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THE EQUIVALENCE PROBLEM FOR
HIGHER-CODIMENSIONAL CR STRUCTURES

Thomas Garrity and Robert Mizner

The equivalence problem for CR structures can be viewed
as a special case of the equivalence problem for G-structure.
This paper uses Cartan’s methods (in modernized form) to
show that a CR manifold of codimension 3 or greater with
suitably generic Levi form admits a canonical connection on
a reduced structure bundle whose group is isomorphic to the
multiplicative group of complex numbers. As corollaries, it
follows that the CR manifold admits a canonical affine con-
nection, and consequently that the automorphisms of the CR
manifold constitute a Lie group.

The most difficult technical step is to construct a smooth
moduli space for generic vector-valued hermitian forms, which
is tied to the CR manifold via the Levi map. The techniques
used to construct this space are drawn from the classical in-
variant theory of complex projective hypersurfaces.

1. Introduction.

A CR structure on a manifold M is customarily defined in terms of a complex
distribution — that is, a subbundle of the complexified tangent bundle of M
— but it is a simple matter to recast the definition in terms of a complex G-
structure — that is, a subbundle of the principal bundle of complex coframes.
In this form, the equivalence problem for CR structures can be approached by
way of Cartan’s method of studying the equivalence of geometric structures
in general. In essence, this is the approach taken to codimension 1 CR
structures in [CM] and to codimension 2 CR structures in [M].

In this paper, we apply Cartan’s method to CR structures of codimension
c and CR dimension n with n > c2. We show that if the Levi form satisfies
certain mild conditions given in Definition 2.6, crudely summarized as “the
Levi form is generic, and its type doesn’t vary too much”, then the structure
bundle can be reduced twice, resulting in a new G-structure group isomor-
phic to C∗, the multiplicative group of complex numbers (Theorem 3.1).
Then, exploiting the fact that the first prolongation of the Lie algebra of
this group is trivial, we define a canonical connection on this reduced bundle
(Theorem 4.1). Finally, we obtain several corollaries, including the facts that
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this connection determines an affine connection (Corollary 4.3) and that the
automorphisms of the CR manifold constitute a Lie group (Corollary 4.2).

It is a basic fact that for a CR structure of any codimension the structure
group of the defining bundle is of infinite type. Therefore, the equivalence
problem can not be solved by standard prolongations alone: reductions are
required. (The three cases — codimension 1, codimension 2 and codimension
3 or greater — differ greatly in the type of reductions available.) Tanaka
([T1]-[T4]) takes a different approach to the difficulty of infinite type, de-
veloping an alternative scheme of prolongation, uniformly applicable in all
codimensions. However, his method requires the assumption that the Levi
form be of constant type. This assumption is much more stringent than ours
for generic Levi forms, since we allow the type to vary over a suitable open
set (however, unlike ours, his method does handle Levi forms of non-generic
constant type).

The details of this paper are as follows. In Section 2 we set up the problem,
in Section 3 we carry out the reductions, and in Section 4 we determine the
connection. The first reduction in Section 3 relies on a theorem about the
smoothness of the moduli space of vector valued hermitian forms which
is easy to state but difficult to prove: a self-contained proof is given in
Section 5 and Section 6, using techniques from the classical invariant theory
of complex projective hypersurfaces. Finally, in Section 7 we discuss some
open questions. As for prerequisites, no prior knowledge of CR structures
is needed; however, some familiarity with the standard method for dealing
with the equivalence problem of G-structures — in particular, facility with
computations with moving coframes — is assumed.

T. Garrity would like to thank the mathematics department at the Univer-
sity of Washington, where part of this work was done, for their hospitality.

2. Formulation of the problem.

To begin, we establish a few notational conventions. The letter M denotes a
fixed C∞ manifold of dimension 2n+ c. When indices are used, the Einstein
summation convention applies. Indices such as i, j, k range from 1 to n;
indices such as α, β, γ range from 1 to c.

We need little from the theory of CR structures beyond the standard
definitions of a CR structure and its Levi form. (For background, see [B] or
[J].)

Definition 2.1. A CR structure of dimension n and codimension c is a
rank n complex subbundle H ⊂ C⊗ TM with the following properties:
(a) H ∩H is the zero subbundle;

(b) [H,H] ⊂ H.
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From here on, H denotes a fixed CR structure of dimension n and codimen-
sion c.

Definition 2.2. The Levi form of H is the bundle map

L : H×H → C⊗ TM/
(
H⊕H

)
defined by

L(X,Y ) = iπ
[
X,Y

]
,

for all sections X and Y of H, where π : C⊗TM → C⊗TM/(H⊕H) is the
natural projection. (It is easy to verify that L is well-defined.)

For the purpose of studying the equivalence problem for CR structures,
it is convenient to recast these definitions in terms of G-structures. (For
background on G-structures, see [G] or [S].) The first step in this process
is the construction of the defining structure bundle consisting of suitably
adapted coframes.

Definition 2.3. Let p ∈ M. An adapted coframe at p is a frame
(θ1, θ2, . . . , θc; ω1, ω2, . . . , ωn; ω1, ω2, . . . , ωn) of the complex cotangent bun-
dle of M at p, where
(a) each form θα is real;

(b) ωi = ωi;

(c) the (n+ c)-tuple (θ1, θ2, . . . , θc; ω1, ω2, . . . , ωn) frames the annihilator
of Hp (and consequently (ω1, ω2, . . . , ωn) frames the dual of Hp).

Since the adapted coframe (θ1, θ2, . . . , θc; ω1, ω2, . . . , ωn; ω1, ω2, . . . , ωn) is
determined by the Rc-valued 1-form θ = (θ1, θ2, . . . , θc) and the Cn-valued
1-form ω = (ω1, ω2, . . . , ωn), we denote it simply as 〈θ;ω〉p.

If 〈θ;ω〉p and 〈θ′;ω′〉p are two adapted coframes at the same point p,
then there exist unique matrices P ∈ GL(c,R), Q ∈ GL(n,C) and v ∈
Hom(Rc,Cn) such that

θ′ = Pθ(2.1)

ω′ = Qω + vθ.

Therefore, the set of all adapted coframes constitutes a reduction of the
bundle of complex coframes of M to a subbundle S with structure group S,
where S denotes the group of all matrices in GL(2n+ c,C) with block form

Block (P,Q, v) =


P 0 0

v Q 0

v 0 Q

 .
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We call S the defining structural bundle of the CR structure H.
A section of S defined on an open subset U ⊂ M is called an adapted

moving coframe and denoted as 〈θ;ω〉U , or simply 〈θ;ω〉 when convenient.
The exterior derivatives of θ and ω can be expanded as follows:

dθα = ihα
jk
ωj ∧ ωk + aαβjθ

β ∧ ωj + aα
βj
θβ ∧ ωj(2.2)

+ bαβγθ
β ∧ θγ + sαjkω

i ∧ ωk + sα
jk
ωj ∧ ωk

dωi = cijkω
j ∧ ωk + di

jk
ωj ∧ ωk + ti

jk
ωj ∧ ωk

+ eiαjθ
α ∧ ωj + f i

αj
θα ∧ ωj + giβγθ

β ∧ θγ

where bαγβ = −bαβγ , sαkj = −sαjk, cikj = −cijk, tikj = −ti
jk
, and giγβ = −giβγ , and

moreover, since θα is real, aα
βj

= aαβj, s
α
jk

= sαjk and hα
kj

= hα
jk
.

Since H is determined by the vanishing of the forms θ and ω, the inte-
grability condition [H,H] ⊂ H is equivalent to the requirement that the
coefficients sα

jk
and ti

jk
vanish identically. (By conjugation, sαjk vanishes as

well.) Moreover, the coefficients hα
jk

express the Levi form in terms of coor-
dinates.

If 〈θ′;ω′〉U is another moving coframe on U, related to 〈θ;ω〉U by the
equations

θ′ = Pθ

ω′ = Qω + vθ,

where P,Q and v now matrix-valued functions on U, then

h
′α
jk

= Pα
β

(
Q−1

)u
j

(
Q−1

)v
k
hβuv(2.3)

where, of course, (Q−1)v
k

= (Q
−1

)vk. Motivated by this transformation law,
we denote the real vector space of c-tuples of n × n hermitian matrices
by Herm(n, c) (or simply Herm, when n and c are understood) and define
an action of the group G = GL(c,R) × GL(n,C) on Herm as follows: If
h ∈Herm has components hα

jk
then h′ = (P,Q) · h has components h

′α
jk

=

Pα
β (Q−1)uj (Q−1)v

k
hβuv. The previous computations show that independently

of choice of moving coframe, the Levi form determines a map L : M →
Herm /G, which we call the Levi map: indeed, the moving coframes 〈θ;ω〉U
and 〈θ′;ω′〉U recast the Levi form as maps L〈θ;ω〉 and L〈θ′;ω′〉 from U to Herm
sending the point p to the c-tuples(

h1
jk

(p), . . . , hc
jk

(p)
)

and
(
h
′1
jk

(p), . . . , h
′c
jk

(p)
)
,
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and the action of G on Herm has been defined so as to ensure that these
c-tuples lie in the same orbit.

(It is worth noting that the original definition of the Levi form is already
independent of coordinates. However, the domain and range of the Levi
form vary from point to point on M. In order to be able to compare the Levi
forms at different points, one is led as above to the Herm/G-valued Levi
map.)

The following theorem, which asserts the existence of a natural smooth
structure on an open subset of Herm/G, is foundational for the rest of the
paper. A self-contained proof using techniques from the classical invariant
theory of complex projective hypersurfaces is given below in Section 5 and
Section 6.

Theorem 2.4. Let G = GL(c,R) × GL(n,C), let K ⊂ G be the subgroup
consisting of all pairs (|z|2Ic, zIn) for z in the complex multiplicative group
C∗, and suppose that c > 2 and n > c2. There exists a non-empty G-invariant
open subset Z# ⊂ Herm(n, c) whose image Z by the projection ρ : Herm →
Herm /G can be given a smooth structure in such a way that Z# → Z is a
principal bundle with structure group G/K.

Remark 2.5. The sets Z# and Z can be described explicitly in terms
of matrices and their determinants; in particular, every point in Z is the
image of some point in Z# whose component matrices are invertible. This
explicit description is given below in Theorem 6.1, an expanded version of
Theorem 2.4. The proof is long and intricate (see Sections 5 and 6), but uses
no highly specialized results; the restriction on n, required by this proof, can
probably be relaxed considerably, but we will need the assumption that n > 1
in the proof of Theorem 4.1.

Definition 2.6. An open set U ⊂ Z is tractable if it admits a section
σ : U → Z# whose component matrices are invertible. A fixed choice of such
a section σ is called a canonical section, its image σ(U) ⊂ p−1(U) ⊂ Herm
is called the canonical slice, and an element of the canonical slice is called a
canonical vector-valued hermitian form (canonical form for short).

Since Z# → Z is a principal bundle, every sufficiently small open subset
of Z admits a section, so, in view of Remark 2.5(b), every point of Z belongs
to some tractable open subset.

Definition 2.7. Let U be a tractable set. A CR structure is tractable of
type U if its Levi map L : M → Herm /G is valued in U .

More informally, a CR structure is tractable if its Levi form does not
vary too much. The existence of tractable CR structures of any given type
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is established by the familiar examples of quadrics, which have constant
Levi maps (see [B]); deformations of quadrics provide numerous examples
of tractable CR structures with varying Levi maps.

3. Reducing the structure bundle.

From here on, U denotes a fixed tractable set, σ denotes a fixed canonical
section, and the CR structure H on M is assumed to be tractable of type
U . The goal of this section is to prove the following result.

Theorem 3.1. The structure bundle S on the tractable CR structure H
of type U can be reduced by means of the canonical section σ to a subbundle
R with group R ⊂ S consisting of all matrices of the form Block(P,Q, v),
where v = 0 and (P,Q) ∈ K — that is, P = |z|2Ic and Q = zIn for some z
in the complex multiplicative group C∗.

As a first step, we carry out a preliminary reduction.

Lemma 3.2. The structure bundle S of the tractable CR structure H of
type U can be reduced by means of the canonical section σ to a subbundle
T with group T ⊂ S consisting of all matrices of the form Block(P,Q, v),
where (P,Q) ∈ K.

As a mnemonic aid, note that three bundles in question are S for struc-
tural, R for reduced, and T for temporary (since we use T only as a step in
obtaining R), and that the corresponding structural groups are S,R and T.

The reductions from S to T and from T to R both follow from an analysis
of the tautology forms Θ,Ω and Ω defined on S as follows: If X is a vector
tangent to S at the point 〈θ;ω〉p, then

Θ(X) = θ(π∗X), Ω(X) = ω(π∗X), and Ω(X) = ω(π∗X),

where π : S →M is the natural projection.
We recall the moving coframe 〈θ;ω〉U from the preceding section, and

reproduce its structure Equations (2.2), suppressing the terms we now know
to be zero:

dθα = ihα
jk
ωj ∧ ωk + aαβjθ

β ∧ ωj + aα
βj
θβ ∧ ωj + bαβγθ

β ∧ θγ
(3.1)

dωi = cijkω
j ∧ ωk + di

jk
ωj ∧ ωk + eiαjθ

α ∧ ωj + f i
αj
θα ∧ ωj + giβγθ

β ∧ θγ

where bαγβ = −bαβγ , cikj = −cijk, giγβ = −giβγ , aαβj = aαβj and hα
kj

= hα
jk
. By

standard abuse of notation, we denote these forms and functions defined on
U and their pullbacks to SU by the same symbols.
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The moving coframe 〈θ;ω〉U determines an identification of SU with U×S :
The coframe 〈θ′;ω′〉p related to 〈θ;ω〉p by Equation (2.1) is identified with the
ordered pair (p,Block(P,Q, v)). Therefore, there are well-defined coordinate
functions

P : SU → GL(c,R), Q : SU → GL(n,C) and v : SU → Hom(Rc,Cn).

In terms of these functions, on SU the tautology forms Θ and Ω are related
to the pullbacks θ and ω as follows:

Θ = Pθ(3.2)

Ω = Qω + vθ.

Differentiation of the first of these equations shows that

dΘ = dP ∧ θ + Pdθ =
(
dP · P−1

) ∧Θ + Pdθ;(3.3)

routine computations using Equations (3.1)-(3.3) show that

(3.4) dΘα =
(
dP · P−1

)α
β
∧Θβ + iHα

jk
Ωj ∧ Ωk

+AαβjΘ
β ∧ Ωj +Aα

βj
Θβ ∧ Ωj +Bα

βγΘβ ∧Θγ

where Hα
jk
, Aαβj, A

α
βj

and Bα
βγ are functions on SU that can be written

explicitly in terms of P,Q, v, hα
jk
, aαβj, a

α
βj

and bαβγ . For instance,

Hα
jk

= Pα
β

(
Q−1

)u
j

(
Q−1

)v
k
hβuv,(3.5)

where, as before, (Q−1)v
k

= (Q
−1

)vk.
Repeating this process, starting with the moving coframe 〈θ′;ω′〉U , we

obtain new coordinate functions

P ′ : SU → GL(c,R), Q′ : SU → GL(n,C), and v′ : SU → Hom(Rc,Cn)

and find that

(3.6) dΘα =
(
dP ′ · P ′−1

)α
β
∧Θβ + iH

′α
jk

Ωj ∧ Ωk

+A
′α
βjΘ

β ∧ Ωj +A
′α
βj

Θβ ∧ Ωj +B
′α
βγΘβ ∧Θγ .

Elimination of dΘα from Equations (3.4) and (3.6) yields the equation

0 =
(
dP · P−1 − dP ′ · P ′−1

)α
β
∧Θβ(3.7)

+ i
(
Hα
jk
−H ′α

jk

)
Ωj ∧ Ωk +

(
Aαβj −A

′α
βj

)
Θβ ∧ Ωj

+
(
Aα
βj
−A′α

βj

)
Θβ ∧ Ωj +

(
Bα
βγ −B

′α
βγ

)
Θβ ∧Θγ
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which plays an important role below.

Proof of Lemma 3.2. The functions Hα
k

determine a map H : SU →Herm,

which by assumption of tractability is valued in the pre-image ρ−1(U). By
Equation (3.5), H maps each fibre of SU onto an entire orbit in ρ−1(U), so
each fibre of SU contains points that are mapped to canonical forms in Herm.
In fact, routine verifications show that these points constitute a reduction of
SU to a subbundle TU with structure group T. This reduction is independent
of the initial choice of moving coframe, since by Equation (3.7), the functions
Hα

k
and H

′α
k

determined by the moving coframes 〈θ;ω〉U , and 〈θ′;ω′〉U , are
equal. Therefore, if this construction is carried out for each set in some open
cover of M, then the resulting locally defined subbundles piece together to
yield a global subbundle T ⊂ S with structure group T.

Proof of Theorem 3.1. We now restrict the tautology forms to the subbundle
T , and take 〈θ;ω〉U to be a section of TU , which is equivalent to requiring
that the map h : U →Herm determined by the functions hα

jk
in Equation

(3.1) be valued in the canonical slice. Mimicking the previous argument,
we use 〈θ;ω〉U , to identify TU with U × T, thereby obtaining coordinate
functions P,Q and v on TU . Since Block(P,Q, v) is valued in T, it follows
that P = |z|2Ic and Q = zIn for some function z : TU → C∗.

Using Equations (3.1)-(3.4) in this new setting, we find that

(3.8) dΘα = d log |z|2 ∧Θα + iHα
jk

Ωj ∧ Ωk

+AαβjΘ
β ∧ Ωj +Aα

βj
Θβ ∧ Ωj +Bα

βγΘβ ∧Θγ

where Aαβj, A
α
βj

and Bα
βγ are functions on TU with the following properties:

(a) Aαβj and Aα
βj

are conjugate;

(b) Bα
βγ = −Bα

γβ;

(c) Aαβj = ihα
jk
vkβ + z−1aαβj (writing vkβ for vkβ).

Again mimicking the previous argument, we repeat this process starting with
the moving coframe 〈θ′;ω′〉U and obtain new coordinates P ′, Q′ and v′ (with
P ′ and Q′ determined by a scalar function z′) and a corresponding structure
equation

(3.9) dΘα = d log |z′|2 ∧Θα + iH
′α
jk

Ωj ∧ Ωk

+A
′α
βjΘ

β ∧ Ωj +A
′α
βj

Θβ ∧ Ωj +B
′α
βγΘβ ∧Θγ .

Elimination of dΘα from (3.8) and (3.9) yield the following refinement
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of (3.7):

0 =
(
d log |z|2 − d log |z′|2) ∧Θα

(3.10)

+ i
(
Hα
jk
−H ′α

jk

)
Ωj ∧ Ωk +

(
Aαβj −A

′α
βj

)
Θβ ∧ Ωj

+
(
Aα
βj
−A′α

βj

)
Θβ ∧ Ωj +

(
Bα
βγ −B

′α
βγ

)
Θβ ∧Θγ .

It follows immediately that Aαβj equals A
′α
βj, provided that α and β are dis-

tinct. In particular, the functions A1
2j, A

2
3j, . . . , A

c−1
cj , Ac1j are defined on TU ,

independently of the initial choice of moving coframe. Therefore, since by
assumption of canonicity each matrix hα

jk
is invertible, (c) implies that on

the subset R ⊂ TU defined by equations A1
2j = 0, A2

3j = 0, . . . , Ac−1
cj = 0,

Ac1j = 0, for each vkβ is a function of hα
jk
, aαβj and z. Consequently, RU is a

subbundle of TU with structure group R. As with the previous reduction, it is
possible to piece together such local subbundles to obtain a global subbundle
R with structure group R.

4. The connection.

Straightforward computations show that the first prolongation of <, the Lie
algebra of the group R, is trivial. Consequently, in light of the general theory
of G-structures, it is reasonable to attempt to define an e-structure – that
is, a global parallelism – on the bundle R by means of further analysis of the
structure equations. The following theorem describes one such parallelism,
which turns out to be a connection.

Theorem 4.1. Let R be the R-bundle determined by the CR structure H
(assumed tractable of type U) and the canonical section σ, and let Θ and
Ω be tautology forms on R. For each vector v in the Lie algebra R, let v∗

denote the associated vertical vector field on the bundle R.
There exist unique 1-forms Πα

β and Γij and unique functions Hα
jk
, Aαβj, A

α
βj
,

Bα
βγ , C

i
jk, D

i
jk
, Ei

αj, F
i
αj

and Gi
βγ , all defined on R, that satisfy the following

conditions:
(a) the forms Π,Γ,Θ,Ω and Ω frame the bundle R;

(b) Block(Π,Γ, 0) is valued in the Lie algebra R, and maps v∗ to v for each
v in R;

(c) dΘα = Πα
β ∧Θβ+iHα

jk
Ωj∧Ωk+AαβjΘ

β∧Ωj+Aα
βj

Θβ∧Ωj+Bα
βγΘβ∧Θγ ;

(d) dΩi = Γij ∧ Ωj + Ci
jkΩ

j ∧ Ωk + Di
jk

Ωj ∧ Ωk + Ei
αjΘ

α ∧ Ωj + F i
αj

Θα ∧
Ωj +Gi

βγΘβ ∧Θγ ;
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(e) Bα
γβ = −Bα

βγ , C
i
kj = −Ci

jk, G
i
γβ = −Gi

βγ ;

(f) Hα
kj

= Hα
jk
, Aα

βj
= Aαβj, B

α
βγ = Bα

βγ ;

(g) the map (H1
jk
, . . . , Hc

jk
) : R → Herm is valued in the canonical slice;

(h) A1
2j = 0, A2

3j = 0, . . . , Ac−1
cj = 0, Ac1j = 0;

(i) the contractions Ci
ik, D

i
ik

and Ei
αi all vanish.

Moreover, the R-valued form Block(Π,Γ, 0) is a connection.

Proof. Suppose that two sets of forms and functions, primed and unprimed,
satisfy conditions (a)-(h). Then by (a) and (b), the R-valued 1-form
Block(Π − Π′,Γ − Γ′, 0) can be expressed in terms of the tautology forms.
More precisely,

Π−Π′ = (τ + τ)Ic and Γ− Γ′ = τIn,

where

τ = λγΘγ + µjΩ
j + ηkΩ

k

and λγ , µj and ηk are complex functions defined on the bundle R. The re-
lations between the primed and unprimed functions can be computed from
equations (c) and (d). In particular, we find that:

Ci
jk = C

′i
jk −

1

2
µkδ

i
j +

1

2
µjδ

i
k;

Di
jk

= D
′i
jk
− ηkδij;

Ei
αj = E

′i
αj + λαδ

i
j.

Consequently, taking contradictions shows that

Ci
ik = C

′i
ik +

1

2
(1− n)µk;

Di
ik

= D
′i
ik
− nηk;

Ei
αi = E

′i
αi + nλα.

(4.1)

If condition (i) is met by both the primed and unprimed functions, equations
(4.1) imply that τ = 0 (we use here the assumption that n > 1, which was
part of the definition of tractability), and the uniqueness assertion of the
theorem follows. Because of this uniqueness, it suffices to prove existence
locally. Moreover, Equations (4.1) show that independently of any further
assumptions on the primed functions, there is a unique choice of τ that yields
unprimed functions satisfying condition (i). Therefore, it suffices to prove
local existence of primed forms and functions satisfying conditions (a)-(h).
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To do this, take 〈θ;ω〉U to be a local section of R and use it to identify
RU with U × R, thereby obtaining coordinate functions P and Q on RU ,
with P = |z|2Ic and Q = zIn for some function z : RU → C∗. In terms of
these coordinates, Θ = Pθ and Ω = Qω. Differentiating these equations and
using Equation (3.1), we find that conditions (a)-(f) can be met by taking
Π′ = (d log |z|2)Ic and Γ′ = (z−1dz)In. The fact that conditions (g) and (h)
are satisfied is clear from the proof of Theorem 3.1.

Finally, to prove that Block(Π,Γ, 0) is a connection, we must simply check
that it transforms properly under the action of the structure group R. The
requisite computations are routine.

Corollary 4.2. The automorphisms of a tractable CR structure constitute
a Lie group.

Proof. This follows from Theorem 4.1 and a well-known theorem of Kobayashi
(see, e.g., [K, p. 15]) which states that the automorphisms of an e-structure
constitute a Lie group.

Corollary 4.2 extends a result of Tanaka [T2], applicable to CR structures
with constant Levi map.

Corollary 4.3. A tractable CR structure carries a canonical affine con-
nection.

Proof. The connection on R described in Theorem 4.1 extends to a connec-
tion on the full coframe bundle.

The prime significance of Corollary 4.3 is that it introduces standard geo-
metric constructs, such as covariant derivatives and geodesics, into the study
of CR geometry. It is worth noting as confirmation of the appropriateness
of the connection that in the case of quadrics – the simplest nontrivial CR
structure – the torsion consists of the Levi form, and the curvature vanishes,
as one would expect.

Corollary 4.4. The complexified tangent bundle of a tractable CR manifold
decomposes as a direct sum of 2n+ c complex line bundles; the real tangent
bundle decomposes as a direct sum of c real line bundles and n real plane
bundles with complex structure.

Proof. This is a simple translation of Theorem 3.1 from the language of
coframes to the language of distributions.

Corollary 4.4 implies that there are topological obstructions to tractabil-
ity. For instance, if M is compact, it cannot carry a tractable CR structure
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unless its characteristic classes satisfy various identities. (For earlier work
on relations between compact real submanifolds of complex manifolds and
characteristic classes, see [L] and [W].)

5. Proof of Theorem 2.4: Initial stage.

The argument needed to prove Theorem 2.4 is quite long. In this section,
we formulate one part of this argument as Theorem 5.1, a result which is
of interest in its own right. In the following section we use this theorem to
conclude the proof of Theorem 2.4. Our basic technical tool is the following
well-known result in the theory of Lie group actions.

Theorem A. Let Φ: H ×N → N be a smooth action of the Lie group H

on the manifold N. If this action is free and proper, then the quotient space
N/H can be given a smooth structure compatible with the quotient topology
in such a way that N → N/H is a principal bundle with structure group H.

(Recall that the action Φ is free if the isotropy group of each x ∈ N is
trivial and is proper if the following equivalent conditions hold:
(1) If {xj} and {hj} are sequences in N and H respectively such that both

{xj} and {hjxj} coverge in N, then there exists a subsequence of {hj}
that converges in H.

(2) The map Ψ: (h, x) → (hx, x) is a proper map from H ×N to N ×N
– i.e. the Ψ-pre-image of a compact subset of N ×N is compact.)

Proof. See [AM], Section 4.1, especially Exercise 4.1M.

We begin by establishing some notation and definitions. Let GL(c,R)
act on the polynomial ring R[T ] = R[t1, . . . , tc] in the usual way: Pf(T ) =
f(TP ) for all P ∈ GL(c,R) and f ∈ R[T ], where we view T as a row vector
T = (t1, . . . , tc). For technical convenience, we extend this action to an
action of G on R[T ] as follows:

(A,P )f(T ) = |detA|−2f(TP ).

The homogeneous polynomials of a given degree j form a vector subspace
Rj[T ], invariant under the actions of both GL(c,R) and G. Denote the pro-
jectivization of this space by PRj[T ], and observe that the actions of G and
GL(c,R) on Rj[T ] induce actions of G, GL(c,R) and PGL(c,R) on PRj[T ].

Given a hermitian form h ∈ Herm, viewed as c-tuple of hermitian matrices
(H1, H2, . . . , Hc), define a polynomial

D#
h (T ) = det(t1H

1 + t2H
2 . . .+ tcH

c).
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Clearly, this polynomial has real coefficients and is homogeneous of degree
n unless it vanishes identically. Consequently, we have defined a map

D# : Herm→ Rn[T ] ∪ {0},
which in turn determines a map

D : Herm /G→ (Rn[T ] ∪ {0}) /G.
The following assertions are easily verified.
(1) The space X = (Rn[T ] ∪ {0})/G is the disjoint union of the closed

singleton X0 = {0}/G and the dense open subset X1 = Rn[T ]/G.

(2) The subset X1 is homeomorphic to the quotient PRn[T ]/PGL(c,R).
We now use Theorem A to give an open subset of X1 a smooth structure.

Theorem 5.1. Suppose that c > 2 and n > c2, and let Y # comprise all
points y ∈ PRn[T ] with the following properties:
(i) the isotropy group of y in PGL(c,R) is trivial;

(ii) y has no points of multiplicity c+ 1 – that is, if the polynomial f(T ) ∈
Rn[T ] projects to y, then there exists no point in CPc−1 at which f(T )
vanishes simultaneously with all of its partial derivatives of order c or
less.

Let Y denote the quotient space Y #/PGL(c,R), endowed with the quotient
topology. Then
(1) Y # is a PGL(c,R)-invariant open subset of PRn[T ];

(2) PGL(c,R) acts freely and properly on Y #;

(3) the set of polynomials in Rn[T ] that project into Y # pulls back via D#

to a nonempty G-invariant open subset O of Herm .

(4) Y is an open subset of the spaces X1 and X.

(5) Y can be made into a manifold in such a way that Y # → Y is a
principal bundle with structure group PGL(c,R).

(6) The D-image of Herm intersects Y non-trivially.

Remark. If our goal were simply to prove the existence of some open
subset of X with a smooth structure, we could probably appeal to known
results from geometric invariant theory (see [MF]). However, in order for
this subset to have any relevance to the invariant theory of hermitian forms
and CR geometry, it must intersect the D-image of Herm/G non-trivially –
hence the need for a more specific theorem and proof.

Proof. Statement (4) follows immediately from definitions; (5) is a conse-
quence of Theorem A and (1) and (2); (6) follows from (3). The proof of the
first three statements is more difficult, and requires several lemmas.
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Lemma 5.2. Y # is not empty. In fact, there exists a hermitian form
h ∈ O – that is, a hermitian form h ∈ Herm such that the polynomial
D#(h) ∈ Rn[T ] projects into Y #.

Proof. Recall that c > 2 and n > c2. It follows immediately from the def-
inition of D#(h) that if h is any form with diagonal component matrices,
then D#(h) splits into linear factors. For a generic choice of h, this n-fold
product of linear factors will have no symmetries or multiplicities, so it will
project into Y #.

For technical convenience, we consider Y # as a subject of a larger set Y#.

Definition 5.3. Y# is the set of all points y ∈ PRn[T ] with the following
properties:
(i) The isotropy group of y in PGL(c,R) is a Lie group of dimension zero

(recall that when a Lie group acts smoothly, all isotropy groups are
closed subgroups, and hence Lie groups);

(ii) y has no points of multiplicity c+ 1.

Lemma 5.4. Y# is a dense open PGL(c,R)-invariant subset of PRn[T ].

Proof. Invariance is clear. By Lemma 5.2, Y# is not empty; therefore, it
suffices to show that its complement C is a projective subvariety.

Define two subsets of PRn[T ] as follows: y ∈ Ca if the isotropy group
of y in PGL(c,R) has positive dimension, and y ∈ Cb if y has a point of
multiplicity c+ 1. Clearly, C is the union of Ca and Cb, so it suffices to show
that each of these sets is a projective subvariety.

Let f(T ) ∈ Rn[T ] represent the point y ∈ PRn[T ]. It is easy to show that
y ∈ Ca if and only if the isotropy group of f(T ) in GL(c,R) has positive
dimension, or equivalently, if and only if there exists a non-constant curve
P : (−ε, ε) → GL(c,R) such that P (0) = I and P (s)f(T ) = f(T ) for all
s ∈ (−ε, ε). Differentiating with respect to s and evaluating at 0, we obtain
a homogeneous system of linear equations, whose coefficients are linear func-
tions of the coefficients of f(T ). Clearly, y ∈ Ca if and only if this system
has a non-trivial solution, or equivalently, if and only if all minors of largest
possible dimension r vanish. Since each minor is a homogeneous polyno-
mial of degree r in the coefficients of f(T ), it follows that Ca is a projective
subvariety.

Again letting f(T ) represent y, we see that y ∈ Cb if and only if f(T )
and all of its partial derivatives of order c or less vanish simultaneously
at a non-zero point of Cc. It follows from elimination theory (see Theorem
5.7A of chapter 1 of [H]) that f(T ) has this property if and only if its
coefficients satisfy a system of homogeneous polynomial equations. Thus, Cb
is a projective subvariety.
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Lemma 5.5. PGL(c,R) acts properly on Y#.

The proof of this lemma is difficult. We postpone it temporarily, and go
on to finish the proof of Theorem 5.1.

Proof of Theorem 5.5 (conclusion).
(1) By Lemma 5.5, PGL(c,R) acts properly on Y#, so all isotropy groups

are compact; by definition of Y#, all isotropy groups are Lie groups
of dimension 0. Therefore, all isotropy groups are finite. It is easy to
show that if a smooth Lie group action is proper and all of the isotropy
groups are finite (but not necessarily of the same order), then the points
with isotropy groups of least order form an open set. Therefore, the
points in Y# with isotropy groups of least order form an open subset;
by Lemma 5.2, this open subset is Y #. Invariance is obvious.

(2) By definition, PGL(c,R) acts freely on Y #; by Lemma 5.5, PGL(c,R)
acts properly on Y#, a fortiori on the subset Y #.

(3) This follows from Lemma 5.2 and the continuity of D#.

Thus (assuming Lemma 5.5) we have proved Theorem 5.1. In fact, our
arguments also establish the following variation.

Corollary 5.6. There exists a dense open PGL(c,R)-invariant subset
Y#
◦ ⊂ Y#, whose quotient Y◦ = Y#

◦ /PGL(c,R) can be given a smooth struc-
ture in such a way that the projection Y#

◦ → Y◦ is a submersion.

Proof. By Lemma 5.5, PGL(c,R) acts properly on Y#. As noted in the proof
of part 1 of Theorem 5.1, it follows from the definition of Y# and properness
that all isotropy groups are finite. However, it is not hard to strengthen
Theorem A to show that if a Lie group H acts smoothly and properly on a
manifold N and all of the isotropy groups are finite (but not necessarily of
the same order), then there exists a dense open subset of M/G which carries
a natural smooth structure – i.e., a smooth structure with respect to which
the corresponding projection is a submersion.

The essential difference between this corollary and the first three state-
ments of Theorem 5.1 is that Y◦ is open and dense in PRn[T ]/PGL(c,R),
while Y is merely open; we pay for this improvement by losing the clean
bundle-theoretic property given in the fifth statement of theorem.

It remains to prove Lemma 5.5, which we obtain as an immediate corollary
of the following two results.



226 THOMAS GARRITY AND ROBERT MIZNER

Proposition 5.7. Let D be the subgroup of SL(c,R) comprising all diagonal
matrices with positive eigenvalues. Consider the actions of D,SL(c,R) and
PGL(c,R) on the space Y#.

(1) PGL(c,R) acts properly if SL(c,R) acts properly.

(2) SL(c,R) acts properly if D acts properly.

Theorem 5.8. The group D acts properly on the space Y#.

Remark 5.9. In proving these and subsequent results concerning proper
actions, we shall repeatedly “pass to subsequences”. Recall that the action of
a Lie group H on a manifold N is proper if and only if for all sequences {xj}
in N and {hj} in H such both {xj} and {hjxj} converge in N, there exists a
subsequence of {hj} that converges in H. Therefore, in order to prove proper-
ness it suffices to pass to subsequences {x̃j} and {h̃j} of {xj} and {hj} that
satisfy specified conditions, and then to show that some subsequence of {h̃j}
converges in H. In fact, without loss of generality, we may simplify notation
by assuming that the original sequences satisfy these specified conditions.

Proof of Proposition 5.7. (1) Consider the following commutative diagram

SL(c,R)× Y# → Y# × Y#

↓ ↗
PGL(c,R)× Y#

The horizontal and diagonal maps are determined by the actions of SL(c,R)
and PGL(c,R) on Y# (see Theorem A for details); the vertical map is the
product of the natural projection and the identity. Suppose that SL(c,R)
acts properly. Then the horizontal map is proper (again, see Theorem A),
and, since the vertical map is continuous, a simple diagram chase shows that
the diagonal map is proper. Therefore, PGL(c,R) acts properly on Y#.

(2) Assuming that D acts properly on Y#, let {yj} and {gj} be sequences
in Y# and SL(c,R) respectively, and suppose that yj → y and gjyj →
y′ for some y, y′ ∈ Y#. By Lie theory (Cartan decomposition) or direct
computation (see §9 of [Z], especially Exercise 3), each gj can be factored as
BjdjCj, where dj ∈ D and Bj and Cj are in the proper orthogonal group.
Since this group is compact, by passing to subsequences we may assume
that Bj → B and Cj → C for some proper orthogonal matrices C and
D. By assumption, yj → y and BjdjCjyj → y′; consequently, Cjyj → Cy

and djCjyj → B−1y′. Since D acts properly, by passing to subsequences
we may assume that {dj} converges to some d ∈ D. Clearly, BdC is the
limit of a subsequence of our original sequence {gj}. Therefore, SL(c,R)
acts properly.
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Before proving Theorem 5.8, we establish some conventions, and prove
a simple lemma. A polynomial f(T ) is written in the usual multi-index
notation as f(T ) =

∑
fIT

I , where the summation extends over all multi-
indices (i1, i2, . . . , ic) of non-negative integers that sum to n, and T I stands
for (t1)i1(t2)i2 · · · (tc)ic . Given a matrix d = diag(d1, d2, . . . , dc), we write dI
for (d1)i1(d2)i2 · · · (dc)ic . Clearly, if d acts on f(T ), yielding a new polynomial
f∗(T ), then f∗I = dIfI for each multi-index I. When dealing with sequences
in D, we shall write the j-th element as d(j) = diag(d1(j), d2(j), . . . , dc(j));
for the sake of symmetry, we shall also write the j-th element of a sequence
in Y# as y(j) rather than yj.

Lemma 5.10. If f(T ) =
∑
fIT

I projects to a point y ∈ Y#, then
(1) there exists a multi-index I with i1 ≥ n− c such that fI 6= 0;

(2) there exists a multi-index I with ic ≥ n− c such that fI 6= 0.

Proof. (1) Suppose that fI = 0 for every multi-index I with i1 ≥ n− c. Then
f(T ) and all of its partial derivatives of order c or less vanish at the point
(1, 0, 0, . . . 0), which contradicts the fact that y ∈ Y#.

(2) The proof is similar, using the point (0, 0, . . . , 0, 1) instead of
(1, 0, 0, . . . 0).

Proof of Theorem 5.8. Let {y(j)} and {d(j)} be sequences in Y# and D,

and suppose that

y(j)→ y and d(j)y(j)→ y′(∗)
for some y, y′ ∈ Y#. We must find a subsequence of {d(j)} that converges in
D.

By passing to subsequences, we may assume that for each i = 1, 2, . . . , n,
the sequence {d(j)} is positive and monotonic, with limit di ∈ [0,∞], and
that for some permutation (r1, r2, . . . , rc) of (1, 2, . . . , c)

dr1(j) ≥ dr2(j) ≥ · · · ≥ drc(j) > 0 for all j.

For convenience, we assume that this permutation is trivial; in general the
argument differs only by notation. Thus,

d1(j) ≥ d2(j) ≥ · · · ≥ dc(j) > 0 for all j.(∗∗)
Since each matrix d(j) has determinant 1, we see that either diag(d1, d2, . . . ,

dc) is an element of D – in which case we are done – or d1 =∞ and dc = 0.
We assume the latter and derive a contradiction.

Represent the points y(j) and y of (∗) by polynomials
∑
fI(j)T

I and∑
fIT

I chosen so that fI(j) → fI for each multi-index I, and let sI(j) =
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dI(j)fI(j). Clearly, the polynomial
∑
sI(j)T

I represents the point d(j)y(j);
however, so does any non-zero scalar multiple. The remainder of our argu-
ment is based on this fact.

Passing to subsequences, we may assume that each sequence {sI(j)} is
monotonic, with limit sI ∈ [−∞,∞]. (This limit sI need not be uniquely
determined by the original sequence, but this does not matter – we simply
make a choice.) Those multi-indices I for which |sI | =∞ constitute a set I.

Claim 1. Since d1 =∞ and dc = 0,
(i) dI(j)→∞ for all I with i1 ≥ n− c;
(ii) dI(j)→ 0 for all I with ic ≥ n− c.
Claim 2. Since d1 = ∞ and dc = 0, by passing to subsequences we may
assume that there exists a multi-index I∗ ∈ I such that
(i) sI∗(j) 6= 0 for j = 1, 2, . . . ;

(ii) each sequence {sI(j)/sI∗(j)} converges to some f ′I ∈ [−1, 1]. (Clearly,
f ′I∗ = 1.)

Assuming the validity of these claims for now, we derive the desired
contradiction. On the one hand, by part (i) of Claim 2, the polynomial∑

(sI(j)/sI∗(j))T
I is a non-zero scalar multiple of

∑
sI(j)T

I and conse-
quently (as mentioned above) projects to the point d(j)y(j). It follows from
(∗) and part (ii) of Claim 2 that the polynomial

∑
f ′IT

I is non-zero and
projects to the point y′. Since y ∈ Y#, Lemma 5.10 implies that there ex-
ists some multi-index I with ic ≥ n − c such that f ′I 6= 0. On the other
hand, f ′I = lim sI(j)/sI∗(j). Since I∗ ∈ I, it follows by definition that
lim |sI∗(j)| =∞. Moreover, dI(j)→ 0 by part (ii) of Claim 1, and fI(j)→ fI
by definition, so {sI(j)} = {dI(j)fI(j)} converges to zero. Consequently,
f ′I = 0 – a contradiction.

Thus, all that remains is to prove Claims 1 and 2.

Proof of Claim 1. For any positive integer j,

dI(j) = d1(j)i1d2(j)i2 · · · dc(j)ic
= d1(j)i1 [d2(j)/dc(j)]

i2 [d3(j)/dc(j)]
i3 · · · [dc−1(j)/dc(j)]

ic−1dc(j)
n−i1 .

(The second equality follows from the fact that n = i1 + i2 + · · ·+ ic.) Hence,
by (∗∗), dI(j) ≥ d1(j)i1dc(j)

n−i1 . Since det d(j) = d1(j)d2(j) · · · dc(j) = 1, it
also follows from (∗∗) that d1(j)c−1dc(j) ≥ 1. Therefore, by writting

d1(j)i1dc(j)
n−i1 =

[
d1(j)c−1dc(j)

]n−i1
d1(j)i1−(c−1)(n−i1),

we see that dI(j) ≥ d1(j)i1−(c−1)(n−i1). An elementary computation now
shows that if i1 ≥ n − c, then i1 − (c − 1)(n − i1) ≥ n − c2. Since we have
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assumed at the onset that n > c2, part (i) of the claim follows immediately.
The proof of part (ii) is similar.

Proof of Claim 2. We begin by showing that I is not empty. Indeed, since
the polynomial

∑
fIT

I represents the point y ∈ Y#, Lemma 5.10 implies
that there exists some index I with i1 ≥ n − c and fI 6= 0. But sI(j) =
dI(j)fI(j) by definition, and dI(j)→∞ by Claim 1. Consequently, |sI(j)| →
∞, so I ∈ I.

For each positive integer j, let I(j) be the multi-index in I defined as
follows: ∣∣sI(j)(j)∣∣ ≥ |sI(j)| for all I ∈ I.
This yields a sequence {I(j)} drawn from the finite set I, so at least one
multi-index must occur infinitely often; let I∗ be such a multi-index. Since
|sI∗(j)| → ∞, by passing to a subsequence we may assume that sI∗(j) 6= 0
for any j. Hence, (i) is proved. Moreover, by passing to subsequences we
may assume that |sI∗(j)| ≥ |sI(j)| for all I ∈ I and for all j. Equivalently,
|sI(j)/sI∗(j)| ≤ 1 for all I ∈ I and for all j, so by passing to subsequences
we may assume that sI(j)/sI∗(j) → f ′I ∈ [−1, 1] for all I ∈ I. However, if
I /∈ I, then {sI(j)} is bounded and |sI∗(j)| → ∞, so sI(j)/sI∗(j)→ 0. Thus,
(ii) is proved.

6. Proof of Theorem 2.4: Final stage.

In this section we rely heavily on the results and methods of Section 5. The
following theorem is the elaboration of Theorem 2.4 promised in Section 2.

Theorem 6.1. Suppose that c > 2 and n > c2, and let Z# be the set of all
forms h ∈ Herm with the following properties:
(i) The polynomial D#(h) projects into Y # (see Theorem 5.1 for defini-

tions);

(ii) The isotropy group of h in G/K is trivial;

(iii) h has no non-zero null vectors – that is, if h(x, x) = 0 then x = 0.
Let Z denote the quotient of Z# by the action of the group G/K, endowed
with the quotient topology. Then
(1) Z# is a non-empty G/K-invariant open subset of Herm.

(2) G/K acts freely and properly on Z#.

(3) Z is an open subset of Herm /G.

(4) Z can be made into a manifold in such a way that Z# → Z is a
principal bundle with structure group G/K.
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Lemma 6.2. Z# is not empty.

Proof. Let π : Rn[T ] → PRn[T ] be the natural projection. By Theorem 5.1,
there is a G-invariant (and hence G/K-invariant) open subset O ⊂ Herm
that is mapped into Y # by π ◦D#. Building on the proof of Lemma 5.2, we
see that O contains a form h′ whose first component matrix is the identity
matrix, and whose remaining component matrices are diagonal matrices with
distinct non-zero eigenvalues. Since O is open and c > 2, O contains a form h

differing from h′ only in that the first row and column of the third component
matrix have no zero entries.

If (A,P ) ∈ G is in the isotropy group of h, then P is in the isotropy group
of π ◦ D#(h). But π ◦ D#(h) is in Y #, so its isotropy group in PGL(c,R)
is trivial; consequently, P = sI for some non-zero real number s. It follows
from the definition of the action of G on Herm that A∗H iA = sH i for
i = 1, 2, . . . , c. In particular, taking i = 1 and using the fact that H1 = I,

we see that A∗A = sI. Therefore s > 0. Let B = (1/r)A, where r is the
positive square root of s. Clearly, B∗H iB = H i for i = 1, 2, . . . , c. Again
taking i = 1, we see that B is unitary. Next, taking i = 2 and recalling that
H2 is a diagonal matrix with n distinct eigenvalues, we see that the standard
principal axes theorem implies that B = diag(eiθ1 , eiθ2 , . . . , eiθn) where each
θj ∈ [0, 2π). Finally, taking i = 3 and denoting the j-th entry of the first
row of H3 by qj, we see that ei(θj−θ1)qj = qj. Since qj 6= 0, it follows that
θj = θ1, so B = eiθI for some θ ∈ [0, 2π). Thus, P = r2I and A = reiθI, so
(A,P ) ∈ K. The fact that h ∈ Z# is now obvious.

Imitating the proof of Theorem 5.1, for technical convenience we now view
Z# as a subset of a larger set Z#.

Definition 6.3. Z# is the set obtained by weakening condition (ii) of the
definition of Z# (see Theorem 6.1) as follows: The isotropy group of h in
G/K is a Lie group of dimension zero.

Lemma 6.4. Z# is a non-empty open G/K-invariant subset of Herm.

Proof. Invariance is clear, and Lemma 6.2 shows that Z# is not empty. Note
that Z# = O ∩ Q ∩ F , where O is the subset of Herm defined in the proof
of Lemma 6.2, Q is the set of all forms with no non-zero vectors, and F is
the set of forms whose isotropy groups in G/K are Lie groups of dimension
zero. Since O is open, in order to show that Z# is open it suffices to show
that Q and F are open, or equivalently, that their complements Qc and F c
are closed.

Begin by putting an inner product on the vector space V. Let {hj} be a
sequence in Qc that converges to some h ∈Herm. Since each form hj has a
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non-zero null vector, we may choose a sequence {vj} in the unit ball of V
such that hj(vj) = 0 for all j. Using the compactness of the unit ball and
passing to subsequences, we may assume that {vj} converges to some unit
vector v. By continuity, h(v) = 0, so h ∈ Qc. Thus Qc is closed.

A form h belongs to F c if and only if its isotropy group inG/K has positive
dimension, or equivalently, if and only if the dimension of its isotropy group
in G is greater than 2. The equations for the Lie algebra of this isotropy
group in G constitute a homogeneous linear system, with coefficients that
are linear functions of the coordinates of h. Thus, h ∈ F c if and only if every
minor of order r − 2 vanishes, where r is the order of the largest possible
minor of the system. The vanishing of these minors imposes polynomial
conditions on h, so F c is closed.

Lemma 6.5. Let D = {A ∈ GL(n,C)| A is diagonal, with positive
eigenvalues}, and SL±(c,R) = {P ∈ GL(c,R)| detP = ±1}.
(1) If D × {I} acts properly on Z#, then so does GL(n,C)× {I}.
(2) If GL(n,C)×{I} acts properly on Z#, then so does GL(n,C)×SL(c,R).

(3) If GL(n,C)× SL(c,R) acts properly on Z#, then so does GL(n,C)×
SL±(c,R).

(4) If GL(n,C)× SL±(c,R) acts properly on Z#, then so does G/K.

Proof. Let {hj} and {gj} = {(Aj, Pj)} be sequences in Z# andG respectively,
and suppose that

hj → h and gjhj → h′ for some h, h′ ∈ Z#.(∗)
(1) Imitate the proof of part 2 Theorem 5.8, using the unitary group in
place of the proper orthogonal group.
(2) Suppose that each Pj ∈ SL(c,R). Applying the map π ◦ D#, it fol-
lows from (∗) that π ◦ D#(hj) → π ◦ D#(h) and Pjπ ◦ D#(hj) → π ◦
D#(h′). Since π ◦ D# maps Z# into Y#, and SL(c,R) acts properly on
Y# (see Proposition 5.7 and Theorem 5.8), by passing to subsequences we
may assume that {Pj} converges to some P ∈ SL(c,R). Hence, (I, Pj)hj →
(I, P )h. Since gjhj = (Aj, I)[(I, Pj)hj], (∗) implies that (Aj, I)[(I, Pj)hj]→
h′. Therefore, if GL(n,C) × {I} acts properly, then by passing to subse-
quences we may assume that {Aj} converges to some A ∈ GL(n,C). Clearly,
(A,P ) is the limit of a subsequence of the original sequence {gj}.
(3) Suppose that {Pj} ⊂ SL±(c,R) and let J = diag(−1, 1, 1, . . . , 1). By
passing to subsequences we may assume that either {Pj} ⊂ SL(c,R) or
{PjJ} ⊂ SL(c,R). In the former case the result is trivial, so assume the
latter. Then (∗) implies that (I, J)hj → (I, J)h and (Aj, PjJ)[(I, J)hj]→ h′.
If GL(n,C)×SL(c,R) acts properly, then by passing to subsequences we may
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assume that {(Aj, PjJ)} converges to some (A,P ) ∈ GL(n,C) × SL(c,R),
so {(Aj, Pj)} converges to (A,PJ) ∈ GL(n,C)× SL±(c,R).
(4) Imitate the proof of Proposition 5.7, using the natural projection of
GL(n,C)× SL±(c,R) onto G/K.

Lemma 6.6. D × {I} acts properly on Z#.

Proof. Let {h(j)} → h in Z#, let {A(j)} = {diag(a1(j), a2(j), . . . , an(j))}
be a sequence in D, and suppose that there exists h′ ∈ Z# such that
(A(j), I)h(j) → h′. By passing to subsequences we may assume that for
each i = 1, 2, . . . , n the sequence {ai(j)} converges monotonically to some
ai ∈ [0,∞]. It follows readily from the relevant definitions that h′(ei, ei) =
(ai)

−2h(ei, ei) for each basis vector ei of V. Since h and h′ have no non-
zero null vectors, neither h′(ei, ei) nor h(ei, ei) is the zero vector in W. It
follows that each ai must be finite and non-zero. Therefore, the matrix
A = diag(a1, a2, . . . , an) is in D, and (A, I) is the limit of a subsequence of
our original sequence {(A(j), I)}.

The following corollary is an immediate consequence of Lemmas 6.5 and
6.6.

Corollary 6.7. G/K acts properly on Z#.

Proof of Theorem 6.1. (1) Since G/K acts properly on Z#, all isotropy
groups are compact; by definition of Z#, all isotropy groups are zero-dimen-
sional Lie groups. Therefore, all isotropy groups are finite. It follows from
Proposition 5.7 that the points of Z# with smallest isotropy groups form an
open subset; by Lemma 6.2 this subset is Z#. Invariance is obvious.
(2) By definition, G/K acts freely on Z#. Since G/K acts properly on Z#,

a fortiori it acts properly on the invariant subset Z#.

(3) and (4) follow from (1) and (2) and Theorem A in Section 5.

7. Future directions.

We conclude with a few observations.

(1) The theory of tractable CR structures would be greatly enhanced by a
fully developed theory of canonical forms. Ideally, one would like an analogue
of Sylvester’s Theorem of Inertia for vector-valued hermitian forms – that
is, one would like a complete canonical form for vector-valued hermitian
forms, just as one has a canonical diagonal form for scalar-valued hermitian
forms. Unfortunatelly, it is not at all clear how to go about deriving such
an analogue. However, more modest results might be within reach. For
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instance, it is reasonable to conjecture that particular tractable subsets can
be described by the non-vanishing of polynomial invariants of vector-valued
forms, and explicit formulas for all such invariants are already available in
[GM]. The whole subject is ripe for investigation.

(2) The space X = (Rn[T ] ∪ {0})/GL(c,R) considered in Section 5 has a
complex analogue X ′ = (Cn[T ] ∪ {0})/GL(c,C). There is a natural map
τ : X → X ′ obtained by composing the inclusion (Rn[T ] ∪ {0})/GL(c,R)→
(Cn[T ] ∪ {0})/GL(c,R) with the projection (Cn[T ] ∪ {0})/GL(c,R) →
(Cn[T ]∪ {0})/GL(c,C). Consequently, we can consider the composite τ ◦D
rather than D. Clearly, in so doing we lose information. However, there
are compensating advantages. For X ′ decomposes as a closed singleton
and a dense open subset homeomorphic to PCn[T ]/PGL(c,C), and this lat-
ter space underlies classical invariant theory and algebraic geometry. In-
deed, PCn[T ]/PGL(c,C) may be viewed invariant-theoretically as a space of
complex polynomials modulo complex-linear change of variable, or algebro-
geometrically as a spce of degree n hypersurfaces in CPc−1 modulo projective
equivalence. Thus, via the composite τ ◦D, classical results in invariant the-
ory and algebraic geometry apply to CR geometry. (Many of these results
could be applied by means of the more subtle map D, but those which uti-
lize the hypothesis of an algebraically closed ground field can be applied by
means of τ ◦D only.)

Pursuing the ties with algebraic geometry, we define the associated variety
Sh of a hermitian form h ∈Herm to be the image in PW ∗ of the subset
Ch ⊂W ∗ given as follows:

w∗ ∈ Ch if and only if

the complex -valued sesquilinear form w∗ ◦ h is singular.

Clearly, the covector w∗ = a1f
1 + a2f

2 · · · + acf
c belongs to Ch if and

only if the coordinate vector (a1, a2, . . . , ac) ∈ Cn is a zero of the polynomial
D#
h (T ). Therefore, Sh is a projective hypersurface unless D#

h (T ) vanishes
identically, in which case Sh is the entire space PW ∗.

Working pointwise with the Levi form L of the CR manifold M, we obtain
a subset CL of the bundle C ⊗ (TM/H)∗ and its image SL in the projec-
tivization of this bundle. Via SL, a great deal of classical algebraic geometry
can be brought to bear on CR geometry without the intervention of a gen-
eralized hermitian invariant. For instance, for a generic point p ∈ M, the
corresponding fibre of SL is a projective hypersurface and can be decom-
posed into its smooth points and its singular points of various types. Since
the self-conjugate points in the fibre constitute a real projective hypersur-
face, discrete invariants, based on topology, can also be assigned to each
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point p. This approach looks particularly promising when c = 3, since it
facilitates the application of the theory of plane curves and the theory of
Riemann surfaces to the study of codimension three CR structures. For in-
stance, consideration of inflection points and Weirstrass points yields (local)
sections of the bundle P(TM/H)∗. As the dimension of W increases, for
generic h the variety Sh is a hypersurface with singularities: these singular-
ities lead to sections of P(TM/H)∗ for higher-codimensional CR structures.
It is important to note that the varieties Sh are linked with determinantal
varieties, so specialized techniques are available for their study ([AC]) – in-
deed, our assertions of smoothness and singularity are easily proved using
such techniques.

(3) The invariant theory of vector-valued symmetric forms is quite similar
to that of vector-valued hermitian forms (see [GM]). Therefore, comparison
of standard invariants of the second fundamental form of a submanifold of a
Riemannian manifold with Riemannian invariants obtained by the methods
of this paper may suggest fruitful interpretations of CR invariants. (It may
also shed some light on Riemannian geometry as well – at the very least, it
will provide computable scalar-valued relative invariants.)

(4) Since the Levi map of a CR manifold is valued in the quotient space
Herm/G, every insight into the nature of this space has ramifications for CR
geometry. We have made a good beginning by identifying the smooth open
subset Z (see Theorem 6.1). However, we still lack a clear understanding
of the fine structure of this subset and of the global structure of the entire
space.

(5) Finally, we note that although we have concentrated on local CR ge-
ometry, our methods are applicable to the study of the global structure of
compact CR manifolds. It seems likely that there are significant links be-
tween the topology of the manifold and degeneracies and singularities in
some of the canonical objects we have described.
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