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STANDARD INVARIANTS FOR CROSSED PRODUCTS
INCLUSIONS OF FACTORS

Fumio Hiai

When N ⊂ M is an inclusion of factors with finite index
and a group G acts on N ⊂ M, we compare the standard
invariants of N ⊂M and the crossed product inclusion NoG ⊂
M o G. The cases when G is a discrete group and when G is
a locally compact abelian group are separately considered.
Applying to a common crossed product decomposition, we
obtain comparison results between the type II and type III
standard invariants of an inclusion of type III factors.

0. Introduction.

Since Jones [21] initiated the index theory of type II1 subfactors, a great
progress has been made particularly on classification of hyperfinite type II1

subfactors (see [35, 37-39] and also [20, 23] for example). For any inclusion
N ⊂ M of type II1 factors with finite index, we have the Jones tower N ⊂
M ⊂M1 ⊂M2 ⊂ · · · and the sequence of higher relative commutants {M ′∩
Mn ⊂ N ′∩Mn}n≥0 constituting the canonical commuting squares [39]. The
(dual) principal graph ΓN,M and the standard vector ~s are derived from {M ′∩
Mn}n≥0. The sequence {M ′ ∩Mn ⊂ N ′ ∩Mn}n≥0 together with (ΓN,M , ~s ) is
called the standard invariant (or the paragroup) of N ⊂M and denoted by
GN,M . An axiomatic approach to paragroups was studied by Ocneanu [35].
Popa [37-39] proved that GN,M is a complete invariant for the isomorphism
class of N ⊂M if N ⊂M is a strongly amenable inclusion of hyperfinite type
II1 factors. Several characterizations of the strong amenability of GN,M were
established in [39]. (See Propositions 1.5 and 1.6 below.) Furthermore, it is
known [16] that the subexponential growth of (ΓN,M , ~s ) implies the strong
amenability of GN,M .

In the course of classifying hyperfinite type II1 subfactors with small in-
dices, it has been observed that symmetries on principal graphs (or para-
group symmetries) play a vital role typically in orbifold constructions (see
[4, 8, 10, 20, 23]). A paragroup symmetry is an action of a (finite) group
G on the principal graph and Ocneanu’s connection made from an inclu-
sion N ⊂ M. When this symmetry can extend to the subfactor level, the
crossed product inclusion N oG ⊂M oG arises and its standard invariant
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is the quotient of GN,M by G-symmetry; for example, the graphs D2n and

D(1)
n are obtained from Z2-symmetries on A4n−3 and A

(1)
2n−5, respectively (see

[23, 20]). Thus, the crossed product construction is sometimes useful to get
subfactors with new principal graphs from old ones. From this viewpoint,
it would be important to compare the standard invariants of N ⊂ M and
N oG ⊂M oG in various aspects.

On the other hand, the notion of index was generalized to an arbitrary
inclusion of factors (more precisely to a conditional expectation onto a sub-
factor) in several ways such as the Kosaki index [24], the best constant
of Pimsner-Popa inequality [36], etc. Sector theory developed by Longo
[32, 33] and Izumi [17] is quite useful particularly in the type III index
theory. Similarly to the type II1 case, the standard invariant GN,M for an
inclusion N ⊂M of type III factors can be defined by taking the Jones tower
iterated by the minimal conditional expectation [12, 13, 32]. When N ⊂M
admits a common decomposition, i.e. (N ⊂ M) ∼= (Ñ oθ R ⊂ M̃ oθ R) or
(Ñ oθ Z ⊂ M̃ oθ Z), Ñ ⊂ M̃ being a type II∞ inclusion with θ a trace-
scaling action, we can consider the type II standard invariant GÑ,M̃ besides
the original type III invariant GN,M . In [18] (also [19]), the difference be-
tween the type II and type III principal graphs was characterized in terms
of modular automorphisms by using the sector technique. This phenomenon
is another typical example of graph change under taking crossed products.
The coincidence of type II and type III graphs is necessary for a type III
inclusion N ⊂ M to split as (N ⊂ M) ∼= (B ⊗ L ⊂ A ⊗ L) with a type II1

inclusion B ⊂ A. But it is also sufficient in some cases (see e.g. [29, 22]). A
big progress in this direction is found in Popa’s recent work [42].

The notion of strong outerness (or proper outerness) for automorphisms
on an inclusion N ⊂ M was introduced by Choda and Kosaki [6] (also
[25, 26]) and independently by Popa [40]. This notion has turned out to
play a fundamental role when we study group actions on N ⊂ M. Roughly
speaking, an automorphism on N ⊂ M is strongly outer if and only if it
does not appear in the descendant sectors (or bimodules) of N ⊂ M. (See
Proposition 1.11 below.)

Also, it should be mentioned that there are many close connections be-
tween subfactor theory and entropy theory; for instance, the relation be-
tween the index [M : N ] and the relative entropy H(M |N) [36] (also [13]),
the dynamical entropy of the canonical shift [3, 5], the characterization of
the strong amenability of GN,M in terms of the relative entropy [16, 39], etc.

The aim of this paper is to present a rather systematic treatment for the
comparison between the standard invariants of N ⊂ M and (Ñ ⊂ M̃) =
(N oα G ⊂ M oα G). Here, N ⊂ M is an arbitrary inclusion of factors
with finite index and α is an action of a group G on N ⊂M. Section 1 is a
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collection of definitions and preliminary results for later use. In Section 2,
assume that G is a general discrete group and α is a strongly outer action
of G on N ⊂ M. Then α extends to the Jones tower M1 ⊂ M2 ⊂ · · ·
subject to fixing the Jones projections and the Jones tower of Ñ ⊂ M̃

is {M̃n = Mn oα G}. The extended α gives rise to actions on the higher
relative commutants M ′ ∩ Mn so that (M ′ ∩ Mn)α = M̃ ′ ∩ M̃n. That is,
the standard invariant GÑ,M̃ is the quotient of GN,M by α-symmetry. This
shows that the finite depth, the amenability, and the strong amenability of
GÑ,M̃ imply those of GN,M , respectively. Moreover, when G is a finite group,
the growth and the (strong) amenability of GÑ,M̃ and GN,M are equivalent.
Consequently, we show Winsløw’s results [51] in a different way.

In Section 3, let G be a locally compact abelian group and α a continuous
action of G on N ⊂ M. Assume that Ñ ⊂ M̃ are factors. Then the dual
action α̂ extends to the Jones tower {M̃n = Mn oα G} of Ñ ⊂ M̃, so that
(M ′ ∩Mn)α = (M̃ ′ ∩ M̃n)α̂. We can consider the growth of α|∪nM ′∩Mn

(the
Loi part of α) taking the eigenvalues of α|M ′∩Mn

into account. It is shown
that the growth of GÑ,M̃ is controlled by those of GN,M and α|∪nM ′∩Mn

. For
instance, if G is R (or T,Z) and αg is strongly outer for any g ∈ G \ {e},
then GÑ,M̃ has subexponential growth if and only if so do both GN,M and
α|∪nM ′∩Mn

. In particular, we prove that α|∪nM ′∩Mn
has polynomial growth

at most if N ⊂ M has finite depth. Finally in Section 4, let N ⊂ M be an
inclusion of type III1 or type IIIλ factors. In case of type IIIλ, N ⊂ M is
assumed to have a common discrete decomposition. Applying the results of
Section 3 to the dual action θ on Ñ ⊂ M̃, we obtain several assertions on
the comparison between the type II and type III invariants of N ⊂M. Also,
some stability properties for a type III inclusion to have the same type II
and type III invariants are given.

1. Preliminaries.

Throughout this paper, let N ⊂ M be an inclusion of factors with finite
index. We assume only that N ⊂M are σ-finite and not finite-dimensional.
Let E0 : M → N be the minimal conditional expectation with IndE0 =
[M : N ]0 (= λ−1), the minimal index [12, 13, 32]. Let

· · · ⊂ N2 ⊂ N1 ⊂ N0 = N ⊂M = M0 ⊂M1 ⊂M2 ⊂ · · ·(1.1)

be the Jones tower of tunnel and basic constructions with the Jones projec-
tions en (∈ M ′

n−2 ∩Mn) and the conditional expectations En : Mn → Mn−1,

n ≥ 1, [21, 24]. In the rest of this section, we collect definitions and prelim-
inaries for later use.
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1.1. Standard invariants. The faithful normalized trace (i.e. the so-called
Markov trace) φ is defined on the tower of higher relative commutants M ′ ∩
Mn by

φ|M ′∩Mn
= E1 ◦ · · · ◦En|M ′∩Mn

, n ≥ 1,(1.2)

where the traciality of φ is due to [28]. In this paper, the trace considered
on
⋃
nM

′∩Mn is always induced by the minimal conditional expectation, so
that in case of a type II1 inclusion we will assume that N ⊂ M is extremal
[39, 1.2.5], that is, the above φ comes from the trace on

⋃
nMn. Let R

denote the finite von Neumann algebra generated by
⋃
nM

′∩Mn via the GNS
representation with respect to φ. Also define the von Neumann subalgebras
Ri of R by Ri =

⋃
nM

′
i ∩Mn. Even when N ⊂M is not of type II1, we define

the core or the standard part of N ⊂ M as (N st ⊂ M st) = (
⋃
nN

′
n ∩N ⊂⋃

nN
′
n ∩M) [39, 1.4.1], which is antiisomorphic to R1 ⊂ R.

The standard matrix or principal graph ΓN,M = [akl]k∈K, l∈L of N ⊂ M is
defined so that [akl]k∈Kn, l∈Ln is the inclusion matrix of M ′ ∩M2n ⊂ M ′ ∩
M2n+1 and [akl]

t
k∈Kn+1, l∈Ln is that of M ′ ∩ M2n+1 ⊂ M ′ ∩ M2n+2, where

K0 = {k0 = ∗} ⊂ K1 ⊂ · · · ⊂ K =
⋃
nKn and L0 ⊂ L1 ⊂ · · · ⊂ L =

⋃
n Ln.

Let (cn,k)k∈Kn and (qn,k)k∈Kn be the dimension vector and the trace vector
(i.e. the φ-values of minimal projections) ofM ′∩M2n. Since qn+1,k = λqn,k for
all k ∈ Kn and n ≥ 0, the standard eigenvector ~s = (sk)k∈K is defined so that
sk0

= 1 and (qn,k)k∈Kn = (λnsk)k∈Kn , n ≥ 0, which satisfies ΓN,MΓtN,M~s =
λ−1~s. See [37, 39] for details on the standard invariants of N ⊂M. Following
[39] we denote the standard invariants (ΓN,M , ~s ) of N ⊂M by GN,M .

The next proposition shown in [16] is useful to reduce problems on the
standard invariants of general inclusions of factors to the type II1 case.

Proposition 1.2. For any inclusion N ⊂ M of factors with finite in-
dex, there exists an extremal inclusion B ⊂ A of type II1 factors such that
[A : B] = [M : N ]0 and GB,A = GN,M .

1.3. Growth conditions. We can consider growth conditions of various
type for the standard invariants of N ⊂ M. The strongest growth con-
dition is the finite depth of N ⊂ M, i.e. #K < ∞ where #K denotes
the cardinal number of K. The principal graph ΓN,M of N ⊂ M is said
to have polynomial growth if limn→∞ 1

n
(#Kn)1/m = 0 for some m ∈ N,

and to have subexponential growth if limn→∞ 1
n

log(#Kn) = 0. Similarly, the
standard eigenvector ~s of N ⊂ M is said to have polynomial growth or
subexponential growth if limn→∞ 1

n
(maxk∈Kn sk)

1/m = 0 for some m ∈ N or
limn→∞ 1

n
log(maxk∈Kn sk) = 0, respectively. It is said that GN,M has poly-

nomial growth or subexponential growth if both ΓN,M and ~s have the same
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growth, which is equivalent to limn→∞ 1
n

(
∑
k∈Kn sk)

1/m = 0 for some m ∈ N
or limn→∞ 1

n
log(

∑
k∈Kn sk) = 0, respectively.

It was shown in [15] that intermediate inclusions Q ⊂ P of factors with
N ⊂ Q ⊂ P ⊂ Mn and descendant inclusions Np ⊂ pMnp with projections
p ∈ N ′ ∩Mn satisfy the same growth conditions as N ⊂M does.

1.4. Amenability and strong amenability. Popa [39, 5.3.1] established
a number of characterizations of the strong amenability for the standard
invariant GN,M . Among other things, we state:

Proposition 1.5. The following conditions are equivalent:
(i) dimN st′ ∩M st = dimN ′ ∩M ;

(ii) ‖ΓN,M‖2 = |M : N |0 and ΓN,M is ergodic, i.e. M st (or R) is a factor;

(iii) H(M st|N st) = log[M : N ]0, or equivalently H(R|R1) = log[M : N ]0,
where H(R|R1) is the relative entropy [36] of R relative to R1 with
respect to φ.

Here, it should be noted that although N ⊂M was assumed in [39, 5.3.1]
to be an extremal inclusion of type II1 factors, the above conditions are equiv-
alent for general inclusions as well thanks to Proposition 1.2. Concerning
the relative entropy H(R|R1), we have by [36, Proposition 3.4]

H(R|R1) = lim
n→∞H(M ′ ∩Mn|M ′

1 ∩Mn).

It is said that GN,M is amenable if the equality ‖ΓN,M‖2 = |M : N |0 holds
and is strongly amenable if the conditions of Proposition 1.5 hold. Note
[39, 1.3.5] that

‖ΓN,M‖2 = lim
n→∞(dimM ′ ∩Mn)1/n.(1.3)

Now let B be a finite-dimensional algebra given a faithful normalized trace
φ, and f1, . . . , fm be the minimal central projections of B. Let us define a
quantity J(B) of entropy like by

J(B) =
m∑
j=1

φ(fj) log(dimBfj) =
m∑
j=1

bjβj log b2
j ,(1.4)

where (b1, . . . , bm) and (β1, . . . , βm) are the dimension vector and the trace
vector (with respect to φ) of B. For instance, we have

J(M ′ ∩M2n) =
∑
k∈Kn

φ(fn,k) log c2
n,k =

∑
k∈Kn

cn,kλ
nsk log c2

n,k,
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where (fn,k)k∈Kn is the set of minimal central projections of M ′ ∩M2n. On
the other hand, let H(M ′ ∩ Mn) denote the (von Neumann) entropy of
φ|M ′∩Mn

. Then it is known that limn→∞ 2
n
H(M ′ ∩Mn) exists and is equal to

the Connes-Størmer dynamical entropy of the canonical shift on (R,φ). (See
[3, 5] for definition and properties of the canonical shift.)

The next proposition was proved in [16, Theorem 4.5], which gives a con-
venient combinatorial characterization of the strong amenability for GN,M .
Proposition 1.6. The limit limn→∞ 1

n
J(M ′ ∩Mn) exists and

lim
n→∞

1

n
H(M ′ ∩Mn) + lim

n→∞
1

n
J(M ′ ∩Mn) =

1

2
H(R|R2).

Moreover, GN,M is strongly amenable if and only if

lim
n→∞

2

n
J(M ′ ∩Mn) = log[M : N ]0.

Furthermore, it was shown in [16] that if GN,M has subexponential growth,
then it is strongly amenable.

Lemma 1.7. Let C ⊂ B be finite-dimensional algebras given a trace φ on
B, and define J(C) as (1.4) with respect to φ|C . Then J(C) ≤ J(B).

Proof. Let (c1, . . . , cl) and (γ1, . . . , γl) be the dimension vector and the
trace vector of C together with (b1, . . . , bm) and (β1, . . . , βm) of B. Let
[aij]1≤i≤l, 1≤j≤m be the inclusion matrix of C ⊂ B. Then we get

bj =
l∑
i=1

ciaij (1 ≤ j ≤ m), γi =
m∑
j=1

aijβj (1 ≤ i ≤ l).

Hence the assertion follows from

J(C) = 2
l∑
i=1

ciγi log ci ≤ 2
∑
i,j

ciaijβj log

(
l∑

k=1

ckakj

)

= 2
m∑
j=1

bjβj log bj = J(B).

Proposition 1.8. Let N ⊂ M and Ñ ⊂ M̃ be two inclusions of factors
with [M : N ]0 = [M̃ : Ñ ]0 <∞ such that M ′∩Mn ⊃ M̃ ′∩M̃n and φ|M̃ ′∩M̃n

=

φ̃|M̃ ′∩M̃n
for all n ≥ 0, where Ñ ⊂ M̃1 ⊂ M̃2 ⊂ · · · is the Jones tower and φ̃

is defined on
⋃
n M̃

′∩M̃n as (1.2). If GÑ,M̃ is amenable or strongly amenable,
then so is GN,M , respectively.

Proof. The assertion concerning amenability is trivial by (1.3). The other
follows from Proposition 1.6 and Lemma 1.7.
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1.9. Strongly outer automorphisms. Let Aut(M,N) denote the set of
all automorphisms α of M such that α(N) = N. For any α ∈ Aut(M,N),
since α ◦E0 = E0 ◦α due to the uniqueness of minimal conditional expecta-
tion, we can (uniquely) extend α to the Jones tower M1 ⊂M2 ⊂ · · · subject
to α(en) = en, n ≥ 1, which are denoted by the same α. The extended α

defines automorphisms of the higher relative commutants M ′ ∩Mn, n ≥ 0.
Note that α|∪nM ′∩Mn

is the opposite counterpart of the standard part or the
Loi part αst of α defined on

⋃
nN

′
n ∩M [29, 40].

Definition 1.10. An automorphism α ∈ Aut(M,N) is said to be strongly
outer [6] or properly outer [40] if the following equivalent conditions hold
(see [50, Lemma 3.1] for the proof of equivalence):
(i) for every n ≥ 0 and every x ∈ Mn, if xy = α(y)x for all y ∈ M then

x = 0;

(ii) for every n ≥ 0 and every x ∈ Mn, if xy = α(y)x for all y ∈ N then
x = 0;

(iii) for every n ≥ 0 and every x ∈ M, if xy = α(y)x for all y ∈ Nn then
x = 0.

Assume that M is an infinite factor. Let End(M) denote the endo-
morphisms of M and Sect(M) = End(M)/ Int(M), the sectors. For any
ρ ∈ End(M), the class of ρ in Sect(M) is denoted by [ρ] and the conjugate
sector [ρ] is defined by ρ = ρ−1 ◦ γ, where γ is the Longo canonical endo-
morphism [31] for ρ(M) ⊂M. The sector theory [33, 17] is quite important
in theory of subfactors; for instance, a Jones tunnel of N = ρ(M) ⊂ M

(with finite index) is given as M ⊃ ρ(M) ⊃ ρρ(M) ⊃ ρρρ(M) ⊃ · · · , and
the standard invariants of N ⊂ M are described by the irreducible decom-
positions of the sectors [(ρρ)n] and [(ρρ)nρ]. For instance, the irreducible
decomposition of [(ρρ)n] is written as [(ρρ)n] = ⊕k∈Kncn,k[ρk], where [ρk],
k ∈ K, are the sectors corresponding to the even vertices of the principal
graph. The standard eigenvector ~s is the vector of statistical dimensions, i.e.
sk = d(ρk) (= [M : ρk(M)]

1/2
0 ). For ρ, η ∈ End(M), we write η ≺ ρ if each

irreducible component of [η] is contained up to multiplicity in the irreducible
decomposition of [ρ].

The following result [26, Proposition 4] (also [6, Theorem 2]) character-
izes strongly outer automorphisms in terms of sectors.

Proposition 1.11. Assume that N ⊂M is an inclusion of infinite factors
and N = ρ(M) with ρ ∈ End(M). Then for every α ∈ Aut(M,N) and n ≥ 0,
there exists a nonzero x ∈Mn such that yx = xα(y) for all y ∈M if and only
if α ≺ (ρρ)n, i.e. α appears as a sector in the irreducible decompositions of
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(ρρ)n. Hence α is strongly outer if and only if it does not appear in
⊔
n(ρρ)n.

The above theorem shows, for example, the following (see [6], [25],
[40, 1.6]):

1◦ The non-strongly outer automorphisms in Aut(M,N) form a group.

2◦ If N ⊂ M has finite depth and α ∈ Aut(M,N) is aperiodic in
Aut(M)/ Int(M), then α is automatically strongly outer.

3◦ If sk > 1 for all k ∈ K \ {k0}, then any α ∈ Aut(M,N) \ Int(M) is
strongly outer.

2. Actions of discrete groups.

In this section, let G be a discrete group and α : G→ Aut(M,N) an action
of G on N ⊂ M. Then α uniquely extends to actions on the Jones tower
M1 ⊂ M2 ⊂ · · · subject to the conditions αg(en) = en, g ∈ G, which define
actions on the higher relative commutants M ′ ∩Mn, n ≥ 0. Assume that α
is strongly outer, that is, αg is strongly outer for any g ∈ G \ {e}. We set(

Ñ ⊂ M̃
)

= (N oα G ⊂M oα G).

Since the strong outerness of α implies that α : G→ Aut(M) and α|N : G→
Aut(N) are outer in the usual sense, it follows that both M̃ and Ñ are
factors (see [47, 22.3]). Noting [47, 19.13] that

Ñ = (N ⊗B(`2(G)))α⊗Ad ρ, M̃ = (M ⊗B(`2(G)))α⊗Ad ρ,

we can canonically extend the minimal conditional expectation E0 : M → N

to Ẽ0 : M̃ → Ñ by Ẽ0 = E0 ⊗ idB(`2(G)) |M̃ ; equivalently

Ẽ0

(∑
x(g)λ(g)

)
=
∑

E0(x(g))λ(g),
∑

x(g)λ(g) ∈ M̃,(2.1)

where λ(g) = 1 ⊗ λg and λg (resp. ρg) is the left (resp. right) regular
representation of G on `2(G). For brevity we let M ⊂ M̃ without the symbol
πα of embedding.

It is known [40, 1.5] (also implicitly in the proof of [6, Proposition 7])
that an action α of a discrete group G on N ⊂ M is strongly outer if and
only if the following equivalent conditions hold:

N ′n ∩ (M oα G) = N ′n ∩M, n ≥ 0,(2.2)

M ′ ∩ (Mn oα G) = M ′ ∩Mn, n ≥ 0.(2.3)

(The setting of N ⊂ M being of type II1 in [40] is irrelevant to these char-
acterizations.)
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Assume in the following lemmas that α is a strongly outer action of a
discrete group G on N ⊂ M. Since Ind Ẽ0 = IndE0 < ∞ (see the proof of
[14, Theorem 2.8]), the inclusion Ñ ⊂ M̃ has finite index. Indeed, we have:

Lemma 2.1. The conditional expectation Ẽ0 : M̃ → Ñ is minimal. Hence
[M : N ]0 = [M̃ : Ñ ]0.

Proof. Let E(M,N) denote the set of all faithful normal conditional expec-
tations from M onto N. Any E ∈ E(M,N) extends to Ẽ ∈ E(M̃, Ñ) as E0

does to Ẽ0, so that Ẽ|Ñ ′∩M̃ = E|Ñ ′∩M̃ where Ñ ′ ∩ M̃ ⊂ N ′ ∩M by Popa’s
characterization (2.2). This means that any F ∈ E(M̃, Ñ) is obtained as
the extension of some E ∈ E(M,N), because [7, Théorème 5.3] says that
F 7→ F |Ñ ′∩M̃ is a bijection from E(M̃, Ñ) onto the set of all faithful normal
states on Ñ ′∩M̃. Since Ind Ẽ = IndE, it follows that Ẽ0 is minimal.

In view of Lemma 2.1, we easily see that the Jones tower for Ñ ∩ M̃ is

Ñ ⊂ M̃ = M̃0 ⊂ M̃1 = M1 oα G ⊂ M̃2 = M2 oα G ⊂ · · · ,
where the Jones projections are the same as en in (1.1) and the iterated
conditional expectations Ẽn : M̃n → M̃n−1 are the canonical extensions of
En, n ≥ 0, given as (2.1). Let φ̃ be the trace on

⋃
n M̃

′ ∩ M̃n induced by
{Ẽn} as (1.2).

The following (1) was given in [6], and (2) is immediate from (1) and
En = Ẽn|Mn

.

Lemma 2.2.
(1) (M ′ ∩Mn)α = M̃ ′ ∩ M̃n, n ≥ 0.

(2) φ|M̃ ′∩M̃n
= φ̃|M̃ ′∩M̃n

, n ≥ 0.

Proposition 2.3. Let α be a strongly outer action of a discrete group G

on N ⊂M. Then:
(1) If Ñ ⊂ M̃ has finite depth, then so does N ⊂M.

(2) If GÑ,M̃ is amenable, then so is GN,M .
(3) If GÑ,M̃ is strongly amenable, then so is GN,M .
Proof. (1) (The argument below is found in [40].) If Ñ ⊂ M̃ has finite
depth, then for some n the central support of en in M̃ ′ ∩ M̃n = (M ′ ∩Mn)α

is 1 (see [9, 4.6.3]), so that the support of en in M ′ ∩Mn is also 1. Hence
N ⊂M has finite depth.

(2) and (3) follow from Lemmas 2.1, 2.2, and Proposition 1.8.

The above (3) was shown in [51] by a different method. Furthermore, we
give another proof using the relative entropy in the following:
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Remark 2.4. Since α|⋃
n
M ′∩Mn

preserves φ, it can extend to a φ-preserving

action of G on R (denoted by the same α). Note that for any i ≥ 0

M ′
i ∩Mn ⊂ M ′ ∩Mn

∪ ∪
(M ′

i ∩Mn)α ⊂ (M ′ ∩Mn)α

is a commuting square with respect to φ. This implies that
Ri ⊂ R

∪ ∪
Rαi ⊂ Rα

is a

commuting square with respect to φ and hence H(Rα|Rαi ) ≤ H(R|Ri) by
[3, Lemma 13]. When α is strongly outer, since the extension of α to Mi is
also strongly outer, Lemma 2.2 shows that Rαi is the von Neumann algebra
generated by

⋃
n M̃

′
i ∩ M̃n with respect to φ̃. Thus Proposition 1.5 proves

Proposition 2.3(3) again.

In the rest of this section, let us prove the converse implications of Propo-
sition 2.3 when G is a finite group. For this sake, it is important to look at
the inclusion matrix (i.e. Bratteli diagram) of (M ′∩Mn)α ⊂M ′∩Mn. First
let us consider an action α of G on a finite-dimensional algebra B, where
G is an arbitrary group. Let f1, . . . , fm be the minimal central projections
of B. Since α gives rise to permutations on {f1, . . . , fm}, we decompose
{1, . . . ,m} into J1, . . . , Jr under the relation j ∼ j′ when αg(fj) = fj′ for
some g ∈ G. Set f̃k =

∑
j∈Jk fj for 1 ≤ k ≤ r. Then f̃k are central projections

in Bα and

(Bα ⊂ B) =
r⊕

k=1

(
Bαf̃k ⊂ Bf̃k

)
.

So it suffices to assume that α is transitive on {f1, . . . , fm}. Then we have:

Lemma 2.5. With the above notations and transitivity assumption, let
[aij]1≤i≤l, 1≤j≤m be the inclusion matrix of Bα ⊂ B and define a subgroup G1

of G by G1 = {g ∈ G : αg(f1) = f1}. Then aij does not depend on 1 ≤ j ≤ m
and [aij]1≤i≤l is the inclusion matrix of (Bf1)αG1 ⊂ Bf1 for any j.

Proof. For each 1 ≤ j ≤ m, let Gj = {g ∈ G : αg(fj) = fj} and choose
gj ∈ G such that αgj (f1) = fj. Then it is easy to check that Gj = gjG1g

−1
j

and

Bα =


m⊕
j=1

αgj (x) : x ∈ (Bf1)αG1

 .
This means that Bα ∼= (Bf1)αG1 and the inclusion Bα ⊂ B is written as⊕m

j=1 αgj : (Bf1)αG1 → ⊕m
j=1Bfj. Since αgj transforms (Bf1)αG1 ⊂ Bf1 to

(Bfj)
αGj ⊂ Bfj, we get the result.
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Thus, the next lemma is enough for our purpose.

Lemma 2.6. Let G be a finite group. Then there exists W ∈ N (depending
only on G) such that if α is an action of G on B = Md(C) and [ai]1≤i≤l
is the inclusion matrix of Bα ⊂ B where l = dimZ(Bα), then l ≤ W and
ai ≤W for all 1 ≤ i ≤ l.
Proof. Let U be a projective unitary representation of G on Cd implementing
α, i.e. αg = AdUg, g ∈ G, so that Bα = (UG)′. For each 1 ≤ i ≤ l choose a
minimal projection pi in the ith summand of Bα. Then ai = dim piC

d and
U (i) = U |piCd is an irreducible projective unitary representation of G. Now
let (H,Z) be a primitive central extension of G [48, §2.9]. So we write H =⊔
g∈G Ztg with a transversal {tg} of Z in H. Then for 1 ≤ i ≤ l there exists

an irreducible unitary representation V (i) of H on piC
d such that V

(i)
stg =

λ(s, g)U (i)
g where λ(s, g) ∈ C for all s ∈ Z and g ∈ G (see [48, p. 263]).

Since V (i) and V (i′) are not equivalent when i 6= i′, we have the conclusion
from usual theory on unitary representations of finite groups.

Summarizing the above arguments, we obtain the following key lemma.

Lemma 2.7. Let α be an action of a finite group G on N ⊂M. Then there
exists W ∈ N (depending only on G) such that for every n ≥ 0 the inclusion
matrix [aij] of (M ′ ∩Mn)α ⊂M ′ ∩Mn satisfies the following:
(1) #{j : aij 6= 0} ≤W for all i,

(2) #{i : aij 6= 0} ≤W for all j,

(3) aij ≤W for all i, j.

Theorem 2.8. Let α be a strongly outer action of a finite group G on
N ⊂M. Define the standard invariants ΓÑ,M̃ and (s̃k)k∈K̃ with K̃ =

⋃
n K̃n

for Ñ ⊂ M̃ as well as ΓN,M and (sk)k∈K for N ⊂ M. With W given in
Lemma 2.7, the following hold for every n ≥ 0 :
(1) W−1(#Kn) ≤ #K̃n ≤W (#Kn).

(2) maxk∈Kn sk ≤ maxk∈K̃n s̃k ≤W 2 maxk∈Kn sk.

(3) dim M̃ ′ ∩ M̃n ≤ dimM ′ ∩Mn ≤ W 4 dim M̃ ′ ∩ M̃n. Hence ‖ΓÑ,M̃‖ =
‖ΓN,M‖.

(4) J(M̃ ′∩M̃n) ≤ J(M ′∩Mn) ≤ J(M̃ ′∩M̃n)+logW 4. Hence lim
n→∞

1
n
J(M̃ ′∩

M̃n) = lim
n→∞

1
n
J(M ′ ∩Mn).

Proof. (1) is trivial from Lemmas 2.2(1) and 2.7.
(2) The first inequality is obvious from Lemma 2.2. For each n ≥ 0, let

(b1, . . . , bm) and (β1, . . . , βm) be the dimension vector and the trace vector



248 FUMIO HIAI

of M ′ ∩Mn, and (c1, . . . , cl) and (γ1, . . . , γl) be those of (M ′ ∩Mn)α, re-
spectively. Also let [aij]1≤i≤l, 1≤j≤m be the inclusion matrix of (M ′∩Mn)α ⊂
M ′ ∩Mn. Then Lemma 2.7 implies that

γi =
m∑
j=1

aijβj ≤W 2 max
1≤j≤m

βj.

Since the trace vectors of M ′ ∩ M2n and M̃ ′ ∩ M̃2n = (M ′ ∩ M2n)α are
(λnsk)k∈Kn and (λns̃k)k∈K̃n respectively, the above means that maxk∈K̃n s̃k ≤
W 2 maxk∈Kn sk.

(3) With the notations in the proof of (2), we get

dim(M ′ ∩Mn)α ≤ dimM ′ ∩Mn =
m∑
i=1

b2
j

=
m∑
j=1

(
l∑
i=1

ciaij

)2

≤
m∑
j=1

∑
aij 6=0

c2
i

( l∑
i=1

a2
ij

)

≤W 3
m∑
j=1

∑
aij 6=0

c2
i = W 3

l∑
i=1

#{j : aij 6= 0}c2
i

≤W 4 dim(M ′ ∩Mn)α.

(4) The first inequality follows from Lemmas 1.7 and 2.2. For the second,
we get

J(M ′ ∩Mn)− J((M ′ ∩Mn)α)

= 2
∑
i,j

ciaijβj log
bj

ci
≤ 2 log

∑
i,j

aijbjβj


≤ 2 log

W m∑
j=1

#{i : aij 6= 0}bjβj
 ≤ logW 4.

Proposition 1.6 and Theorem 2.8 give:

Corollary 2.9. Let G and α be as in Theorem 2.8. Then:
(1) The growth of GÑ,M̃ is the same as GN,M . Hence Ñ ⊂ M̃ has finite

depth or subexponential growth if and only if so does N ⊂ M, respec-
tively.

(2) GÑ,M̃ is amenable if and only if so is GN,M .
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(3) GÑ,M̃ is strongly amenable if and only if so is GN,M .
The above (3) was shown in [51], while our proof is completely different

from [51].

Remark 2.10. It was proved in [16, Theorem 4.1] that lim
n→∞

1
n
H(Z(M ′ ∩

Mn)) exists and

1

2
H(R|R2) + lim

n→∞
1

n
H(Z(M ′ ∩Mn)) = lim

n→∞
2

n
H(M ′ ∩Mn).

In view of Lemma 2.2 and Remark 2.4, this formula applied to Ñ ⊂ M̃ reads
as

1

2
H(Rα|Rα2 ) + lim

n→∞
1

n
H(Z((M ′ ∩Mn)α)) = lim

n→∞
2

n
H((M ′ ∩Mn)α).

Under the assumption of Theorem 2.8, it is not difficult to show by Lemma 2.7
that

lim
n→∞

1

n
H(Z(M ′ ∩Mn)) = lim

n→∞
1

n
H(Z((M ′ ∩Mn)α)),

lim
n→∞

1

n
H(M ′ ∩Mn) = lim

n→∞
1

n
H((M ′ ∩Mn)α).

The last equality means that the dynamical entropies of the canonical shifts
for N ⊂ M and for Ñ ⊂ M̃ are identical. Combining the above estimates
yields H(Rα|Rα2 ) = H(R|R2), which implies Corollary 2.9(3) again.

Indeed, the assertion for finite depth in Corollary 2.9(1) holds true without
the strong outerness assumption. To show this, we mention the following

lemma due to Wierzbicki [49]. We say that a square
Q ⊂ P

∪ ∪
N ⊂M

of general

factors with [P : N ]0 < ∞ is a commuting square if the commuting square
condition is satisfied for the minimal conditional expectations: For instance,
EQ(M) ⊂ N for the minimal conditional expectation EQ : P → Q (see
[9, 4.2.1] for other equivalent conditions). Furthermore, such a commuting
square is said to be nondegenerate [39, 1.1.5] if spanMQ = P, which is
equivalent to the co-commuting square condition in [44].

Lemma 2.11. Let
Q ⊂ P

∪ ∪
N ⊂M

is a nondegenerate commuting square of factors

with [P : N ]0 < ∞ as above. If both N ⊂ M and M ⊂ P have finite depth,
then so does N ⊂ P.
Proof. This was proved in [49] for type II1 factors, so that we only indi-
cate the reduction to the type II1 case. This can be done by taking tensor
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products with a type III1 factor and then by taking crossed products by
the modular automorphism group (see the proof [16] of Proposition 1.2 for
details). Note that the nondegeneracy condition is preserved under these
procedures.

Proposition 2.12. Let G be a finite group. Let α be an action of G on
N ⊂ M, which is outer on both N and M. Then N ⊂ M has finite depth if
and only if so does Ñ ⊂ M̃.

Proof. Since spanMÑ = span Mλ(G) = M̃, the commuting square

Ñ ⊂ M̃
∪ ∪
N ⊂M

is nondegenerate. Since N ⊂ Ñ and M ⊂ M̃ have depth 2, the

above lemma shows that the finite depth of N ⊂M (resp. Ñ ⊂ M̃) implies
that of N ⊂ M̃. The latter condition implies the finite depth of Ñ ⊂ M̃

(resp. N ⊂M) by [2] (also [15, Theorem 2.2]).

3. Actions of locally compact abelian groups.

In this section, we assume that G is a locally compact abelian group. Let
α : G→ Aut(M,N) be a continuous action of G on N ⊂ M, which extends
to continuous actions to M1 ⊂M2 ⊂ · · · as in Section 2. Here, the continuity
of the extensions of α is immediate from Mn = spanMn−1enMn−1, n ≥ 1.
Define

Ñ ⊂ M̃ = M̃0 ⊂ M̃1 ⊂ M̃2 ⊂ · · ·(3.1)

by M̃n = MnoαG, n ≥ 0. Then for every n ≥ 0, En : Mn →Mn−1 canonically
extends to Ẽn : M̃n → M̃n−1 by Ẽn = En ⊗ idB(L2(G)) |M̃n

. Let α̂ : Ĝ →
Aut(M̃) be the dual action of α. Since α̂t(Ñ) = Ñ , i.e. α̂t ∈ Aut(M̃, Ñ) for
all t ∈ Ĝ, the Takesaki duality says [47, 19.5] that(

Ñ oα̂ Ĝ ⊂ M̃ oα̂ Ĝ
) ∼= (N ⊗B(L2(G)) ⊂M ⊗B(L2(G))).(3.2)

We consider the following assumptions:
(A) Both Ñ ⊂ M̃ are factors (see [47, 21.6] concerning the factorness of

crossed products).

(B) αg is strongly outer for any g ∈ G \ {e}.
(C) α̂t is strongly outer for any t ∈ Ĝ \ {ê}.

As was noted in Section 2, if G is discrete, then assumption (A) automat-
ically follows from (B). Throughout this section, (A) will be assumed. Then
we have:
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Lemma 3.1.
(1) Ẽ0 : M̃ → Ñ is minimal and hence [M : N ]0 = [M̃ : Ñ ]0.

(2) (3.1) is the Jones tower for Ñ ⊂ M̃ iterated from Ẽ0, where the Jones
projections are the same as en in (1.1).

(3) The extensions of α̂ to M̃1 ⊂ M̃2 ⊂ · · · subject to α̂t(en) = en, t ∈ Ĝ,
are the dual actions of α|Mn

, n ≥ 1.

Proof. (1) was shown in [14, Theorem 2.8] by using the Takesaki duality
(3.2). Then (2) and (3) are readily checked.

Lemma 3.2.
(1) (M ′ ∩Mn)α = (M̃ ′ ∩ M̃n)α̂, n ≥ 0,

(2) φ|(M ′∩Mn)α = φ̃|(M̃ ′∩M̃n)α̂ , n ≥ 0.

Proof. We have (1) because:

(M ′ ∩Mn)α = M ′ ∩Mn ∩ λ(G)′ = M̃ ′ ∩Mn

= M̃ ′ ∩
(
M̃n

)α̂
=
(
M̃ ′ ∩ M̃n

)α̂
thanks to Mn = (M̃n)α̂, while (2) is obvious as Lemma 2.2(2).

Note that if supn dimZ((M ′∩Mn)α) <∞, then both N ⊂M and Ñ ⊂ M̃
have finite depth by Lemma 3.2(1) (see the proof of Proposition 2.3(1)).
Although it will not be needed in this paper, it is worth noting that {(M ′

i ∩
Mj)

α}0≤i≤j is a λ-sublattice of {M ′
i ∩Mj}0≤i≤j in the sense of [43] and thus

by [43, Theorem 3.1] there exists an extremal inclusion N0 ⊂ M0 of type
II1 factors such that (M ′

i ∩Mj)
α = M0′

i ∩M0
j , 0 ≤ i ≤ j. Here, Theorems

1.5 and 1.6 show that GN0,M0 is strongly amenable if and only if

lim
n→∞H ((M ′ ∩Mn)α|(M ′

1 ∩Mn)α) = log[M : N ]0,

or equivalently limn→∞ 2
n
J((M ′ ∩Mn)α) = [M : N ]0.

Lemma 3.2 says that it should be necessary to look at the inclusions (M ′∩
Mn)α ⊂M ′ ∩Mn and (M̃ ′ ∩ M̃n)α̂ ⊂ M̃ ′ ∩ M̃n if we want to compare GN,M
and GÑ,M̃ . It is crucial for this sake to analyze the behavior of α|⋃

n
M ′∩Mn

and α̂|⋃
n
M̃ ′∩M̃n

. On the other hand, Kosaki [26] studied the “eigenvalue

problem” for the dual action θ|⋃
n
M̃ ′∩M̃n

for an inclusion N ⊂ M of type

III factors to obtain some structure results for type III inclusions. From
these considerations, we are led to deal with the eigenvalues of α|M ′∩Mn

and
α̂|M̃ ′∩M̃n

.
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Namely, we define

Eig (α|M ′∩Mn
) =

{
t ∈ Ĝ : αg(x) = 〈g, t〉x, g ∈ G,

(3.3)

for some nonzero x ∈M ′ ∩Mn

}
,

Eig
(
α̂|M̃ ′∩M̃n

)
=
{
g ∈ G : α̂t(x) = 〈g, t〉x, t ∈ Ĝ,

for some nonzero x ∈ M̃ ′ ∩ M̃n

}
.

Then we can consider growth conditions of α|⋃
n
M ′∩Mn

as those of

# Eig(α|M ′∩Mn
), n ≥ 0. For instance, we say that α|⋃

n
M ′∩Mn

has subex-

ponential growth if

lim
n→∞

1

n
log # Eig(α|M ′∩Mn

) = 0,

and it has polynomial growth if there exists m ∈ N such that

# Eig(α|M ′∩Mn
) ≤ (n+ 1)m, n ≥ 0.

When we replace (N ⊂M,α) by (N ⊗P ⊂M ⊗P, α⊗1) with an infinite
factor P, the Jones tower for N ⊗ P ⊂ M ⊗ P is {Mn ⊗ P} and that for
((N ⊗ P ) oα⊗1 G ⊂ (M ⊗ P ) oα⊗1 G) = (Ñ ⊗ P ⊂ M̃ ⊗ P ) is {M̃n ⊗ P}.
The dual action of α ⊗ 1 is α̃ ⊗ 1. It is a simple fact that condition (B) is
equivalent to that for α⊗ 1 and (C) is equivalent to that for α̂⊗ 1. Thus, to
compare GN,M and GÑ,M̃ , it may be assumed without loss of generality that

both N ⊂M and Ñ ⊂ M̃ are infinite factors. Furthermore, we may assume
by [34, Lemma 2.3] that N = ρ(M) for some ρ ∈ End(M) and Ñ = η(M̃)
for some η ∈ End(M̃). In this setting, Proposition 1.11 shows that (B) and
(C) are respectively equivalent to the following:

(B′) αg does not appear in
⊔
n(ρρ)n for any g ∈ G \ {e},

(C′) α̂t does not appear in
⊔
n(ηη)n for any t ∈ Ĝ \ {ê}.

Proposition 3.3.
(1) Assume that Ñ ⊂ M̃ are infinite and Ñ = η(M̃) for some η ∈ End(M̃).

Then for every n ≥ 0

Eig(α|M ′∩Mn
) ⊂

{
t ∈ Ĝ : α̂t ≺ (ηη)n

}
,

and the equality holds if α satisfies (B).
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(2) Assume that N ⊂M are infinite and N = ρ(M) for some ρ ∈ End(M).
Then for every n ≥ 0

Eig(α̂|M̃ ′∩M̃n
) ⊂ {g ∈ G : αg ≺ (ρρ)n} ,

and the equality holds if α̂ satisfies (C).

Proof. (1) The proof below is on the same lines as in [26], while we give it
for completeness. It suffices by Proposition 1.11 to show that for any fixed
t ∈ Ĝ

{x ∈M ′ ∩Mn : αg(x) = 〈g, t〉x, g ∈ G}
⊂
{
x ∈ M̃n : yx = xα̂t(y), y ∈ M̃

}
,

(3.4)

and the equality holds if (B) is satisfied. Let H denote the right-hand side
of (3.4). If x belongs to the left-hand side of (3.4), then since M = M̃ α̂, we
get yx = xy = xα̂t(y), y ∈M. Also we get

λ(g)x = αg(x)λ(g) = 〈g, t〉xλ(g) = xα̂t(λ(g)), g ∈ G.
Hence x ∈ H and so (3.4) is shown.

Next assume (B). Note thatH is a finite-dimensional α̂-invariant subspace
of M̃n, because it is the space of intertwiners between two sectors of finite
index. Since x1x

∗
2 ∈ M̃ ′ ∩ M̃n when x1, x2 ∈ H, we can define an inner

product on H by 〈x1, x2〉 = φ̃(x1x
∗
2). Then α̂ acts on H as a unitary group

of Ĝ. Hence by the spectral decomposition, there exist a basis {xj}mj=1 of H
and {gj}mj=1 ⊂ G such that α̂s(xj) = 〈gj, s〉xj, s ∈ Ĝ. Set zj = xjλ(g−1

j ) in

M̃n. Then zj ∈Mn follows from

α̂s(zj) = 〈gj, s〉xjα̂s
(
λ(g−1

j )
)

= zj, s ∈ Ĝ.
We get for every y ∈M

yzjλ(gj) = zjλ(gj)α̂t(y) = zjλ(gj)(y) = zjαgj (y)λ(gj),

so that yzj = zjαgj (y). Since zj 6= 0, (B) gives gj = e and so xj ∈ M̃ α̂
n = Mn.

This shows that H ⊂M ′ ∩Mn. Moreover, if x ∈ H then

αg(x)λ(g) = λ(g)x = xα̂t(λ(g)) = 〈g, t〉xλ(g)

and hence αg(x) = 〈g, t〉x, g ∈ G. Therefore the equality holds in (3.4).
(2) Via the Takesaki duality (3.2) with ˆ̂α ∼= α ⊗ Adλ∗, applying the

above (1) to (Ñ ⊂ M̃, α̂) instead of (N ⊂M,α), we have

Eig
(
α̂|M̃ ′∩M̃n

) ⊂ {g ∈ G : αg ⊗Adλ∗g ≺ (ρρ)n ⊗ 1}
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with the equality in case of (C). Since αg ⊗Adλ∗g ≺ (ρρ)n ⊗ 1 if and only if
αg ≺ (ρρ)n, we get the result.

Lemmas 3.2(1) and Proposition 3.3 give:

Corollary 3.4.
(1) If α̂ satisfies (C), then (M̃ ′ ∩ M̃n)α̂ = M ′ ∩Mn for all n ≥ 0.

(2) If α satisfies (B), then (M ′ ∩Mn)α = M̃ ′ ∩ M̃n for all n ≥ 0.

Consequently, we obtain the assertions (1)-(3) of Proposition 2.3 under
(B) and the reverse assertions under (C).

In the rest of the section, we assume that G is of the form Rd ×Td′ ×G0

where d, d′ are nonnegative integers and G0 is a finitely generated abelian
group. In other words, G is written as G = G1 × · · · × GN where each Gn

is R or T or a cyclic group. Let us show that the growth of GÑ,M̃ can be
controlled by those of GN,M and α|⋃

n
M ′∩Mn

. The following is a key lemma.

Lemma 3.5. Let G be as above, B be a finite-dimensional algebra given a
faithful normalized trace φ, and α be an action of G on B. Let [aij]1≤i≤l, 1≤j≤m
be the inclusion matrix of Bα ⊂ B, and (β1, . . . , βm) and (γ1, . . . , γl) be
the trace vectors of B and Bα, respectively, where m = dimZ(B) and l =
dimZ(Bα). Let Eig(α) be the set of eigenvalues of α (see (3.3)) and put
W = # Eig(α). Then the following hold with N given above:
(1)

∑
j aij ≤WN for all i,

(2)
∑
i aij ≤WN for all j,

(3) maxi γi ≤WN maxj βj.
Furthermore, if G is R or T or a cyclic group, then

(4) W ≤ l2 maxi γi/minj βj.

Proof. First suppose G = R. Since α fixes the central projections of B by
continuity, we may assume that B = Md(C) (i.e. m = 1) and hence there
exists a selfadjoint element H in Md(C) such that αg = Ad e

√−1gH , g ∈ R.
Take the spectral decomposition H =

∑l
i=1 tipi. Then Bα =

⊕l
i=1 piBpi and

Eig(α) = {ti−ti′ : 1 ≤ i, i′ ≤ l}. So we have ai1 = 1 for all i,
∑
i ai1 = l ≤W,

and W ≤ l2. Since γi = 1/d = β1, the desired assertions hold in this case.
The case G = T is similarly shown.

Second suppose G = 〈g〉, a cyclic group. Set α = αg. By the argument
preceding Lemma 2.5, we may assume that α is transitive on the minimal
central projections f1, . . . , fm of B; more precisely αj(f1) = fj+1, 1 ≤ j < m,

and αm(f1) = f1. By the proof of Lemma 2.5 we have

Bα =


m−1⊕
j=0

αj(x) : x ∈ (Bf1)α
m

 ∼= (Bf1)α
m
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and αm|Bf1
= Ad U with a unitary U in Bf1. Take the spectral decompo-

sition U =
∑l
i=1 λipi, so that Eig(αm|Bf1

) = {λiλ−1
i′ : 1 ≤ i, i′ ≤ l}. Since

aij = 1 for all i, j, we have
∑
j aij = m and

∑
i aij = l. But m ≤ W is

seen because α acts on
⊕m

j=1 Cfj ∼= Cm as a cyclic permutation matrix. If
αm(x) = λx for 0 6= x ∈ Bf1, then

α

m−1∑
j=0

λ−j/mαj(x)

 = λ1/m
m−1∑
j=0

λ−j/mαj(x),

showing λ1/m ∈ Eig(α). This implies that l ≤ # Eig(αm|Bf1
) ≤ W. Also

γi/βj = m for all i, j. Moreover, if α(x) = µx for 0 6= x ∈ B, then α(xfj) =
µxfj+1 for 1 ≤ j < m and α(xfm) = µxf1, implying αm(xf1) = µmxf1 with
xf1 6= 0. This shows that W ≤ # Eig(αm|Bf1

)m ≤ l2m. Hence the desired
assertions hold in case of a cyclic group.

Finally suppose G = G1 × · · · × GN and so Ĝ = Ĝ1 × · · · × ĜN , where
each Gn is R or T or a cyclic group. Let B0 = B and for 1 ≤ n ≤ N, Bn
be the fixed point algebra of αG1×···×Gn . Then Bα = BN ⊂ · · · ⊂ B1 ⊂ B.

Let Γ(n) = [a
(n)
ij ] be the inclusion matrix of Bn ⊂ Bn−1 for 1 ≤ n ≤ N. Since

Bn = (Bn−1)αGn , the above cases show that
∑
j a

(n)
ij ≤ # Eig(αGn |Bn−1

) and∑
i a

(n)
ij ≤ # Eig(αGn |Bn−1

) for all n, i, j. We further get # Eig(αGn |Bn−1
) ≤

W for all n, because the eigenspaces of αGn |Bn−1
is invariant for any αGn′ ,

n′ 6= n. Since [aij] = Γ(N)Γ(N−1) · · ·Γ(1), these estimates yields (1) and (2).
Also (3) is easily checked. The last assertion is already shown in the above
cases of N = 1.

Theorem 3.6. Let G be of the form Rd×Td′×G0 with nonnegative integers
d, d′ and a finitely generated abelian group G0.

(1) Assume that α|⋃
n
M ′∩Mn

has subexponential growth. Then ‖ΓN,M‖ ≤
‖ΓÑ,M̃‖ and limn→∞ 1

n
J(M ′ ∩Mn) ≤ limn→∞ 1

n
J(M̃ ′ ∩ M̃n). Hence, if

GN,M is amenable or strongly amenable, then so is GÑ,M̃ , respectively.
The converse holds true as well if α satisfies (B).

(2) Assume that α satisfies (B). If both GN,M and α|⋃
n
M ′∩Mn

have polyno-

mial growth or subexponential growth, then so does GÑ,M̃ , respectively.
Moreover, the converse holds true if G is R or T or a cyclic group.

Proof. (1) Put Wn = # Eig(α|M ′∩Mn
), n ≥ 0. Then for each n ≥ 0, (1)

and (2) of Lemma 3.5 imply (1)-(3) of Lemma 2.7 for the inclusion matrix
of (M ′ ∩Mn)α ⊂M ′ ∩Mn, where W is replaced by WN

n . Hence the proof of
Theorem 2.8(3) gives

dimM ′ ∩Mn ≤W 4N
n dim(M ′ ∩Mn)α ≤W 4N

n dim M̃ ′ ∩ M̃n
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by Lemma 3.2(1). Also the proof of Theorem 2.8(4) gives

J(M ′ ∩Mn) ≤ J ((M ′ ∩Mn)α) + logW 4N
n ≤ J

(
M̃ ′ ∩ M̃n

)
+ logW 4N

n

thanks to Lemma 1.7. Since limn→∞W 1/n
n = 1 by assumption, we have

‖ΓN,M‖ ≤ ‖ΓÑ,M̃‖ and limn→∞ 1
n
J(M ′ ∩ Mn) ≤ limn→∞ 1

n
J(M̃ ′ ∩ M̃n),

showing the first part. The converse assertion under (B) is immediate from
Corollary 3.4(2).

(2) By (1)-(3) of Lemma 3.5 and Corollary 3.4(2), we have (1) and (2)
of Theorem 2.8 with WN

n in place of W ; namely

W−N
n (#Kn) ≤ #K̃n ≤WN

n (#Kn),(3.5)

max
k∈Kn

sk ≤ max
k∈K̃n

s̃k ≤W 2N
n max

k∈Kn
sk.(3.6)

These imply the first assertion. Conversely, assume that G is R or T or a
cyclic group and that GÑ,M̃ has subexponential growth (resp. polynomial
growth). Then Lemma 3.5(4) yields

W2n ≤
(
#K̃n

)2

max
k∈K̃n

s̃k

/
min
k∈Kn

sk =
(
#K̃n

)2

max
k∈K̃n

s̃k

thanks to mink∈K sk = 1. This implies that α|⋃
n
M ′∩Mn

has subexponential

growth (resp. polynomial growth). Hence so does GN,M too by (3.5) and
(3.6).

In what follows, we assume that N ⊂ M has finite depth. Then it is
known [9, 4.6.3] that there exists n0 ∈ N such that

M ′ ∩Mn+1 = span((M ′ ∩Mn)en+1(M ′ ∩Mn)), n ≥ n0.(3.7)

Set A = M ′ ∩Mn0
and pn = en0+n, n ≥ 1, for brevity. Our aim below is

to prove that α|⋃
n
M ′∩Mn

automatically polynomial growth in this case. We

need the following lemmas.

Lemma 3.7. With the assumption and the notations above,
(1) [A, pn] = 0, n ≥ 2,

(2) p1Ap1 ⊂ p1A,

(3) p2p1Ap2 = p2A,

(4) pnpn−1 · · · p1Apn = pnpn−2 · · · p1A, n ≥ 3.

Proof. (1) is trivial from en ∈M ′
n−2 ∩Mn, and (2) follows from

en0+1Aen0+1 = en0+1En0
(A) ⊂ en0+1A.
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We have (3) and (4) because

en0+n(en0+n−1 · · · en0+1A)en0+n

= en0+nEn0+n−1(en0+n−1 · · · en0+1A)

= en0+nEn0+n−1(en0+n−1)en0+n−2 · · · en0+1A

= en0+nen0+n−2 · · · en0+1A.

Lemma 3.8. For every n ≥ 1,

M ′ ∩Mn0+n = span(Ap1Ap2p1A · · ·Apnpn−1 · · · p1A).(3.8)

Proof. By induction on n. The case n = 1 is (3.7). Suppose that (3.8) holds
for n − 1. Then by (3.7) and repeated use of Lemma 3.7, we compute as
follows:

M ′ ∩Mn0+n

= span((Ap1Ap2p1A · · ·Apn−1 · · · p1A)pn(Ap1Ap2p1A · · ·Apn−1 · · · p1A))

= span(Ap1A · · ·Apn−1 · · · p3(p2p1Ap1Ap2)p1Ap3p2p1A · · ·A
pn−2 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−1 · · · p3p2(A)p1Ap3p2p1A · · ·A
pn−2 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−1 · · · p4(p3p2p1Ap3)p2p1Ap4 · · · p1A · · ·A
pn−2 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−1 · · · p3(p1A)p2p1Ap4 · · · p1A · · ·Apn · · · p1A)

= span(Ap1A · · ·Apn−2 · · · p2(p1Ap1A)pn−1 · · · p5(p4 · · · p1Ap4)p3p2p1A

p5 · · · p1A · · ·Apn−2 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−2 · · · p1Apn−1 · · · p4(p2p1A)p3p2p1Ap5 · · · p1A

· · ·Apn−2 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−2 · · · p3(p2p1Ap2p1A)pn−1 · · · p1Ap5 · · · p1A

· · ·Apn−2 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−2 · · · p1Apn−1 · · · p6(p5 · · · p1Ap5)p4 · · · p1A

· · ·Apn−2 · · · p1Apn · · · p1A).

Continuing the above process, we arrive at

M ′ ∩Mn0+n
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= span(Ap1A · · ·Apn−2 · · · p1Apn−1(pn−2 · · · p1Apn−2)pn−3 · · · p1A

pn · · · p1A)

= span(Ap1A · · ·Apn−2 · · · p1Apn−1pn−2(pn−4 · · · p1A)pn−3 · · · p1A

pn · · · p1A)

= span(Ap1A · · ·Apn−2pn−3(pn−4 · · · p1Apn−4)pn−5 · · · p1A

pn−1 · · · p1Apn · · · p1A)

= span(Ap1A · · ·Apn−3pn−4pn−5(pn−6 · · · p1Apn−6)pn−7 · · · p1A

pn−2 · · · p1Apn−1 · · · p1Apn · · · p1A).

Repeat the final step in the above for n even or odd separately. Then (3.8)
for n is obtained.

Theorem 3.9. If N ⊂M has finite depth, then α|⋃
n
M ′∩Mn

has polynomial

growth.

Proof. Let A and pn be as above. Since α acts as a unitary group on the
Hilbert space A equipped with the inner product induced by φ, we can choose
{tj}mj=1 in Ĝ and an orthonormal basis {xj}mj=1 of A such that αg(xj) =
〈g, tj〉xj for all g ∈ G and 1 ≤ j ≤ m. Since αg(pn) = pn, we get

αg(xj0p1xj1p2p1xj2 · · ·xjn−1
pn · · · p1xjn)

= 〈g, tj0tj1 · · · tjn〉xj0p1xj1p2p1xj2 · · ·xjn−1
pn · · · p1xjn

for any j0, . . . , jn ∈ {1, . . . ,m}. Lemma 3.8 means that

M ′ ∩Mn0+n

= span{xj0p1xj1p2p1xj2 · · ·xjn−1
pn · · · p1xjn : j0, . . . , jn ∈ {1, . . . ,m}},

which implies that

Eig
(
α|M ′∩Mn0+n

)
⊂
{

n∏
k=0

tjk : j0, . . . , jn ∈ {1, . . . ,m}
}

=


m∏
j=0

t
nj
j : n1, . . . , nm ≥ 0,

m∑
j=1

nj = n+ 1

 .
Therefore

# Eig
(
α|M ′∩Mn0+n

)
≤ #

(n1, . . . , nm) : n1, . . . , nm ≥ 0,
m∑
j=1

nj = n+ 1


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≤ (n+ 2)m ≤ (n0 + n+ 1)m,

completing the proof.

By Theorems 3.6 and 3.9 we obtain:

Corollary 3.10. Let G be as in Theorem 3.6. Assume that N ⊂ M

has finite depth. Then GÑ,M̃ is strongly amenable. Furthermore, GÑ,M̃ has
polynomial growth whenever α satisfies (B).

The results stated in Theorem 3.6 and Corollary 3.10 can be reversed,
where (N ⊂ M,α) and (Ñ ⊂ M̃, α̂) are interchanged with (C) instead of
(B).

4. Type II and type III invariants.

In this section, we apply the results of Section 3 to compare the type II and
type III standard invariants for inclusions of type III factors. Let us consider
either of the following two cases:

Case 1. Let N ⊂ M be an inclusion of type III1 factors with finite index
and set σ = σψ◦E0 , the modular automorphism group, where ψ is a faithful
normal state on N and E0 : M → N is the minimal conditional expectation.
Since σ|N = σψ, the inclusion Ñ ⊂ M̃ of type II∞ factors is defined by(

Ñ ⊂ M̃
)

= (N oσ R ⊂M oσ R).

Then the Takesaki duality says that

(N ⊂M) ∼=
(
Ñ oθ R ⊂ M̃ oθ R

)
,

where θ is the dual action of σ.

Case 2. Let N ⊂ M be an inclusion of type IIIλ factors (0 < λ < 1) with
finite index. Assume that N ⊂M admits a common discrete decomposition:

(N ⊂M) =
(
Ñ oθ Z ⊂ M̃ oθ Z

)
.

Here Ñ ⊂ M̃ is an inclusion of type II∞ factors and θ is the dual automor-
phism of the modular action σ with the period T = −2π/ log λ. Hence(

Ñ ⊂ M̃
) ∼= (N oσ (R/TZ) ⊂M oσ (R/TZ)).

Note [29, 30] that an irreducible inclusion N ⊂M of type IIIλ automatically
has a common discrete decomposition, but not in general.
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In the above cases, the canonical extension Ẽ0 : M̃ → Ñ of the minimal
conditional expectation E0 is the conditional expectation with respect to the
canonical trace tr on M̃ (tr |Ñ is the canonical trace on Ñ). Thus we can
write (

Ñ ⊂ M̃
)

= (B ⊗B(H) ⊂ A⊗B(H))

with an extremal inclusion B ⊂ A of type II1 factors. The Jones tower {Mn}
for N ⊂M is identified with {M̃noθ R} (or {M̃noθ Z}), where {M̃n} is the
Jones tower for Ñ ⊂ M̃.

Since θ is trace-scaling, i.e. tr ◦ θ = e−s tr, s ∈ R (or tr ◦ θ = λ tr), it is
seen [40, 1.6] that θt, t 6= 0, are strongly outer (or θ is a strongly outer
action of Z) on Ñ ⊂ M̃. It was observed in [28, 29] (see also Corollary 3.4)
that (

M̃ ′ ∩ M̃n

)θ
= M ′ ∩Mn, n ≥ 0.

When N = ρ(M) for some ρ ∈ End(M), Proposition 3.3 shows that the
growth of θ|⋃

n
M̃ ′∩M̃n

is determined by that of #{t ∈ [0, T ) : σt ≺ (ρρ)n},
n ≥ 0, where T =∞ in Case 1 and T = −2π/ log λ in Case 2.

In this way, we are in the situation supposed in Section 3. We write
GIII = GN,M and GII = GÑ,M̃ , and refer to them as the type III and the type
II standard invariants of N ⊂ M, respectively. Before stating the theorem,
we recall some known results concerning the difference of type II and type
III standard invariants.

1◦ Let N ⊂ M be as in Case 1 or Case 2 above and assume that N =
ρ(M) with ρ ∈ End(M). The type II and type III principal graphs
of N ⊂ M are different if and only if a modular automorphism σt
(t 6∈ T (M)) appears in

⊔
n(ρρ)n. Thus GII = GIII if N ⊂M is a type III1

inclusion with finite depth. These were proved in [18] (and seen from
Proposition 3.3). Moreover, Izumi [19] announced a corresponding
result in the type III0 case in terms of “modular endomorphisms”.

2◦ If N ⊂ M is a type III1 inclusion whose type II principal graph (or
dual principal graph) include no circle, then GII = GIII (see the proof
of [28, Corollary 7]). Thus, concerning N ⊂ M of type III1 with
[M : N ]0 ≤ 4, the difference of type II and type III graphs occurs only
when N ⊂ M is a locally trivial inclusion having the type II graph
A(1)
n and the type III graph A∞,∞ (see [30, 45]).

3◦ Let N ⊂ M be of type IIIλ with a common discrete decomposition.
In case of index less than 4, a graph change occurs only when the
type II graph is D2n and the type III graph is A4n−3 (see [28]). In
case of index 4, there are a variety of graph changes as was listed in
[30, Theorem 4.4].
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4◦ The coincidence of GII and GIII is obviously necessary for a type III
inclusion to split as a type II1 inclusion tensored with a common type
III factor. According to [29, 22], if N ⊂ M is an AFD type IIIλ
inclusion of finite depth with a common discrete decomposition and
GII = GIII, then there exists an AFD type II1 inclusion B ⊂ A such
that (N ⊂ M) ∼= (B ⊗ Rλ ⊂ A ⊗ Rλ), Rλ being the AFD type IIIλ
factor. The splitting theorem in the final form was recently presented
by Popa [42] under the strong amenability condition including the type
III1 case.

5◦ Note [36] that if N ⊂M is of type II1 such that 4 < [M : N ] < 3+2
√

2
and N ′ ∩M 6= C1, then N ⊂ M is locally trivial and [M : N ]0 = 4.
According to [11], there is a small possibility for (dual) principal graphs
of irreducible type II1 inclusion N ⊂M with 4 < [M : N ] < 3 +

√
3. In

fact, the graphs of such inclusions are restricted to A∞ or a few series of
finite graphs. Furthermore, in the finite depth case, the graphs for each
possible index value are just a pair of principal and dual principal ones.
These results show by Proposition 1.2 that if N ⊂ M is an inclusion
of arbitrary factors with 4 < [M : N ]0 < 3 +

√
3, then N ⊂ M is

irreducible and its graph receives the same restriction as in [11]. Let
N ⊂M be as in Case 1 or Case 2. It is clear that when the type II or
type III graph of N ⊂M is A∞, a graph change is impossible. Also, it
is impossible that the type II and type III graphs of N ⊂M are a dual
pair of different ones, as is obvious from dimN ′∩Mn−1 = dimM ′∩Mn.

So we see that GII = GIII whenever 4 < [M : N ]0 < 3 +
√

3.
Now we state the next theorem, which is immediate from the results of

Section 3.

Theorem 4.1. Let N ⊂M be an inclusion of type III factors in Case 1 or
Case 2. Then:
(1) If GIII of N ⊂ M is of finite depth, amenable, or strongly amenable,

then so is GII, respectively.

(2) If θ|⋃
n
M̃ ′∩M̃n

has subexponential growth, then GIII of N ⊂M is amen-

able or strongly amenable if and only if so is GII, respectively.

(3) GIII of N ⊂ M has polynomial growth or subexponential growth if and
only if so do both GII and θ|⋃

n
M̃ ′∩M̃n

, respectively.

(4) If the type II inclusion Ñ ⊂ M̃ has finite depth, then GIII of N ⊂ M

has polynomial growth (hence it is strongly amenable).

The following example shows that the above (4) is best possible.

Example 4.2. Consider locally trivial inclusions determined by modular au-
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tomorphisms. Let P be a type III1 factor and σ the modular automorphism
group with respect to a faithful normal state ϕ0 on P. Choose r0 = 0,
r1, . . . , rm ∈ R and define

N =

{
m∑
i=0

σri(x)⊗ eii : x ∈ P
}
⊂M = P ⊗Mm+1(C),

where {eij}0≤i,j≤m is the matrix units of Mm+1(C). Then [M : N ]0 = (m+1)2

and the minimal conditional expectation E0 : M → N is given by

E0

 m∑
i,j=0

xij ⊗ eij
 =

m∑
i=0

σri

 1

m+ 1

m∑
j=0

σ−1
rj

(xjj)

⊗ eii.
Set ψ(

∑m
i=0 σri(x) ⊗ eii) = ϕ0(x), x ∈ P, and ϕ = ψ ◦ E0. Since ϕ = ϕ0 ⊗ τ

with the normalized trace τ on Mm+1(C) and so σϕ = σ ⊗ id, it is easy to
see that the type II inclusion (Ñ ⊂ M̃) = (N oσψ R ⊂ M oσϕ R) is given
as follows:

Ñ =

{
m∑
i=0

σ̃ri(x̃)⊗ eii : x̃ ∈ P̃
}
⊂ M̃ = P̃ ⊗Mm+1(C),

where P̃ = PoσR and σ̃r is the canonical extension of σr, i.e. σ̃r(x) = σr(x),
x ∈ P, and σ̃r(λ(t)) = λ(t), t ∈ R. Since σ̃r ∈ Int(P̃ ), it follows that(

Ñ ⊂ M̃
) ∼= (

P̃ ⊗C1 ⊂ P̃ ⊗Mm+1(C)
)

and hence Ñ ⊂ M̃ has depth 1. On the other hand, the standard invariants
of locally trivial inclusions were computed in [1], [39, 5.1.5], and [45, 46]. In
our setting, N ⊂M has infinite depth. Indeed, choose isometries v0, . . . , vm
in P with

∑m
i=0 viv

∗
i = 1 and define ρ ∈ End(P ) by ρ(x) =

∑m
i=0 viσri(x)v∗i .

Then we can readily see that (N ⊂M) ∼= (ρ(P ) ⊂ P ) and [ρ] = [id]⊕ [σri ]⊕
· · · ⊕ [σrm ]. Hence the irreducible components of [(ρρ)n] are[σr] : r =

m∑
i,j=1

nij(ri − rj), nij = 0, 1, 2, . . . ,
m∑

i,j=1

nij = n

 .
In particular, if r1, . . . , rm are linearly independent over the rationals, then
θ|⋃ M̃ ′∩M̃n

has the polynomial growth of exactly order nm. Also, let P be a

type IIIλ factor (0 < λ < 1) with ϕ0 a λ-trace. Then N ⊂M is an example
of Case 2, and we have the same conclusion when r1, . . . , rm, −2π/ log λ are
linearly independent over the rationals.
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We end with stability properties for a type III inclusion to have the same
GII and GIII.

Proposition 4.3. Let N ⊂ M be an inclusion of AFD type III1 factors
with finite index. Assume that N ⊂ M has the same type II and type III
principal graphs. Then:
(1) Any intermediate inclusion Q ⊂ P of factors with N ⊂ Q ⊂ P ⊂ Mn

has the same type II and type III graphs.

(2) Any descendant inclusion Np ⊂ pMnp with a projection p ∈ N ′ ∩Mn

has the same type II and type III graphs.

Proof. By assumption of AFD, all factors in question are isomorphic, so that
we are free to use the sector technique. For ρ ∈ End(M), we say that ρ (or
ρ(M) ⊂ M) satisfies (#) if GII = GIII for ρ(M) ⊂ M, that is, any modular
automorphism σt (t 6= 0) does not appear in

⊔
n(ρρ)n. In the following, let

ρ, η ∈ End(M) with d(ρ), d(η) <∞. First let us show:
(a) If ρ satisfies (#), then so does ρ.

(b) If ρ satisfies (#) and if η ≺ (ρρ)n or η ≺ (ρρ)nρ for some n ≥ 0, then
η satisfies (#).

(c) If ρη satisfies (#), then so does ρ.
Since (M ⊂ M1) ∼= (ρ(M) ⊂ M) where M1 is the basic construction for

N = ρ(M) ⊂M (see [33, p. 296]), it suffices for (a) to show that the strong
outerness of σt on N ⊂M is equivalent to that of σt on M ⊂M1. But this is
immediate from the equivalence of conditions in Definition 1.10. If η ≺ (ρρ)n

or η ≺ (ρρ)nρ, then the irreducible components of
⊔
k(ηη)k are contained in⊔

k(ρρ)k. Hence (b) holds. Since ρρ ≺ (ρη)(ρη), (c) follows.
(1) Let N = ρ(M) ⊂ M with ρ ∈ End(M) and assume that ρ satisfies

(#). Since

(M ⊂M2n) ∼= ((ρρ)n(M) ⊂M), (M ⊂M2n+1) ∼= ((ρρ)nρ(M) ⊂M),

it follows from (a) and (b) that M ⊂ Mn satisfies (#) for all n ≥ 0. Since
(N1 ⊂ N) ∼= (ρ(M) ⊂M), N ⊂Mn also satisfies (#) for all n ≥ 0. Hence it
is enough to show that if N ⊂ P ⊂M then P ⊂M and N ⊂ P satisfy (#).
Write P = ρ(M) and N = ρ1(M) with ρ, ρ1 ∈ End(M), and set η = ρ−1ρ1.

Then η ∈ End(M) and ρη = ρ1 satisfies (#) by assumption. Hence (c)
implies that ρ (i.e. P ⊂ M) satisfies (#). Moreover, it is easy to see that
N ⊂ M satisfies (#) if and only if so does M ′ ⊂ N ′. So the above case can
be applied to M ′ ⊂ P ′ ⊂ N ′, so that N ⊂ P satisfies (#).

(2) The case n = 1 is enough by (1). For any projection p ∈ N ′ ⊂ M,

there exists η ∈ End(M) such that η ≺ ρ and (Np ⊂ pMp) ∼= (η(M) ⊂M).
Hence (b) shows the result.
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The above proposition holds true also when N ⊂M is an inclusion of AFD
type IIIλ factors with a common discrete decomposition. But we assume for
(1) that Q ⊂ P is of type IIIλ and has a common discrete decomposition
too. When N ⊂ M actually splits into the form B ⊗ L ⊂ A ⊗ L with a
type II1 inclusion B ⊂ A, it is rather trivial that Q ⊂ P and Np ⊂ pMnp in
Proposition 4.3 split by the same L.

For an inclusion N ⊂ M of type III factors such that Z(M oσ R) =
Z(N oσ R) and N = ρ(M) for some ρ ∈ End(M), Kosaki [27] recently
introduced the relative T -set T (M,N) by

T (M,N) =

{
t ∈ R : σt ≺

⊔
n

(ρρ)n
}
.

When N ⊂ M is as in Case 1 or Case 2, the above 1◦ mean that GII = GIII

if and only if T (M,N) = T (M). Furthermore, the proof of Proposition 4.3
shows that T (P,Q) ⊂ T (M,N) = T (Mn,Mi) for any i < n and T (pMnp,Np) ⊂
T (M,N).

Let N1 ⊂ M 1 and N2 ⊂ M 2 be type III inclusions in Case 1 or Case 2.
Then the tensor product inclusion N 1⊗N2 ⊂M1⊗M 2 is in Case 1 or Case 2
as well. For example, if N i ⊂ M i is of type IIIλi (0 < λi < 1, i = 1, 2),
then N1⊗N2 ⊂M1⊗M 2 is in Case 1 or Case 2 accordingly as log λ1/ log λ2

irrational or not. Assume that N i = ρi(M
i) for some ρi ∈ End(M i), i = 1, 2.

Then the following was shown in [27] by using the sector technique:

T (M1 ⊗M 2, N1 ⊗N2) = T (M 1, N1) ∩ T (M 2, N2).

In particular, this implies the following:

Proposition 4.4. With the above assumption, if both N1 ⊂M1 and N2 ⊂
M2 have the same type II and type III graphs, then so does N 1 ⊗ N2 ⊂
M1 ⊗M 2.

Remark 4.5. The notion of the central freeness for subfactors was intro-
duced in [41, 42], and it was shown in [42, Chapters 3, 4] that a type III
inclusion N ⊂ M is centrally free if and only if GII = GIII for N ⊂ M. So
Propositions 4.3 and 4.4 are considered as stability properties of the central
freeness. Indeed, similar results concerning the central freeness were given
in [41, 42].
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Sup., 19(4) (1986), 57-106.

[37] S. Popa, Classification of subfactors: the reduction to commuting squares, Invent.
Math., 101 (1990), 19-43.

[38] , Sur la classification des sous-facteurs d’indice fini du facteur hyperfini,
C.R. Acad. Sci. Paris, 311(I) (1990), 95-100.

[39] , Classification of amenable subfactors of type II, Acta Math., 172 (1994),
163-255.

[40] , Classification of actions of discrete amenable groups on amenable subfactors
of type II, preprint.

[41] , Approximate innerness and central freeness for subfactors: a classification
result, in Subfactors, H. Araki et al. (Eds.), World Scientific, Singapore, (1994),
274-293.

[42] , Classification of subfactors and of their endomorphisms, CBMS Regional
Conf. Ser. in Math., 86, Amer. Math. Soc., 1995.

[43] , An axiomatization of the lattice of higher relative commutants of a subfac-
tor, Invent. Math., 120 (1995), 427-445.

[44] T. Sano and Y. Watatani, Angles between two subfactors, J. Operator Theory, 32
(1994), 209-241.

[45] Y. Sekine, An inclusion of type III factors with index 4 arising from an automor-
phism, Publ. Res. Inst. Math. Sci., 28 (1992), 1011-1027.

[46] , Inclusions of type III factors arising from finite group actions, Tokyo J.
Math., 15 (1992), 419-430.



CROSSED PRODUCT INCLUSIONS 267
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