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ASYMPTOTICS FOR SINGULAR VECTORS IN VERMA
MODULES OVER THE VIRASORO ALGEBRA

A. Astashkevich and D. Fuchs

For the singular vector in the reducible Verma module
over the Virasoro algebra the terms of extremal degrees in
the parameter are explicitly found in this article.

1. Introduction and statement of the main result.

The Virasoro algebra Vir is the infinitedimensional complex Lie algebra with
the basis {ei(i ∈ Z), z} and the commutator operator

[ei, z] =0,

[ei, ej] =(j − i)ei+j + δ−i,j
j3 − j

12
z.

(Sometimes the generators of the Virasoro algebra are denoted by Li; to
translate our results into these notations one should put ei = −L−i.)

The Lie algebra Vir is graded, Vir = ⊕k∈Z Virk (deg ei = i,deg z = 0),
and has the Cartan decomposition Vir = N−⊕H⊕N+ with N− = ⊕k>0 Virk
is spanned by ei with i > 0, N+ = ⊕k<0 Virk is spanned by ei with i < 0, and
H = Vir0 is spanned by e0 and z. Clearly N−, H,N+ are Lie subalgebras of
Vir, and N−, N+ are nilpotent (in the sense that the intersection ∩kN (k)

± of
subspaces of N± spanned by k–fold is zero) commutators while H is Abelian.

For h, c ∈ C the Verma module M(h, c) over Vir is defined by the formula

M(h, c) = IndVir
N+⊕H χh,c

where χh,c denotes the one–dimensional (N+ ⊕H)–module with e0 = h, z =
c, ei = 0 for i < 0 and Ind is the inducing operator. As an U(N−)–module
M(h, c) is a free module with one generator, which we denote by v. Hence as
a linear space M(h, c) is spanned (for any h, c) by the vectors ei1 . . . eirv, i1 ≥
· · · ≥ ir ≥ 1. The module M(h, c) is graded, M(h, c) = ⊕k≥0Mk(h, c), by
deg(ei1 . . . eirv) = i1 + · · ·+ ir; in particular, M0(h, c) = Cv, dimMk(h, c) =
p(k) where p is the partition function. Evidently, zw = cw for any w ∈
M(h, c), and if degw = d then e0w = (h+ d)w.

A non–zero element w of an arbitrary Vir–module N is called a singular
vector of the type (h, c) if e0w = hw, zw = cw and eiw = 0 for i < 0. For

201



202 A. ASTASHKEVICH AND D. FUCHS

example, v ∈ M(h, c) is a singular vector of the type (h, c). It is easy to
see that any non–zero submodule N of M(h, c) contains a singular vector.
Moreover, for some k ≥ 0 there exists a singular vector (of the type (h+k, c))
in N ∩M(h, c), and N ⊂ ⊕l≥kMl(h, c); if N 6= M(h, c), then k 6= 0, and
vice versa. Thus the module M(h, c) is reducible if and only if it contains a
singular vector not in Cv.

The two major problems in the Virasoro representation theory are: (i)
For which h, c is the module M(h, c) reducible? (ii) What are the singular
vectors in a reducible M(h, c)?

The solution of the first problem is provided by the following well known
Kac theorem.

For k, l ∈ Z denote by Φ(k, l) the curve in the plane C2(h, c) given by the
parametric equations

h = hk,l(t) =
1− k2

4
t+

1− kl
2

+
1− l2

4
t−1,

c = c(t) = 6t+ 13 + 6t−1

(t ∈ C − 0). It is the straight line h =
c− 1

24
(1 − k2) if k = l and an

irreducible second order curve otherwise. Obviously Φ(k, l) = Φ(l, k) (with
the parameter change t 7→ t−1); otherwise all the curves Φ(k, l) are different.

Theorem 1.1 (see [K], [FF1]). The module M(h, c) is reducible if and
only if (h, c) belongs to the union of the curves Φ(k, l) with k, l > 0. If
(h, c) ∈ Φ(k, l), k, l > 0 and (h, c) /∈ Φ(k′, l′) for k′, l′ > 0, k′l′ < kl then
M(h, c) has a singular vector in Mkl(h, c) and has no singular vectors in
Ms(h, c) with s < kl.

In particular, for k, l > 0 and generic t the module M(hk,l(t), c(t)) contains
a singular vector of the degree kl. Actually it is true for all t; moreover, the
vector has the form Sk,l(t)v where

Sk,l(t) = ekl1 +
∑

i1+···+ir=kl
kl>i1≥···≥ir≥1

P i1...ir
k,l (t)ei1 . . . eir ,

P i1...ir
k,l (t) ∈ C [t, t−1

]
.

(This fact may be regarded as well known; a proof of it is contained, for
example in [F].)

It is known also (see [FF3]) that any singular vector in M(h, c) is pro-
portional either to Sk,l(t)v with (h, c) ∈ Φ(k, l) or to Sk′,l′(t)Sk,l(t)v with
(h, c) ∈ Φ(k, l) and (h + kl, c) ∈ Φ(k′, l′). This shows that the problem of
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the explicit description of singular vectors is reduced to the problem of the
explicit description of Sk,l(t).

It is easy to see that Sk,l(t) = Sl,k(t
−1); it is also not difficult to calculate

Sk,l(t) for small values of k, l. In particular,

S1,1(t) = e1,

S2,1(t) = e2
1 + te2,

S3,1(t) = e3
1 + 4te2e1 + (4t2 + 2t)e3,

S4,1(t) = e4
1 + 10te2e

2
1 + 9t2e2

2 + (24t2 + 10t)e3e1 + (36t3 + 24t2 + 6t)e4,

S2,2(t) = e4
1 + 2ue2e

2
1 + (u2 − 4)e2

2 + (2u+ 6)e3e1 + (3u+ 6)e4, u = t+ t−1.

Some partial results on Sk,l(t) were obtained by Feigin and the second author
in [FF2]. One of them is formulated below (see Proposition 2.1).

An explicit formula for Sk,l(t) was obtained in the case l = 1 by Benoit
and Saint–Aubin [BS] and in general case by Bauer, di Francesco, Itzykson
and Zuber [BFIZ]. But these formulas do not seem to be explicit enough
to give any expression for the polynomials P i1...ir

k,l (t).
The main result of this article is the following:

Theorem 1.2.

Sk,l(t) = (k − 1)!2lelkt
(k−1)l + · · ·+ (l − 1)!2kekl t

−(l−1)k,

where “...” denotes the terms of intermediate degrees in t.

In particular, the highest and the lowest degrees of Sk,l(t) in t are equal,
respectively, to (k − 1)l and −(l − 1)k; this fact is essential for [FF3] and
was used there more or less without proof. (An elucidation of some details
of some proofs in [FF3] an a generalization of some results of that work is
contained in [A].)

2. Proof of Theorem 1.2.

2.1. Preliminary calculation. Let Fλ,µ be the Vir–module spanned over
C by fj, j ∈ Z with the action of Vir

zfj = 0, eifj = (j + µ− (i+ 1)λ)fi+j.

The following is proved in [FF2].
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Proposition 2.1. In Fλ,µ
Sk,l(t)f0 = Pk,l(t;λ, µ)fkl,

where

Pk,l(t;λ, µ)2 =
∏

0≤u<k
0≤v<l

Rk,l,u,v(t;λ, µ),

Rk,l,u,v(t;λ, µ) = ν2

+ ν
[
(2u(k − 1− u) + k − 1)t+ kl − (k − 1− 2u)(l − 1− 2v)− 1

+ (2v(l − 1− v) + l − 1)t−1
]

− λ[(k − 1− 2u)2t+ 2(k − 1− 2u)(l − 1− 2v) + (l − 1− 2v)2t−1
]

+
(ut+ v)((u+1)t+ (v +1))((k − u)t+ (l− v))((k −1− u)t+ (l− 1− v))

t2

where, in turn, ν = µ− 2λ.

It is not hard to extract from the last formula the terms of the extreme
degrees in t.

Proposition 2.2. In Fλ,µ

Sk,l(t)f0 =

[
(k − 1)!2lt(k−1)l

l−1∏
v=0

(µ− (k + 1)λ+ kv) + · · ·

+(l − 1)!2kt−(l−1)k
k−1∏
u=0

(µ− (l + 1)λ+ lu)

]
fkl,

where “...” denotes the terms of intermediate degrees in t. In other words,

Sk,l(t)f0 =
[
(k − 1)!2lt(k−1)lelk + · · ·+ (l − 1)!2kt−(l−1)kekl

]
f0.

Proof. Direct calculation.

Proposition 2.2 gives a good motivation for Theorem 1.2. We will also use
it in the proof of Theorem 1.2 (though one can avoid it).

2.2. Main lemma: An estimate for the degree of P i1,... ,ir
k,l (t). For a

polynomial P ∈ C[t, t−1] we denote by d+(P ) and d−(P ) the highest degree
and the lowest degree of P in t; in other words,

d+

(∑
ait

i
)

= sup{i|ai 6= 0}, d−
(∑

ait
i
)

= inf{i|ai 6= 0}.
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Proposition 2.2 shows that

max
i1+···+ir=kl

d+

(
P i1,... ,ir
k,l (t)

)
≥ (l − 1)k,

min
i1+···+ir=kl

d−
(
P i1,... ,ir
k,l (t)

)
≤ −(k − 1)l.

(1)

For a positive integer j put

ϕ(j) = j − 1−
[
j − 1

k

]
.

Lemma 2.3. d+

(
P i1,... ,ir
k,l (t)

)
≤

r∑
s=1

ϕ(is).

The proof is contained in 2.3–2.6.

2.3. Properties of the function ϕ. For an integer s denote by ρ(s) such
integer that 1 ≤ ρ(β) ≤ k, s ≡ ρ(s) mod k. We will need the following
properties of ϕ.
(1) For any s, t

ϕ(s+ t) ≥ ϕ(s) + ϕ(t) ≥ ϕ(s+ t− 1);

more precisely,

ϕ(s+ t)− ϕ(s)− ϕ(t) =

{
1 if ρ(s) + ρ(t) ≤ k,
0 if ρ(s) + ρ(t) > k,

ϕ(s) + ϕ(t)− ϕ(s+ t− 1) =

{
0 if ρ(s) + ρ(t) ≤ k + 1,

1 if ρ(s) + ρ(t) > k + 1.

(2) For any u and s1, . . . , su

ϕ(s1 + · · ·+ su + 1) ≥ ϕ(s1) + · · ·ϕ(su);

the equality holds if and only if u = 1 and s1 ≡ 0 mod k.

The properties (1), (2) are checked immediately.

2.4. Induction. Following [F] we arrange the sets (i1, . . . , ir) with i1 +· · ·+
ir = kl in the inverse lexicographical order: For (i1, . . . , ir), (i′1, . . . , i

′
r′) with

i′1 ≥ · · · ≥ i′r′ , i1 ≥ · · · ≥ ir we say that (i′1, . . . , i
′
r′) ≺ (i1, . . . , ir) if for some

u

i′r′ = ir, i
′
r′−1 = ir−1, . . . i

′
r′−u−1 = ir−u−1, i

′
r′−u < ir−u.

Thus,
(1, . . . , 1) ≺ (2, 1, . . . , 1) ≺ · · · ≺ (kl).
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We prove Lemma 2.3 by induction. Obviously, d+(P 1,... ,1
k,l ) = d+(1) = 0 =∑

ϕ(1); suppose that the inequality holds for all P i1,... ,ir
k,l with (i′1, . . . , i

′
r′) ≺

(i1, . . . , ir) and prove it for P i1,... ,ir
k,l .

We suppose that i1 ≥ · · · ≥ iu > 1, iu+1 = · · · = ir = 1; that is our
monomial is ei1 . . . eiue

r−u
1 .

2.5. Case 1: iu 6≡ 1 mod k. Since Sk,l(t)v is a singular vector then

e−(iu−1)Sk,l(t)v = 0.

We find the coefficient at ei1 · · · eiu−1
er−u−1

1 in the left side of the last equal-
ity and equate this coefficient to 0. This coefficient is a linear combi-

nation of the form
∑
ai′1...i′r′P

i′1...i
′
r′

k,l (t) where ai′1...i′r′ is a polynomial in t

with d+ ≤ 1, d− ≥ −1. This linear combination involves P i1...ir
k,l (t) with

a non–zero constant coefficient (namely 2iu − 1) and some P
i′1...i

′
r′

k,l (t)’s with

(i′1, . . . , i
′
r′) ≺ (i1, . . . , ir). For all these P

i′1...i
′
r′

k,l (t)’s we have, by the induc-

tion hypothesis, d+

(
P
i′1...i

′
r′

k,l (t)
)
≤ ∑

ϕ(i′s′). Hence we must check that for

each of our P
i′1...i

′
r′

k,l (t)’s either
∑
ϕ(i′s′) ≤

∑
ϕ(is) and d+(ai′1...i′r′ ) = 0, or∑

ϕ(i′s′) <
∑
ϕ(is) (for always d+(ai′1...i′r′ ) ≤ 1).

There are three possibilities for ei1 . . . eiu−1
er−u−1

1 v to appear in
e−(iu−1)ei′1 . . . ei′r′v. The first is that e−(iu−1) interacts (forms the commu-
tator) with some ei′v with i′v > iu − 1. Then we get ei′1 . . . ei′v−(iu−1) . . . ei′

r′
v

with some non–zero constant coefficient; the subscripts i′1, . . . , i
′
v − (iu −

1), . . . , i′r′ may go in a wrong order, in which case we need to transpose
some of them which may result in some of the numbers summing up and
more constant factor arising. Thus in this case the set i′1, . . . , i

′
r′ becomes

i1, . . . , iv−1, iv+iu−1, iv+1, . . . , ir after a permutation and summing up some
successive numbers. In virtue of 2.3.1 one has

r′∑
s′=1

ϕ (i′s′) ≤
∑
s6=u,v

ϕ(is) + ϕ(iv + iu − 1) ≤
r∑
s=1

ϕ(is);

and we have seen that ai′1,... ,i′r′ = const, hence d+(ai′1,... ,i′r′ ) = 0.
The second possibility is that e−(iu−1) interacts with some ei′

s′
’s with i′s′ ≤

iu−1 and eventually becomes e1. In this case the set i′1, . . . , i
′
r′ has the form

i1, . . . , iu−1, k1, . . . , kl, 1, . . . , 1 with k1 + · · ·+ kl = iu and again ai′1,... ,i′r′ =
const. We apply 2.3.1 again and get

r′∑
s′=1

ϕ (i′s′) =
∑
s6=u

ϕ(is) +
l∑
t=1

ϕ(kt) ≤
r∑
s=1

ϕ(is).(2)
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The third possibility is that e−(iu−1) again interacts with some ei′
s′

’s with
i′s′ ≤ iu − 1 and eventually becomes e0. In this case the set i′1, . . . , i

′
r′ again

has the form i1, . . . , iu−1, k1, . . . , kl, 1 . . . , 1 but with k1 + · · · + kl = iu − 1
(now it is possible that some of kj’s are equal to 1, but it makes actually no
difference). The important difference between this case and the previous one
is that ai′1,... ,i′r′ generally is not a constant any more: it is a linear function
of h and c. Hence d+(ai′1,... ,i′r′ ) ≤ 1 (and normally = 1). In virtue of 2.3.2
(and the fact that ϕ(1) = 0) one has again (2), but the equality in (2) holds
only if l = 1 and k1 ≡ 0 mod k. This imply iu = k1 + 1 ≡ 1 mod k which
contradicts to the assumption of Case 1. Hence

r′∑
s′=1

ϕ (i′s′) <
r∑
s=1

ϕ(is).

2.6. Case 2: iu ≡ 1 mod k. Let iu = mk + 1. In this case instead of the
equality e−(iu−1)Sk,l(t)v = 0 we consider the equality

em−kSk,l(t)v = 0.

Again the left hand side involves P i1...ir
k,l with a non–zero constant coefficient

and involves some other P
i′1...i

′
r′

k,l ’s with (i′1, . . . , i
′
r′) ≺ (i1, . . . , ir). The proof

proceeds precisely as above with the exception of the case (i′1, . . . , i
′
r′) =

(i1, . . . , iu−1, iu − 1, 1, . . . , 1). Since iu − 1 ≡ 0 mod k the equality (2) be-
comes an equality. But now d+(ai′1,... ,i′r′ ) = 0. Indeed, ai′1,... ,i′r′ is the product
of several constants and the polynomial q(t) from

[e−k, ek]e
s
1v = q(t)es1v

(s = r − u+ 1). Since e0e
s
1v = (es1e0 + ses1)v, we have

[e−k, ek]e
s
1v =

(
2ke0 +

k3 − k
12

z

)
es1v =

(
2k(h(t) + s) +

k3 − k
12

c(t)

)
es1v

=

(
2k

(
1− k2

4
t+

1− kl
2

+
1− l2

4
t−1

)
+ 2ks+

k3 − k
12

(6t+ 13 + 6t−1)

)
es1,

and the coefficient in terms with t is equal to

2k · 1− k2

4
+
k3 − k

12
· 6 = 0.

Hence d+(q(t)) = 0.
Lemma 2.3 is proved.

Remark. The last calculation shows also that if j 6= k and [e−j, ej]es1v =
q(t)es1v then d+(q(t)) = 1.
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2.7. One more calculation.

Lemma 2.4.

max
i1+···+ir=kl

r∑
s=1

ϕ(is) = (k − 1)l;

this maximum is attained precisely when all is are divisible by k.

Proof. Let is = msk − ls, 0 ≤ ls < k. We have kl =
∑
is = k

∑
ms −∑ ls,

hence
∑
ms ≥ l and the equality holds only if all ls = 0. Furthermore,

ϕ(is) = msk − ls − 1−
[
is − 1

k

]
= msk − ls −ms

and hence∑
ϕ(is) =

∑
(msk − ls)−

∑
ms =

∑
is −

∑
ms = kl −

∑
ms ≤ kl − l,

and the equality holds only if all ls = 0, that is all is are divisible by k.

Lemma 2.4 is proved.

2.8. End of the proof of Theorem 1.2. Lemma 2.4 shows that

d+

(
P i1...ir
k,l (t)

)
≤ (k − 1)l, which shows, together with formula (1), that

max
i1+···+ir=kl

d+

(
P i1...ir
k,l (t)

)
= (l − 1)k

and the equality holds if and only if (i1, . . . , ir) = (m1k, . . . ,mrk) with
m1, . . . ,mr being integers. We prove that actually it holds only if r = l and

m1 = · · · = ml = 1. Assume that, on the contrary, d+

(
Pm1k,... ,mrk
k,l (t)

)
=

(k − 1)l for some other set m1, . . . ,mr; assume that for some j > 1

d+

(
Pm1k,... ,mrk
k,l (t)

)
< (k − 1)l

if 1 < ms < j for some ms and

d+

(
Pm1k,... ,mrk
k,l (t)

)
= (k − 1)l

for some m1, . . . ,mr with m1 ≥ · · · ≥ mu = j, mu+1 = · · · = mr = 1. Then
we use the remark at the end of 2.6 and see that the left hand side of the
equality

e−jkSk,l(t)v = 0

contains the term em1k . . . emu−1kemu+1k . . . emrkv · t(k−1)l+1 with a non–zero
coefficient, which is impossible.
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Thus the only term of degree (k − 1)l in Sk,l(t) is Aelkt
(k−1)l where A is a

coefficient. Proposition 2.2 shows now that A = (k − 1)!2l.
Theorem 1.2 is proved.
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