Kim ([4]) which describes

the asymptotic sectional curvature of Ω in terms of the curvature of the
bidisc. With the example of the bidisc in mind (see [10] for details) we
proceed in our discussion.

We have to remark that we only need to prove the main theorem for
convex domain with piecewise Levi flat boundary. To see this we first notice
that the theorem of Greene and Krantz has been localized, and it has been
improved to the case of C2 smooth boundary by Kim and Yu ([5]). Moreover,
a pseudoconvex C2 surface must have a strongly pseudoconvex point unless
is entirely Levi flat.

2. Directions of minimal sectional cuvature.

As the first example of a convex polyhedral domain with piecewise Levi flat
boundary, we consider the bidisc ∆2. This is a reducible symmetric bounded
domain, therefore the result of Satake holds in this case and we have that

[Iso(∆2) : Aut(∆2)] = 4.

Using the product structure of ∆2 and the properties of the Bergman metric,
one can explicitly compute the sectional curvature of the Bergman metric of
the bidisc. Let us denote by g(·, ·) the Riemannian metric of the bidisc (real
part of the Bergman metric). For any pair X and Y of tangent vectors to
∆2 at the origin, with X = X1 + X2 and Y = Y1 + Y2, X1 and Y1 tangent
to ∆1 (horizontal component of ∆2) and X2 and Y2 tangent to ∆2 (vertical
component of ∆2) we have:

K(X,Y ) = −k g(X1, X1)g(Y1, Y1) + g(X2, X2)g(Y2, Y2)

(g(X1, X1) + g(X2, X2))(g(Y1, Y1) + g(Y2, Y2))

for some constant k (see [8] for details about sectional curvature in the case
of complex manifolds).

We have the following:

Proposition 1. The negative sectional curvature of the bidisc attains its
minimun values along exactly two complex directions. Moreover these mini-
mal curvature directions correspond to the Euclidean coordinate directions.

Using this property one can also prove:

Theorem 1. Let F : ∆2 −→ ∆2 be a C∞ Bergman isometry. Then F (z1, 0)
is either {z1 = 0} or {z2 = 0}. The same is true for F (0, z2).

The proofs of these results consist in a direct analysis of the curvature
together with the existence of totally geodesic submanifolds along directions



152 ANDREA PAGANO

of the minimal value for the negative sectional curvature ([10]). Further, we
can obtain a different proof of the result of Satake for the bidisc (as well as
for the polydiscs ∆n) as consequence.

For an arbitrary polyhedral domain we do not have an explicit expression
for the curvature tensor, so it is not possible to extend this result directly
to the general case. On the other hand, we have the following result due to
Kim ([4]):

Theorem (Kim). Let Ω be a convex polyhedral domain in C2 with piecewise
Levi flat boundary, and let pj be a sequence that converges to a boundary
point p̂. Then the sequence of the sectional curvature tensors of the Bergman
metric of Ω at pj converges to the curvature tensor of the bidisc at the origin
as j tends to infinity.

The first goal is to transfer the information we have at the boundary to
the interior. First of all we need to set the terminology and to give some
definitions.

Following [4], we fix a sequence of points {pj} which converges to a bound-
ary point. For any sequence of pair of tangent vectors Xj, Yj we have:

lim
j→∞

KΩ
pj

(Xpj , Ypj ) = lim
j→∞

K∆2

o (GjXpj , GjYpj )

for some 2× 2 matrices Gj, and some point q ∈ ∆2, where the matrices Gj

depend on the sequence pj and on the nature of the boundary point p̂.
From now on we identify all the tangent spaces with C2 equipped with

standard complex structure J .
We then consider the space GrR(2, 4) of the real two-dimensional planes

in C2. This is a compact Riemannian manifold; it therefore makes sense
to speak about the convergence of a sequences in GrR(2, 4). Consider the
elements of the tangent space of C2 at p̂ given as the limit in the Grassmanian
of the tangent vectors at each pj, i.e.

Xp̂ =: lim
j→∞

Xpj .

Let Xp̂ and Yp̂ be two elements of Tp̂(Ω) obtained by this procedure; we
define the sectional curvature at p̂ along the section 〈Xp̂, Yp̂〉 as

KΩ
p̂ (Xp̂, Yp̂) = lim

j→∞
K∆2

o (GjXpj , GjYpj ).

We have the following

Proposition 2. Let {pj} be a sequence of points converging to p̂. For any
ε > 0 there exists jo such that at each pj with j ≥ jo there exists a basis
{Zpj ,Wpj} of T Cpj (Ω) such that:
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(1) if we denote by K the minimum value for the sectional curvature KΩ
p̂ we

have
KΩ
pj

(Zpj , JZpj )−K ≤ ε
and

KΩ
pj

(Wpj , JWpj )−K ≤ ε

(2) if we denote by Zp̂ = lim
j→∞

Zpj and by Wp̂ = lim
j→∞

Wpj we have that

{Zp̂,Wp̂} is a basis for T Cp̂ (Ω).

Proof. Along the sequence pj we construct two sequences of complex tangent
vectors Zpj , Wpj such that

lim
j→∞

GjZpj =
∂

∂z

and

lim
j→∞

GjWpj =
∂

∂w
,

where (z, w) is the euclidean coordinate system of ∆2 at the origin. Since
{ ∂
∂z
, ∂
∂w
} is an orthonormal basis we can assume that Zpj ,Wpj are C-linearly

independent.
To prove (1) it suffices to notice that the sectional curvature is continuous

with respect to the point, and by Proposition 1 both ∂
∂z

and ∂
∂w

are directions
of minimum value for the sectional curvature of the bidisc.

The linear independence of {Zp̂,Wp̂} follows from the scaling technique
used to define the matrices Gj are constructed. For all the details about
scaling we refer to the work of Kim ([4], [5]).

From the preceding Proposition, at each point pj ∈ Ω close to the bound-
ary, we can find at least two C-linearly independent directions Zpj and Wpj ,
which give almost minimum values for the sectional curvature. In this way
we are only able to give an estimate to the values of the sectional curvature;
our goal is to be able to control directions which give almost minimal values
of the sectional curvature.

Let Z be a complex tangent vector, the complex plane determine by the
linear span of Z and JZ is denoted by P(Z). Let X and Y be a pair of
tangent planes. We denote by γ(X ,Y) the angle between them. We consider
a basis {Zp,Wp} of T Cp (Ω); for any c we define:

α(Zp, c) = max

{
γ(P(Zp),Y) : |KΩ

p (Y)−K|

≤ c|KΩ
p (P(Zp))−K|; γ(Y,P(Zp)) ≤ π

4

}
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and

α(Wp, c) = max

{
γ(X ,P(Wp)) : |KΩ

p (X )−Kp|

≤ c|KΩ
p (P(Wp))−K|; γ(X ,P(Wp)) ≤ π

4

}
where K denotes the minimum of the sectional curvature at p̂ and KΩ

p (X )
is the sectional curvature at p along the section X.

Lemma. For any c > 0 we can find a sequence of bases {Zpj ,Wpj} of
T Cpj (Ω) such that

lim
j→∞

α(Zpj , c) = 0 and lim
j→∞

α(Zpj , c) = 0.

Proof. Let {Zpj ,Wpj} be a basis for T Cpj (Ω) as in Proposition 2. We have
that

lim
j→∞

Zpj = Zp̂ and lim
j→∞

Wpj = Wp̂.

We now consider a sequence of sections Ypj such that KΩ
pj

(Ypj ) is almost
minimal and γ(Ypj ,P(Wpj )) ≥ π

4
. If we take the limit Yp̂ for j →∞ of Ypj , by

Proposition 1 it must coincide with P(Zp̂) which implies that α(Zpj , c)→ 0.
The same it true for α(Wpj , c).

At this point we need to introduce a new object. Let {Zp,Wp} be a basis
for T Cp (Ω). By a slate we mean the set

〈Zp〉c =
{
X ∈ Tp(Ω) : |KΩ

p (X )−Kp| ≤ c|KΩ
p (P(Zp))−Kp|

}
.

Analogously we have

〈Wp〉c =
{
Y ∈ Tp(Ω) : |KΩ

p (Y)−Kp| ≤ c|KΩ
p (P(Wp))−Kp|

}
.

From the Lemma and the definition of slates we have the following

Proposition 3. Let Zpj , Wpj as in (1) of Proposition 1. As j tends to
infinity, we have

〈Zpj 〉c tends to Zp̂

and

〈Wpj 〉c tends to Wp̂

for any choice of c.
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This Proposition enables us to make the slates as thin as we need and also
it makes possible to separate directions of minimal values for the sectional
curvature whenever we approach the boundary. Moreover we can assume
that the sequence of basis defined in Proposition 2, can be obtained by par-
allel transport along a smooth curve connecting the points of a suitable
subsequence of {pj}.

3. Analyticity of Bergman isometries.

We are now ready to show that any C∞ Bergman isometry

F : Ω→ Ω′

between two convex polyhedral domains is an analytic map (up to conjuga-
tion).

Let X,Y be two elements of the real tangent space of Ω at a point. We
denote by P(X,Y ) the plane determined by the linear span of X and Y . The
plane P(X,Y ) is complex if it is invariant under the action of the complex
structure J , and this is equivalent to choosing a basis {X,Y } for P(X,Y )
such that X = JY .

We first prove the following

Proposition 4. Let F : Ω→ Ω′ be a C∞ Bergman isometry, and let p ∈ Ω
be a point close to the boundary. Then there exists a basis

{Zp,Wp}
of T Cp (Ω) such that

F∗(P(Zp, JZp)) and F∗(P(Wp, JWp))

are complex planes.

Proof. We consider the sequence of basis {Zpj ,Wpj} defined in Proposition
2.

Let U be a small neighborhood of pj and let p ∈ U . We join p to pj by
a smooth curve C : γ(t), 0 ≤ t ≤ 1, with γ(0) = pj and γ(1) = p, and we
consider the parallel transport of the slates 〈Zpj 〉 and 〈Wpj 〉 along C. In such
a way we define a new pair of slates at each point along the curve 〈Zpj 〉t and
〈Zpj 〉t. Since we are in a neighborhood of pj we have:

|KΩ
p (P(Zpj )t)−K| ≤ ε

and
|KΩ

p (P(Wpj )t)−K| ≤ ε



156 ANDREA PAGANO

for any t and in particular for t = 1. We can then assume that 〈Zpj 〉1 =
〈(Zpj )1〉c as well as 〈Wpj 〉1 = 〈(Wpj )1〉c for some constant c.

According to our notation we denote Zp = (Zpj )1 and Wp = (Wpj )1. This
a basis for T Cp (Ω). We want to prove that F∗P =: P(F∗Zp, F∗JZp) is a
complex plane.

Suppose that F∗P is not complex. Then there exists a constant α > 0
such that the angle between F∗P and any complex plane is at least α. On
the other hand, we know that F is an isometry. Therefore there exists c′

such that

(1) |KΩ′
F (p)(F∗P)−K| ≤ c′|KΩ

F (p)(P(ZF (p)))−K|
or

(2) |KΩ′
F (p)(F∗P)−K| ≤ c′|KΩ

F (p)(P(WF (p)))−K|.
This implies that F∗Zp belongs to either one of the slates 〈ZF (p)〉c′ or 〈WF (p)〉c′ .
We consider a parallel transport of these two slates along the smooth curve
F (C), and we obtain a sequence of pair of slates

(〈ZF (p)〉c′
)
t

and
(〈WF (p)〉c′

)
t
.

By the Proposition 3, both 〈ZF (pj)〉c′ =
(〈ZF (p)〉c′

)
1

and 〈WF (pj)〉c′
=
(〈WF (p)〉c′

)
1

can be taken to have a sufficiently small aperture. Thus,
the angle γ(F∗P,P(ZF (p))) ≤ α, for any choice of α. This implies that
the angle between any vector X on P(F∗Zp, F∗JZp) and any vector X ′ on
P(ZF (p)) cannot be bounded away from zero. This is a contradiction.

We can use exactly the same argument to show that P(F∗Wp, F∗JWp) is
a complex plane.

Theorem 2. Let Ω and Ω′ be two convex polyhedral domains with piecewise
Levi flat boundary. Then F is a complex analytic map (up to conjugation).

Proof. Let p ∈ Ω and let C be a smooth curve joining p with a boundary
point p̂. When the curve is approaching the boundary, we have in particular a
sequence of points pj which tends to p̂. Along this sequence we define a basis
{Zpj ,Wpj} as in Proposition 2. Then we move this basis to the point p, by
the parallel transport along C, in order to obtain a basis {Zp,Wp} at p. The
first result to achieve is to prove that P(F∗Zp, F∗JZp) and P(F∗Wp, F∗JWp)
are complex planes. To see this one may refer to the argument used in the
proof of Proposition 4 and also notice that the parallel transport preserves
the complex stucture (see [8]).

We now consider the standard complex structure

J =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .
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We know that the complex structure acts on complex planes as a rotation
by an angle π

2
. We denote by J1 the first 2× 2 block of J , i.e. J1 = ( 0 −1

1 0 ),
so that we have

(3) J1F∗(Zp)− F∗J1(Zp) =

{
0

2J1F∗(Zp)

and

(4) J1F∗(Wp)− F∗J1(Wp) =

{
0

2J1F∗(Wp)
.

Let us now consider the following linear transformations in C2:

L1
p =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ; L2
p =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ;

L3
p =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ; L4
p =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
We can always reduce the analysis of the effect of any Lp on J to the analysis
of the effect of the 2× 2 matrix L1 = ( 1 0

0 −1 ) on J1.
More precisely, we can obtain any Lnp , n = 1, 2, 3, 4 as a direct sum of

the matrix L1 and the identity matrix. We have

L1
p = Id⊕ Id L2

p = L1 ⊕ Id
L3
p = Id⊕ L1 L4

p = L1 ⊕ L1

so that {L1
p, L

2
p, L

3
p, L

4
p} is a group of four elements, which is then homomor-

phic to Z2 × Z2.
Using an appropriate action of L1 on J1 we can assume that, at some

point p

(5) JF∗ − F∗J = 0

for both Zp and Wp (basis for the tangent space at p).
Since the operator JF∗−F∗J is a linear operator on Tp(Ω) we can extend,

by linearity, (5) to the whole tangent space, so that

(6) JF∗ − F∗J ≡ 0
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on Tp(Ω).
Therefore at each point p ∈ Ω we have that each Bergman isometry is

holomorphic, up to the action of the appropriate Lnp , n = 1, 2, 3, 4.
It only remains to show that JF∗−F∗J ≡ 0 on TΩ. We have that at each

point q

(7) ‖JF∗ − F∗J‖ =

{
0

2

on the basis given by {Zq,Wq}, where ‖·‖ is the norm on the tangent bundle.
By continuity ‖JF∗−F∗J‖ ≡ 0. Hence we have that F is holomorphic after
the action of the appropriate Ln , n = 1, 2, 3, 4.

Let Ω be a bounded domain, we denote by Iso(Ω) the group of all Bergman
isometries of Ω and by Aut(Ω) the group of biholomorphisms. As a conse-
quence of the main theorem we have

Corollary. Let Ω be a convex polyhedral domain in C2. Then

[Iso(Ω) : Aut(Ω)] ≤ 4.
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