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THE THETA MULTIPLIER FOR NUMBER FIELDS
VIA p-ADIC PLANES

John A. Rhodes

Given any number field and Dirichlet character for that
field, we construct a theta function on a restricted product of
p-adic half-planes. An explicit formula for the theta multiplier
is obtained through local calculations.

1. Introduction.

In [8] Tate showed how zeta functions associated to grossencharacters of
number fields and their functional equations could be developed from local
considerations. Since that work is really an adaptation to an adelic setting
of Hecke’s [1] original approach to proving the validity of the functional
equations, a transformation formula (Tate’s Riemann-Roch Theorem) for
what is essentially an adelic theta function plays a crucial role. However,
the theta function is developed as a function of a single adelic variable since
that is all that is needed for the intended application.

On the other hand, the classical theta functions (of real variables) which
motivated that work, are often extended to functions defined on (products
of) upper half-planes, giving modular forms. As in [6] in the rational case,
Dirichlet characters can be incorporated into the definition of the theta func-
tion, giving forms on congruence subgroups. (In Tate’s work this was not
necessary since he integrates the theta functions against the characters to
obtain the zeta functions.)

A. Schwartz [5], in the rational case, extended the classical theta function
with trivial character defined on the upper half-plane to a function defined
on a product of the upper half-plane and a p-adic “half-plane.” While the
existence of the theta multiplier is shown in that paper through local calcu-
lations, Schwartz returned to the classical theta function in order to deduce
an explicit formula for it.

In this paper we associate to any number field and Dirichlet character
a theta function of an appropriate adelic variable and establish its trans-
formation properties under a discrete theta group. The theta multiplier is
developed entirely by piecing together local calculations in an adelic argu-
ment. We follow the approach taken in [7], [4], and [5], where p-adic planes
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are used as the domains of p-adic variables, as a convenient substitute for the
tree associated to SL2. While those papers avoid explicit mention of adeles,
their use here simplifies matters, since a set of generators for the theta group
is easier to specify in the adelic setting.

Of course implicit in the transformation formulas for the theta functions
developed here are the transformation formulas for the theta functions on
the complex upper half-plane associated to the rational field, as well as the
results in [5]. We briefly indicate how these can be recovered.

2. Preliminaries.

Let K be a number field and for any prime p of K let Kp be its completion
with respect to p. For finite p, Op denotes the ring of p-adic integers and
Up the group of p-adic units. The p-adic norm is normalized so that |x|p =
N(p)−l where N(p) is the number of elements in Op/p and l = ordp(x). π
will be used to denote a generator of p in Op. (It will also be used to denote
the real number usually so named; in any given expression the appropriate
meaning should be clear from the context.) δp will denote the different of
Kp, by which in an abuse of notation we may mean either an ideal or a
generator of that ideal. By δ we denote the global different of K.

The adele ring of K is denoted by V = VK . K is embedded in V on the
diagonal so that K froms a discrete additive subgroup of V with compact
quotient. Similarly, the idele group of K is denoted by J = JK , with K×

embedded in J on the diagonal. We view K×p as embedded in J via x 7→
(1, . . . , 1, x, 1, . . . ).

We now summarize some background material from several sources in
order to fix our terminology.

Characters ([3], [8]).
By a character c we will always mean a continuous, multiplicative map of

J into the complex unit circle that is trivial on K×. If a = (. . . , ap, . . . ) ∈ J ,
then there is a factorization c(a) =

∏
p

cp(ap) of c into local characters where

cp denotes the restriction of c to K×p .
For finite p, if cp is further restricted to the units Up ⊂ Kp, then since cp

is continuous, cp(1 + pn) = 1 for some n. Choosing the minimal such n, or
0 if cp is trivial on all of Up, we call fp = pn the conductor of cp, and np = n

the ramification degree of cp. For all but finitely many p the ramification
degree is 0.

For real p, cp(ap) = sgn(ap)
n|ap|sp for some n ∈ {0, 1} and s purely imag-

inary. For complex p, cp(ap) = anp |ap|s−np for some integer n and s purely
imaginary. In either archimedean case we call np = n the ramification degree
of cp.
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The conductor of c is defined to be f =
∏

p finite

fp.

If a character only takes on a discrete set of values, then it is called
a Dirichlet character. A character is a Dirichlet character if and only if
at each archimedean prime p the complex parameter s appearing in the
local character cp can be taken to be 0, and if at the complex primes the
ramification degree is 0. At real primes the ramification degree may be
non-zero.

Given a Dirichlet character c, let S be the set of all archimedean primes
together with those finite primes dividing the conductor of c. Let IS denote
the group of fractional ideals prime to all elements of S. Then c gives rise
to a character of IS as follows: If a =

∏
p/∈S
pep ∈ IS, let a ∈ J be chosen so

that

ap =

{
1 if p ∈ S
πep if p /∈ S

where π denotes any generator of p in Op. Set χc(a) = c(a). χc is the
grossencharacter associated to c. Note that χc will be trivial on the subgroup
of IS composed of principal ideals with totally positive generators congruent
to 1 modulo f. More generally, if x ∈ K and x ∈ Up for all p | f then

χc((x)) =
∏
p-f

p finite

cp(xp) =
∏
p|f

cp(xp)
∏
p real

sgn(xp)
np .

Hyperbolic Spaces ([7], [4]).
For each prime p of K we define a “hyperbolic space” and a group which

acts on it.
For real primes p, Hp = {x + iy | x, y ∈ R, y > 0} is the usual complex

upper-half-plane. Let Gp = SL2(R) be the group of 2 by 2 real matrices
with determinant 1.

For complex primes p, Hp = {x + ky | x ∈ C, y > 0} is the quaternionic
upper-half-space. For z ∈ Hp, Np(z) = zz̄ = x2

1 + x2
2 + y2 is the quaternionic

norm and |z|p =
√

Np(z) is the quaternionic absolute value. Let Gp =

SL2(C) be the group of 2 by 2 complex matrices with determinant 1.
For finite p, Hp = {x + Ipy | x, y ∈ Kp, y 6= 0, ordp(yδp) is even} where

Ip is chosen so that {1, Ip} is a basis over Op for the integers of the unique
unramified extension of Kp of degree 2. While Ip is not uniquely determined,
for each finite p of K we choose an Ip and fix it for the remainder of this
paper. Hp is endowed with the subspace topology it inherits from the field
Kp(Ip). For z ∈ Hp, Np(z) = (x+ Ipy)(x+ Īpy) denotes the norm of z from
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Kp(Ip) to Kp, and |z|p =
√
|Np(z)|p is the usual p-adic absolute value. To

each point z = x+ Ipy ∈ Hp we associate a neighborhood

Mz =

{
u+ Ipv

∣∣∣∣ u− xy ∈ Op, v
y
∈ Up

}
.

Hp is the disjoint union of neighborhoods of this form. Let Gp = SL2(Kp).
With these definitions, for any p there is an action of Gp on Hp via Möbius

transformations; given A =

(
a b

c d

)
∈ Gp and z ∈ Hp we define

A ◦ z = (az + b)(cz + d)−1.

Note that for complex p, where z is a quaternion, the order in this expression
is important.

For finite p, one checks, as in [4], that this definition gives an action on
the set of neighborhoods {Mz | z ∈ Hp}, with A ◦Mz = MA◦z.

Lemma 2.1. SL2(Op) ◦ Ip = MIp.

Proof. If A =

(
a b

c d

)
∈ SL2(Op), then letting a bar denote the nontrivial

automorphism of Kp(Ip) over Kp,

A ◦ Ip =
(bd+ bc(Ip + Īp) + acIpĪp) + Ip

(cIp + d)(cĪp + d)
.

But (cIp + d)(cĪp + d) is the norm of a unit in Kp(Ip), hence is in Up, and
bd+ bc(Ip + Īp) + acIpĪp ∈ Op. Thus A ◦ Ip ∈MIp .

Conversely, if z = x + Ipy ∈ MIp , then, since y ∈ Up, and the norm map
from the units of the unramified extension Kp(Ip) is surjective onto the units
of Kp, there is some unit cIp + d ∈ Kp(Ip) with norm y−1. Since cIp + d is a
unit, both c and d are integral, with at least one being a unit. Thus we can

find an a and b such that B =

(
a b

c d

)
∈ SL2(Op) and B ◦ Ip = t + Ipy for

some t ∈ Op. Finally, letting A =

(
1 x−t
0 1

)
B, we have A ◦ Ip = z.

For all p for which ordp(δp) is even this lemma allows the tree Gp/SL2(Op)
to be identified with {Mz | z ∈ Hp} via

ASL2(Op)←→ A ◦MIp = MA◦Ip .
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For those p with ordp(δp) odd, note that(
π 0
0 1

)
SL2(Op)

(
π−1 0
0 1

)
◦ Ipπ = MIpπ

and so {Mz | z ∈ Hp} is identified with the tree

Gp/

(
π 0
0 1

)
SL2(Op)

(
π−1 0
0 1

)

in the same way. In either case, the action of Gp on {Mz} via Möbius
transformations is then identified with the action of Gp on the tree by left
multiplication on the cosets.

To any integral ideal n of K we associate an adelic hyperbolic space

H(n) =
′∏
p-n
Hp

that has components for all primes not dividing n, and hence for any n has
components for all the infinite primes, and all but finitely many of the finite
primes. The accent on the product symbol denotes that it is a restricted
direct product, in the sense that for any element of H(n), all but finitely
many of the components are in MIp . One must note that δp = 1, and hence
Ip ∈ Hp, for all but finitely many p.
SL2(K) acts on H(n) by acting on each component via the Möbius trans-

formation defined above. Since any A ∈ SL2(K) is in SL2(Op) for all but
finitely many p, and elements of SL2(Op) map MIp onto itself, A does in
fact send H(n) to itself.

Fourier Analysis ([8]).
For p any prime of K, define an additive homomorphism

Φp : Kp −→ R/Z

so that Φp is the composition of the sequence of maps

Kp
Tr

Kp
Qp−−−→ Qp

φ1−→ Qp/Zp
φ2−→ R/Z.

Here Qp is the completion of the rationals with respect to the rational prime
p (possibly ∞) over which p lies and φ1 is the obvious quotient map. If p is
infinite, then φ2 is the identity, while if p is finite, then φ2 sends an element
of Qp/Zp ' Q/Z into R/Z via first multiplying by −1 and then utilizing the
inclusion of Q into R.
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The additive group Kp is self-dual under the identification of ν ∈ Kp with
the character x 7→ exp(2πiΦp(νx)). Furthermore, for finite p, this character
is trivial on Op if and only if ν ∈ δ−1

p , the local inverse different.

Definition. The Trace of an adele x ∈ V is Tr(x) =
∑
p

Φp(xp) ∈ R/Z.

Note that Tr(x) = 0 for any x ∈ K.
The additive group of the adeles V is self-dual under the identification of

a vector ν ∈ V with the character x 7→ exp(2πiTr(νx)).
We fix the following normalizations of the additive Haar measure on Kp.

For p real, dtp is the ordinary Lebesgue measure on R. For p complex, dtp
is twice the Lebesgue measure on C ∼= R2. For finite p, dtp is such that the

measure of Op is |δp|
1
2
p . Let dt =

∏
p dtp be the product measure on V .

Fourier transforms of functions fp Kp → C are defined by

f̂p(s) =

∫
Kp

fp(t)e
2πiΦp(ts)dtp

for s ∈ Kp. Then, due to the choice of measures, the Fourier inversion
formula is simply

ˆ̂
fp(t) = fp(−t)

with suitable restrictions on fp so that the integrals converge. Similarly,
Fourier transforms of functions f V → C are defined by

f̂(s) =

∫
V

f(t)e2πiTr(ts)dt

for s ∈ V . Again,

ˆ̂
f(t) = f(−t)

with suitable restrictions on f so that the integrals converge. Finally, if
f(t) =

∏
p fp(tp), then f̂ =

∏
p f̂p.

Proposition 2.2 (Poisson Summation). With appropriate restrictions
on f : V → C to ensure convergence,

∑
ν∈K

f(ν) =
∑
ν∈K

f̂(ν).
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3. Local Calculations.

For this section and the next fix a choice of a number field K and a Dirichlet
character c with conductor f.

For each prime p we define specific functions fp and compute their Fourier
transforms. In most cases fp will be a function on Kp×Hp. However, if p | 2
or if p is finite and cp ramified, then fp will be a function on Kp alone. We
emphasize that the choice of fp depends on the ramification degree of cp for
real and finite primes.

p real.

Definition. For t ∈ Kp = R, n ∈ {0, 1} the ramification degree of cp, and
z ∈ Hp, let

fp(t, z) = fp,n(t, z) = tne2πit2z.

Proposition 3.1.

f̂p,n(s, z) =
in√−2iz

2n+1 fp,n

(
s,
−1

4z

)
(3.1)

where
√
w is the principal value determined by −π

2
< arg(

√
w) ≤ π

2
.

Proof. For n = 0,

f̂p,0(s, z) =

∫
Kp

e2πit2ze2πitsdt.

As is well known,

f̂p,0(s, iy) =
1√
2y
fp,0

(
s,

i

4y

)
for y ∈ R so by analytic continuation (3.1) holds for z ∈ Hp if n = 0.

By differentiating (3.1) in the n = 0 case with respect to s we obtain the
n = 1 case.

p complex.

Definition. For t = t1 + it2 ∈ Kp = C and z = x+ky = x1 + ix2 +ky ∈ Hp,
let

fp(t, z) = e−4π|t|2ye2πiΦp(t2x).

Proposition 3.2.

f̂p(s, z) =
1

|2z|p fp
(
s,
−1

4z

)
.(3.2)
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Proof. For s = s1 + is2 ∈ Kp,

f̂p(s, z) =

∫
Kp

e−4π|t|2ye2πi(t2x+t̄2x̄)e2πi(ts+t̄s̄)dt.

In order to evaluate this integral, we recall the generalization of (3.1)
to several dimensions. Let A be an n × n symmetric matrix with positive
definite imaginary part. For u ∈ Rn, let A[u] = uTAu. Then for v ∈ Rn,∫

Rn
e2πiA[u]e2πiuT vdu =

1√
det(−2iA)

e2πi(−4A)−1[v](3.3)

where du denotes the usual Euclidean measure on Rn and the square root
is given by analytic continuation from the principal value when A is purely
imaginary.

In particular, set

A = A(z) =

(
x1 + iy −x2

−x2 −x1 + iy

)

u =
√

2(t1, t2)T

v =
√

2(s1,−s2)T

so that fp(t, z) = e2πiA[u].
Note that while z 7→ A(z) is closely related a standard representation of

the quaternions in GL2(C) it is not quite a restriction of a representation of
the quaternions to Hp. Nonetheless, detA(z) = −Np(z) and

A

(−1

z

)
=

(
1 0
0 −1

)(−A(z)−1
)(1 0

0 −1

)
.

Using the above choices of A, u, and v in (3.3) yield (3.2). The factor of
√

2
in u accounts for the fact that dt = 2du.

p finite. As in the real case, we’ll have to consider several different func-
tions, depending on the ramification of the local character cp and whether
p | 2. First we assume cp is unramified and p - 2.

Definition. If p - 2 and fp = 1, then for t ∈ Kp and z = x+ Ipy ∈ Hp, let

fp(t, z) = Wp(δpt
2y)e2πiΦp(t2x)

where

Wp(v) =

{
1 if v ∈ Op
0 otherwise

.
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Note that the definition of fp is independent of the choice of a generator
for the local different. Also, this function is locally constant in z; its value
is unchanged as z ranges through any set of the form Mw ⊂ Hp. Thus in
what follows we can, and will, vary z within such a set in order to simplify
expressions.

Proposition 3.3. With z = x+ Ipy ∈ Hp, let n = ordp(yδp)/2 ∈ Z. If p - 2
and fp = 1 then

f̂p(s, z) = Gp(z)
1√
|2z|p

fp

(
s,
−1

4z

)
where

Gp(z) =

√
|z|p
|yδp|p

∫
Op

e2πiΦp(xt2π−2n)dt.

Proof. For s ∈ Kp,

f̂p(s, z) =

∫
Kp

Wp(δpt
2y)e2πiΦp(t2x)e2πiΦp(ts)dt.

After some preliminary simplification, the evaluation of this integral will
be broken into several cases which will proceed essentially as in [5].

Using ordp(yδp) = 2n,

f̂p(s, z) =

∫
Kp

Wp(t
2π2n)e2πiΦp(t2x)e2πiΦp(ts)dt.

Substituting tπ−n in place of t yields

f̂p(s, z) = |π|−np
∫
Kp

Wp(t
2)e2πiΦp(t2xπ−2n)e2πiΦp(tsπ−n)dt

= |π|−np
∫
Op

e2πiΦp(t2xπ−2n)e2πiΦp(tsπ−n)dt.
(3.5)

First consider the case |x|p ≤ |y|p. By the local constancy of the original
integrand for z ∈Mw, we may assume x = 0. So

f̂p(s, z) = |π|−np
∫
Op

e2πiΦp(tsπ−n)dt.

Replacing t with t+ α for any α ∈ Op gives

f̂p(s, z) = e2πiΦp(αsπ−n)|π|−np
∫
Op

e2πiΦp(tsπ−n)dt.
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Comparing this to the previous equation shows the integral must be zero
unless sπ−n ∈ δ−1

p so that the extra factor is 1. However, if sπ−n ∈ δ−1
p , then

the integrand is identically 1, and we have

f̂p(s, z) =

{
|δp|

1
2
p |π|−np if sπ−n ∈ δ−1

p

0 otherwise
.

But sπ−n ∈ δ−1
p if and only if δps

2 1
y
∈ Op, so

f̂p(s, z) = |δp| 12 |π|−nWp
(
δps

2 1

y

)
=

1√
|y|p

fp

(
s,
Ip

y

)
=

1√
|2z|p

fp

(
s,
−1

4z

)
.

(3.6)

Since Gp(z) = 1 in this case, we have proved the formula.
The case of |x|p > |y|p will be more complicated. Since yx−1 ∈ Op,

replacing t with t+ αyx−1 in (3.5) for any α ∈ Op gives

f̂p(s, z) = |π|−np
∫
Op

e2πiΦp((t+α yx )2xπ−2n)e2πiΦp((t+α yx )sπ−n)dt.

But (
t+ α

y

x

)2

xπ−2n = t2xπ−2n + 2tαyπ−2n + α2 y

x
yπ−2n

where yπ−2n ∈ δ−1
p . So

f̂p(s, z) = |π|−np e2πiΦp(α yx sπ
−n)

∫
Op

e2πiΦp(t2xπ−2n)e2πiΦp(tsπ−n)dt.

Comparing this to equation (3.5) shows the integral is zero, unless yx−1sπ−n ∈
δ−1
p , or equivalently, unless δps

2yx−2 ∈ Op. Since x2(4Np(z))
−1 ∈ Up, the

integral is zero unless δps
2y(4Np(z))

−1 ∈ Op.
If the integral is non-zero, then completing the square in the exponential

gives

f̂p(s, z) = |π|−np e
2πiΦp

(
− 1
x
s2

4

) ∫
Op

e
2πiΦp

(
1
x(txπ−n+ s

2)
2
)
dt.(3.7)

However (
1

x
− x+ (Ip + Īp)y

Np(z)

)
s2

4
=
IpĪp

4

y

x
s2 y

Np(z)
∈ δ−1

p
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since p - 2. Therefore we can replace the 1
x

in the first exponential in (3.7)

with x+(Ip+Īp)y

Np(z)
to get

f̂p(s, z) = |π|−np e
2πiΦp

(
−x−(Ip+Īp)y

Np(z)
s2

4

) ∫
Op

e2πiΦp( 1
x (txπ−n+ s

2 )2)dt.

Since sπn

2x
∈ Op, substituting t− sπn

2x
for t yields

f̂p(s, z) = |π|−np e
2πiΦp

(
−x−(Ip+Īp)y

Np(z)
s2

4

) ∫
Op

e2πiΦp(xt2π−2n)dt.

Therefore we’ve shown that

f̂p(s, z) = |π|−np
∫
Op

e2πiΦp(xt2π−2n)dt Wp

(
δps

2 y

4Np(z)

)
e

2πiΦp

(
−x−(Ip+Īp)y

Np(z)
s2

4

)

= |π|−np
√
|yδp|p
|z|p Gp(z)Wp

(
δps

2 y

4Np(z)

)
e

2πiΦp

(
−x−(Ip+Īp)y

Np(z)
s2

4

)

= |π|−np
√
|yδp|p
|z|p Gp(z)f

(
s,
−1

4z

)
.

Finally, we need only note that

|π|−np
√
|yδp|p
|z|p = |π|−np

√
|π|2np
|z|p =

1√
|2z|p

to complete the proof.

We can simplify further by noting thatGp(z) is really a normalized quadratic
Gauss sum.

Proposition 3.4. Let z = x + Ipy ∈ Hp. If |x|p > |y|p, write x = επl with
ε ∈ Up. Then

Gp(z) =


1 if |x|p ≤ |y|p
1 if |x|p > |y|p and ordp(xδp) is even(
ε
p

)
µπi if |x|p > |y|p and ordp(xδp) is odd

where
(
ε
p

)
is the quadratic residue symbol and µπi is a complex number with

µπi
2 =

(
−1
p

)
. Although µπi depends on the choice of uniformizer π, Gp(z)

does not.

Proof. If |x|p ≤ |y|p the result is clear.
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If |x|p > |y|p, then in preparation for simplifying Gp, consider the integral

H(m, ε) =

∫
Op

e
2πiΦp

(
εt2

πm+d

)
dt

where ε ∈ Up, d = ordpδp, and m ≥ 0 is an integer. (Although the notation
does not indicate it, H also depends on the choice of the uniformizer π.) If
m ≥ 2, replacing t with t+ απm−1 for any α ∈ Op gives

H(m, ε) =

∫
Op

e
2πiΦp

(
εt2

πm+d

)
e2πiΦp( 2εαt

π1+d )e2πiΦp
(
εα2πm−2

πd

)
dt

=

∫
Op

e
2πiΦp

(
εt2

πm+d

)
e2πiΦp( 2εαt

π1+d )dt.

Since this expression for H is valid for any α ∈ Op, averaging it over Op
yields

H(m, ε) = |δp|−
1
2

p

∫
Op

∫
Op

e
2πiΦp

(
εt2

πm+d

)
e2πiΦp( 2εαt

π1+d )dt dα

= |δp|−
1
2

p

∫
Op

e
2πiΦp

(
εt2

πm+d

) ∫
Op

e2πiΦp( 2εαt

π1+d )dα dt.

Considering only the inner integral and replacing α with α+β for any β ∈ Op
shows ∫

Op

e2πiΦp( 2εαt

π1+d )dα = e2πiΦp( 2εβt

π1+d )
∫
Op

e2πiΦp( 2εαt

π1+d )dα.

This equality implies the integral must be 0 unless t ∈ p, in which case the

integrand is 1 so the integral is |δp|
1
2
p . Therefore

H(m, ε) =

∫
p

e
2πiΦp

(
εt2

πm+d

)
dt

= |π|
∫
Op

e
2πiΦp

(
επ2t2

πm+d

)
dt

= |π|H(m− 2, ε).

This formula reduces evaluating H(m, ε) to the cases m = 0 and 1. While

clearly H(0, ε) = |δp|
1
2
p , the m = 1 case requires more work.

H(1, ε) =
∑
α∈Op
mod p

∫
α+p

e
2πiΦp

(
εt2

π1+d

)
dt

=
∑
α∈Op
mod p

|π|p
∫
Op

e
2πiΦp

(
ε(α+πt)2

π1+d

)
dt
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= |π|p|δp| 12
∑
α∈Op
mod p

e
2πiΦp

(
εα2

π1+d

)

= |π|p|δp| 12
∑
α∈Op
mod p

( (
α

p

)
+ 1

)
e2πiΦp( εα

π1+d )

where
(
α
p

)
is the quadratic residue symbol so that

(
α
p

)
+ 1 is the number of

solutions to the congruence x2 ≡ α mod p. Since ε ∈ Up∑
α∈Op
mod p

e2πiΦp( εα

π1+d ) = 0

so

H(1, ε) = |π|p|δp| 12
∑
α∈Op
mod p

(
α

p

)
e2πiΦp( εα

π1+d ).

Replacing α with ε−1α shows H(1, ε) =
(
ε
p

)
H(1, 1). Thus

H(m, ε) =

|δpπm|
1
2
p if m is even

|π(m−1)| 12p
(
ε
p

)
H(1, 1) if m is odd

.

We reiterate that the complex number H(1, 1) depends on the choice of

π; changing π by multiplication by a unit ε multiplies H(1, 1) by
(
ε
p

)
.

Nonetheless, the square of H(1,1) is easily found by(−1

p

)
H(1, 1)2 = H(1, 1)H(1,−1)

=

∫
Op

e
2πiΦp

(
t2

π1+d

)
dt

∫
Op

e
−2πiΦp

(
s2

π1+d

)
ds

=

∫
Op

∫
Op

e2πiΦp( (t−s)(t+s)
π1+d )dt ds.

A change of variables (since p - 2)then gives(−1

p

)
H(1, 1)2 =

∫
Op

∫
Op

e2πiΦp( ts

π1+d )dt ds.

Replacing t with t+ α for any α ∈ Op shows the inner integral is∫
Op

e2πiΦp( ts

π1+d )dt = e2πiΦp( αs

π1+d )
∫
Op

e2πiΦp( ts

π1+d )dt.
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Thus the inner integral is 0 unless s ∈ p, and in that case, since the integrand

is 1, the inner integral gives |δp|
1
2
p . Therefore

H(1, 1)2 =

(−1

p

)
|δp|

1
2
p

∫
p

ds =

(−1

p

)
|π|p|δp|p.

To apply this the the evaluation of Gp(z), write x = επl where ε ∈ Up.
Recall that ordp(yδp) = 2n, so that ordp(y) = 2n− d. Then

Gp(z) =

√
|z|p
|yδp|p

∫
Op

e
2πiΦp

(
εt2

π2n−l
)
dt

=

√
|z|p
|yδp|pH(2n− l − d, ε)

= |π|(l−2n)/2

|π|
(2n−l)/2 if l + d is even

|π|(2n−l−d−1)/2
(
ε
p

)
H(1, 1) if l + d is odd

=

1 if l + d is even(
ε
p

)
H(1,1)√
|πδp|p

if l + d is odd.

Let µπi = H(1,1)√
|πδp|p

.

Now we consider a different function that will be used when the local
character cp is ramified. Unlike the unramified case, in this case the function
will not depend on a parameter from Hp.

Definition. If fp 6= 1, then let

fp(t) =

{
cp(t) if t ∈ Up
0 otherwise

.

Proposition 3.5. If fp = pn and δp = pd, let q ∈ Kp be any element such
that ordpq = n+ d. Then

f̂p(s) = |q| 12pGp(cp, q)fp(sq)

where Gp, the normalized Gauss sum associated to cp and a choice of q, is
defined by

Gp(cp, q) = |fp|
1
2
p

∑
α∈Up/(1+fp)

cp(α)e2πiΦp(αq−1).



THE THETA MULTIPLIER VIA P-ADIC PLANES 175

Proof.

f̂p(s) =

∫
Up

cp(t)e
2πiΦp(ts)dt.

Replacing t by t+ απn for any α ∈ Op gives

f̂p(s) = e2πiΦp(αsπn)

∫
Up

cp(t)e
2πiΦp(ts)dt

Thus f̂p(s) = 0 unless sπn ∈ δ−1
p .

Now choose an ε ≡ 1 mod pn−1 with cp(ε) 6= 1. Writing ε = 1 + απn−1

with α ∈ Up, and replacing t with tε yields

f̂p(s) =

∫
Up

cp(t)e
2πiΦp(ts)dt =

∫
Up

cp(tε)e
2πiΦp(tεs)dt

= cp(ε)

∫
Up

cp(t)e
2πiΦp(ts)e2πiΦp(tαπn−1s)dt.

Now if sπn−1 ∈ δ−1
p , then e2πiΦp(tαπn−1s) = 1 for all t ∈ Up, so in this case we

have ∫
Up

cp(t)e
2πiΦp(ts)dt = cp(ε)

∫
Up

cp(t)e
2πiΦp(ts)dt.

Since cp(ε) 6= 1, we thus see that f̂p(s) = 0 unless sπnδp ∈ Up.
We now can express f̂p(s) for sπnδp ∈ Up as a Gauss sum associated to

cp. Thus

f̂p(s) =

∫
Up

cp(t)e
2πiΦp(ts)dt

=
∑

α∈Up/(1+fp)

∫
α+fp

cp(t)e
2πiΦp(ts)dt

=
∑

α∈Up/(1+fp)

cp(α)e2πiΦp(αs)

∫
fp

e2πiΦp(ts)dt

=
∑

α∈Up/(1+fp)

cp(α)e2πiΦp(αs)|fp|p
∫
Op

e2πiΦp(tπns)dt

=
∑

α∈Up/(1+fp)

cp(α)e2πiΦp(αs)|fp|p|δp|
1
2
p

= |f2pδp|
1
2
p

∑
α∈Up/(1+fp)

cp(α)e2πiΦp(αs).

With ordpq = n + d so that sq ∈ Up, replacing α by α(sq)−1 in the sum
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yields

f̂p(s) = cp(sq)|f2pδp|
1
2
p

∑
α∈Up/(1+fp)

cp(α)e2πiΦp(αq−1)

= |q| 12pGp(cp, q)fp(sq).

The factor in front of the sum in the definition of Gp ensures the first part
of the following.

Proposition 3.6.
a. |Gp(cp, q)| = 1.

b. Gp(cp, εq) = cp(ε)Gp(cp, q) for ε ∈ Up.
c. Gp(cp, q) = Gp(cp,−q).

Proof. First, (b) is easily seen by changing the index of summation in the
definition of Gp, and (c) is also immediately clear.

For (a), the double Fourier transform of fp is computed by applying the
last proposition:

ˆ̂
fp(s) = |q| 12pGp(cp, q)f̂p(sq)

= |q| 12pGp(cp, q)|q|−1
p f̂p

(
s

q

)
.

Applying the previous proposition again, but using −q instead of q, gives

ˆ̂
fp(s) = |q| 12pGp(cp, q)|q|−1

p |q|
1
2
pGp(cp,−q)fp(−s)

= Gp(cp, q)Gp(cp,−q)fp(−s).

Combining this result with the Fourier inversion formula, and using (c) com-
pletes the proof.

The final case we must consider is when cp is unramified and p | 2.

Definition. If p | 2 and fp = 1 let

fp(t) =

{
1 if t ∈ Op
0 if t /∈ Op

.

Proposition 3.7.
f̂p(s) = |δp| 12 fp(δps).
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Proof.

f̂p(s) =

∫
Op

e2πiΦp(ts)dt.

Replacing t with t+ α for any α ∈ Op shows

f̂p(s) = e2πiΦp(αs)

∫
Op

e2πiΦp(ts)dt.

Therefore the integral is 0 unless s ∈ δ−1
p , and in that case the integrand is

1.

We note for convenience that the statement of Proposition 3.7 may be
subsumed into that of Proposition 3.5. That is, for all p|2f, if ordp(q) =
ordp(fpδp) then

f̂p(s) = |q| 12Gp(cp, q)fp(sq)
where we interpret Gp(cp, q) as 1 in the case where p|2 but p - f.

4. The Theta Series.

For our fixed Dirichlet character c with conductor f, define f : K×H(2f)→ C
by

f(ν, z) =
∏
p|2f

fp(νp)
∏
p-2f

fp(νp, zp)

where the fp are as given in Section 3 and thus depend on cp for p|f. Note
that for any value of ν and z all but finitely many of the terms in this product
are 1.

Definition. The theta function associated to the Dirichlet character c of
conductor f is the function Θc(z) : H(2f)→ C defined by

Θc(z) =
∑
ν∈K

f(ν, z).

One easily checks that this series converges absolutely and uniformly. As
expected, Θc satisfies a number of functional equations. In order to state
them we need the following definitions.

Definition. Let n be any integral ideal of K. Then On =
⋂
p|n

(K ∩ Op)
denotes those elements of K integral at all primes dividing n and Un =⋂
p|n

(K∩Up) denotes those elements of K that are units at all primes dividing

n . Finally, δn = δOn denotes the On ideal generated by the global different
of K.
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In terms of its prime factorization, δn is simply δ with any factors prime
to n deleted.

Note that On is always a principal ideal domain; by eliminating all primes
except those finitely many that divide n, we have essentially collapsed the
ideal class group of O(K). In fact, even the narrow class number of On is
1, so for any On ideal we can choose a generator that is totally positive (i.e.
positive at all real primes).

Proposition 4.1. Θc satisfies the functional equations:
(a) For ε ∈ U2f,

Θc

((
ε 0
0 ε−1

)
◦ z
)

= χc((ε))
∏
p real

|εp|−npp Θc(z).

(b) For α ∈ δ−1
2f ,

Θc

((
1 α
0 1

)
◦ z
)

= Θc(z).

(c) For any φ ∈ K that generates the O2f ideal fδ2f with φ totally positive,

Θc

((
0 −(2φ)−1

2φ 0

)
◦ z
)

=
∏
p|2f
Gp(cp, φp)

−1
∏
p-2f
p finite

Gp(zp)
−1
√
|2φpzp|p

∏
p real

(−i)np
√
−2iφpzp

2np+1

∏
p complex

|2φpzp|pΘc̄(z)

where the square root is such that −π
2
< arg(w1/2) ≤ π

2
.

Proof. First, for any ε ∈ U2f,

Θc(z) =
∑
ν∈K

f(ν, z) =
∑
ν∈K

f(εν, z)

=
∑
ν∈K

∏
p|2f

fp(εpνp)
∏
p-2f

fp(εpνp, zp)

=
∑
ν∈K

∏
p|f

cp(εp)fp(νp)
∏
p|2
p-f

fp(νp)
∏
p real

εnpp fp

(
νp,

(
εp 0
0 ε−1

p

)
◦ zp

)

∏
p-2f

p not real

fp

(
νp,

(
εp 0
0 ε−1

p

)
◦ zp

)
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=
∏
p|f

cp(εp)
∏
p real

εnpp
∑
ν∈K

f

(
ν,

(
ε 0
0 ε−1

)
◦ z
)

= χc((ε))
∏
p real

|εp|npp Θc

((
ε 0
0 ε−1

)
◦ z
)

which establishes (a).
For (b), let α ∈ δ−1

2f so

Θc(z + α) =
∑
ν∈K

f(ν, z + α) =
∑
ν∈K

f(ν, z)e
2πi
∑

p-2f Φp(ν2
pαp)

.

But ∑
p-2f

Φp(ν
2
pαp) = Tr(ν2α)−

∑
p|2f

Φp(ν
2
pαp).

Since ν2α ∈ K, Tr(ν2α) = 0. Observing that for p | 2f, fp(νp) = 0 unless
νp ∈ Op, and hence f(ν, z) = 0 unless ν ∈ O2f, we may as well assume
ν ∈ O2f. But then since α ∈ δ−1

2f , ν2
pαp ∈ δ−1

p for any p | 2f, so Φp(ν
2
pαp) = 0.

Therefore,
Θc(z + α) = Θc(z).

Finally, (c) follows from Poisson summation and Propositions 3.1, 3.2, 3.3,
3.5, and 3.7 since

Θc(z) =
∑
ν∈K

f(ν, z) =
∑
ν∈K

f̂(ν, z)

=
∑
ν∈K

∏
p|2f

f̂p(ν)
∏
p-2f

f̂p(ν, zp)

=
∑
ν∈K

∏
p|2f
|φp|

1
2
pGp(cp, φp)fp(νφp)

∏
p-2f
p finite

Gp(zp)√
|2zp|p

fp

(
ν,
−1

4zp

)
∏
p real

inp√−2izp
2np+1 fp

(
ν,
−1

4zp

) ∏
p complex

1

|2zp|p fp
(
ν,
−1

4zp

)

where for p|2f, φp ∈ Kp is any element with (φp) = fpδp. Choosing a single
φ as in the statement of the proposition which can then serve as all of these
φp, and replacing ν with νφ−1 in the summation gives

Θc(z)

=
∑
ν∈K

∏
p|2f
|φp|

1
2
pGp(cp, φp)fp(ν)

∏
p-2f
p finite

Gp(zp)√
|2zp|p

fp

(
νφ−1,

−1

4zp

)
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∏
p real

inp√−2izp
2np+1 fp

(
νφ−1,

−1

4zp

) ∏
p complex

1

|2zp|p fp
(
νφ−1,

−1

4zp

)

=
∏
p|2f
|φp|

1
2
pGp(cp, φp)

∏
p-2f
p finite

Gp(zp)√
|2zp|p

∏
p real

inp√−2izp
2np+1φ

−np
p

∏
p complex

1

|2zp|p

∑
ν∈K

∏
p|2f

fp(ν)
∏
p-2f

fp

(
ν,

(
0 −(2φ)−1

2φ 0

)
◦ zp

)
.

Noting that by the product formula, since φp > 0 for all real p,∏
p|2f
|φp|

1
2
p =

∏
p real

φ
− 1

2
p

∏
p complex

|φp|−1
p

∏
p-2f
p finite

|φp|−
1
2

p

we have

Θc(z) =
∏
p|2f

Gp(cp, φp)
∏
p-2f
p finite

Gp(zp)√
|2φpzp|p

∏
p real

inp√−2iφpzp
2np+1

∏
p complex

1

|2φpzp|p

Θc̄

((
0 −(2φ)−1

2φ 0

)
◦ z
)
.

We now turn to investigating discrete groups for which Θc satisfies a
transformation formula.

Definition. If n is an integral ideal of O(K), let

Γ0(n) =

{ (
a b

c d

)
∈ SL2(K)

∣∣∣∣∣ a, d ∈ On, c ∈ nδn, b ∈ δ−1
n

}
.

Let Γ = Γ0(1).

Definition. If n is an integral ideal of O(K), the theta group ΓΘ(n) is the
group generated by the following matrices:(

ε 0
0 ε−1

)
, ε ∈ Un;

(
1 α
0 1

)
, α ∈ δ−1

n ;

(
0 −φ−1

φ 0

)

where φ ∈ K is any generator of the On ideal nδn with φp > 0 for all real p.

One readily sees that the definition of the theta group is independent of
the choice of φ.

The relationship between these two groups is rather simple:
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Proposition 4.2. Γ0(n2) = ΓΘ(n) ∩ Γ.

Proof. We assume n 6= (1), and leave the minor modifications for the n = (1)
case to the reader.

Letting φ denote any element as in the definition of ΓΘ(n), if A ∈ Γ0(n2),

then A =

(
a b

φ2c d

)
with a, d ∈ Un and b, c ∈ δ−1

n . But since

A =

(
1 bd−1

0 1

)(
−d−1 0

0 −d

)(
0 −φ−1

φ 0

)(
1 −cd−1

0 1

)(
0 −φ−1

φ 0

)

then A ∈ ΓΘ(n) ∩ Γ.
Now suppose A ∈ ΓΘ(n) ∩ Γ and write A as a product of the generators

of ΓΘ(n) given in the definition of that group. Letting W =

(
0 −φ−1

φ 0

)
, and

noting that the other generators in the definition are already in Γ0(n2), we
can therefore express A as a product of elements of Γ0(n2) alternating with

W s and W−1s. Since W−1 =

(
−1 0
0 −1

)
W , and W is in the normalizer of

Γ0(n2), we can further collapse the product: If an even number of W s and
W−1s occur in the original expression for A, then we find A ∈ Γ0(n2). On the
other hand, if an odd number occur, we find A = BW for some B ∈ Γ0(n2).
Since A ∈ Γ, this means W = B−1A ∈ Γ. That of course is absurd under
our assumption n 6= (1).

Proposition 4.1 says Θc transforms nicely under all elements of ΓΘ(2f).
For the smaller group Γ0(4f2) the transformation formula is given explicitly
by the following proposition.

Proposition 4.3. If A ∈ Γ0(4f2) where f is the conductor of the Dirichlet
character c, then let φ ∈ K be any totally positive generator of the O2f ideal

fδ2f and write A =

(
a b

4φ2c d

)
. Then

Θc(A ◦ z) = χc((d))
∏
p-2f
p finite

Gp

(
− c
d
− 1

4φ2zp

)−1

Gp(zp)
−1 jc(A, z)Θc(z)

where

jc(A, z) =
∏
p-2f
p finite

|4φ2czp + d| 12p
∏
p real

(sgn(d)(4φ2czp + d))
2np+1

2

∏
p complex

|4φ2czp + d|p,
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and where the square root is such that −π
2
< arg(w

1
2 ) ≤ π

2
.

Proof. Using the factorization

A =

(
1 bd−1

0 1

)(
−d−1 0

0 −d

)(
0 −(2φ)−1

2φ 0

)(
1 −cd−1

0 1

)(
0 −(2φ)−1

2φ 0

)

and statements (b) and (a) of Proposition 4.1 we see

Θc (A ◦ z) = χc((−d−1))
∏
p real

|d|npp

Θc

((
0 −(2φ)−1

2φ 0

)(
1 −cd−1

0 1

)(
0 −(2φ)−1

2φ 0

)
◦ z
)
.

Using (c) of Proposition 4.1 yields

Θc (A ◦ z) = χc((d−1))
∏
p real

|d|npp
∏
p|2f

Gp(cp, φp)
−1

∏
p-2f
p finite

Gp

(
− c
d
− 1

4φ2zp

)−1 ∣∣∣∣2φ(− cd − 1

4φ2zp

)∣∣∣∣ 1
2

p

∏
p real

(−i)np
(
−2iφ

(
− c
d
− 1

4φ2zp

)) 2np+1

2

∏
p complex

∣∣∣∣2φ(− cd − (2φ)−1(2φzp)
−1

)∣∣∣∣
p

Θc̄

((
1 −cd−1

0 1

)(
0 −(2φ)−1

2φ 0

)
◦ z
)
.

Applying (b) and then (c) of Proposition 4.1 now shows

Θc (A ◦ z) = χc((d))
∏
p real

|d|npp
∏
p|2f

Gp(cp, φp)
−1Gp(cp, φp)

−1

∏
p-2f
p finite

Gp

(
− c
d
− 1

4φ2zp

)−1 ∣∣∣∣2φcd +
1

2φzp

∣∣∣∣ 1
2

p

Gp(zp)
−1|2φzp|

1
2
p

∏
p real

(−i)np
(
i

(
2φc

d
+

1

2φzp

)) 2np+1

2

(−i)np(−2iφzp)
2np+1

2

∏
p complex

∣∣∣∣2φcd + (2φzp)
−1

∣∣∣∣
p

|2φzp|p Θc (z) .
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Simplifying, and using (b) and (c) of Proposition 3.6, we see

Θc (A ◦ z) = χc((d))
∏
p|2f

cp(−1)

∏
p-2f
p finite

Gp

(
− c
d
− 1

4φ2zp

)−1

Gp(zp)
−1

∣∣∣∣4φ2c

d
zp + 1

∣∣∣∣
1
2

p

∏
p real

(−|d|p)np
(

4φ2c

d
zp + 1

) 2np+1

2 ∏
p complex

∣∣∣∣4φ2c

d
zp + 1

∣∣∣∣
p

Θc(z).

But
∏
p|2f cp(−1)

∏
p real(−1)np = 1 and since d ∈ U2f,∏

p-2f
p not complex

|d|p
∏

p complex

|d|2p = 1,

so the last equation becomes

Θc (A ◦ z) = χc((d))
∏
p-2f
p finite

Gp

(
− c
d
− 1

4φ2zp

)−1

Gp(zp)
−1jc(A, z)Θc(z).

5. K = Q.

We now specialize to the case K = Q to illustrate how to recover the trans-
formation formula for the theta functions associated to Dirichlet characters
mod N as in [6].

For a positive integer N , by a Dirichlet character mod N is meant a
function ψ on Z such that

ψ(n) =

{
0 if (n,N) 6= 1

ψ0(n mod N) if (n,N) = 1

where ψ0 : (Z/NZ)× → C is a homomorphism. ψ is said to be a primitive
character mod N if N is the smallest positive integer such that ψ(n) depends
only on n mod N when (n,N) = 1.

Corollary 5.1. Let ψ be a primitive Dirichlet character mod N with n∞ ∈
{0, 1} such that ψ(−1) = (−1)n∞. For z∞ ∈ H∞ = {x+ iy|x, y ∈ R, y > 0},
let

θψ(z∞) =
∑
m∈Z

ψ(m)mn∞e2πim2z∞ .
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If A =

(
a b

4N2c d

)
∈ SL2(Z) with c ∈ Z, then

θψ(A ◦ z∞) = ψ(d)

(
c

d

)
ε−1
d

(
4N2cz∞ + d

) 2n∞+1
2 θψ(z∞)

where the quadratic residue symbol ( c
d
) is defined as in [6] and

εd =

{
1 if d ≡ 1 (mod 4)

i if d ≡ 3 (mod 4)
.

Proof. ψ gives rise to a grossencharacter χc and a Dirichlet character c in
the sense of Section 2 with χc((d)) = ψ(|d|). The conductor of c is then N .
Thus by Proposition 4.3, if A is as stated, then for z ∈ H(2N),

Θc(A ◦ z) = χc((d))
∏
p-2f
p finite

Gp

(
− c
d
− 1

4φ2zp

)−1

Gp(zp)
−1jc(A, z)Θc(z).

For all finite p - 2N , choose zp = Ip. Then

Θc(z) = θψ(z∞)

Θc(A ◦ z) = θψ(A ◦ z∞)

Gp(zp) = 1 for finite p - 2N

|4N2czp + d|p = 1 for finite p - 2N.

Thus the transformation formula becomes

θψ(A◦z∞)=ψ(|d|)
∏
p-2N
p finite

Gp

(
− c
d
− 1

4N2Ip

)−1(
sgn(d)

(
4N2cz∞ + d

)) 2n∞+1
2 θψ(z∞).

But from Proposition 3.4, for p - 2N ,

Gp

(
− c
d
− 1

4N2Ip

)
=

1 if ordp(d) is even(
−cd−1pordpd

p

)
µp if ordp(d) is odd

.

Note that we have made a canonical choice of uniformizer for Qp by taking
π = p where p > 0 in Q.

As is well known (see [2] for instance), the Gauss sum defining µp can be
explicitly evaluated to give

µp = εp

(−1

p

)
.
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Thus ∏
p-2N
p finite

Gp

(
− c
d
− 1

4N2Ip

)−1

=
∏

p such that
ordpd is odd

(
cd−1pordpd

p

)
ε−1
p

=
∏

p such that
ordpd is odd

(
c

p

)(
dp−ordpd

p

)
ε−1
p

=

(
c

|d|
) ∏

p such that
ordpd is odd

(
dp−ordpd

p

)
ε−1
p .

We leave as an easy exercise in the use of quadratic reciprocity (most usefully
expressed for this purpose by the identity

(
a
b

) (
b
a

)
εaεb = εab for positive odd

a and b) the proof that for d > 0

∏
p such that
ordpd is odd

(
dp−ordpd

p

)
ε−1
p = ε−1

d .

(Of course, to make this development more self-contained, the quadratic reci-
procity law (for arbitrary number fields) can be deduced from the properties
of the theta functions of this paper by adapting the proofs of Cauchy and
Hecke found in [2].)

Therefore, for d > 0 we have

θψ(A ◦ z∞) = ψ(d)

(
c

d

)
ε−1
d

(
4N2cz∞ + d

) 2n∞+1
2 θψ(z∞)

as claimed.
The d < 0 case is most easily deduced from this by considering −A instead

of A.

The formula relating θψ
(
−1

4N2z∞

)
to θψ̄(z∞) is proved similarly using part

(c) of Proposition 4.1 and Proposition 3.6.
The formulae in [5] can also be recovered by considering the trivial char-

acter and instead of choosing zp = Ip for all finite p 6= 2, allowing zp for a
single p to remain a free variable.
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