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WIENER TAUBERIAN THEOREMS FOR SL2(R)

Rudra P. Sarkar

In this article we prove a Wiener Tauberian theorem for
Lp(SL2(R)), 1 ≤ p < 2. Let G be the group SL2(R) and K its
maximal compact subgroup SO(2,R). Let M be {±I}. We show
that if the Fourier transforms of a set of functions in Lp(G) do
not vanish simultaneously on any irreducible Lp−ε-tempered
representation for some ε > 0, where they are assumed to be
defined, and if for each M-type at least one of the matrix
coefficients of any of those Fourier transforms does not ‘decay
too rapidly at ∞’ in a certain sense, then this set of functions
generate Lp(G) as a L1(G)-bimodule. As a key step towards
this main theorem we prove a W-T Theorem for Lp-sections
of certain line bundles over G/K. W-T theorems on SL2(R)
have been proved so far, for biinvariant L1 functions and for
L1 functions on the symmetric space SL2(R)/SO(2,R), where
the generator is left K-finite. Our results are on the space of
all Lp functions (resp. sections), p ∈ [1, 2) of SL2(R) (resp. of
line bundles over SL2(R)/SO(2,R)), without any restriction of
K-finiteness on the generators.

1. Introduction.

Let G be the group SL2(R) and K its maximal compact subgroup SO(2,R).
We denote the characters of K by χn, n ∈ Z. A complex valued function f

on G is said to be of left (resp. right) K-type n if f(kx) = χn(k)f(x) (resp.
f(xk) = χn(k)f(x)), for all k ∈ K and x ∈ G. For a class of functions F
on G (e.g. Lp(G)), Fn will denote the corrsponding subclass of functions of
right type n while Fm,n will contain functions which are also of left type m.
The subclass of F consisting of functions with integral zero will be denoted
by F0. Principal and discrete parts of the Fourier transform of a function
f will be denoted by f̂H and f̂B respectively. Unless mentioned otherwise p
will lie in [1, 2). Most of the time we follow the notation and terminogy of
[Ba].

In this article we prove a Wiener Tauberian theorem (W-T theorem) for
Lp(SL2(R)), 1 ≤ p < 2. As a key step towards the main theorem we prove
a W-T Theorem for Lp-sections of certain line bundles over G/K. The W-T
Theorem for SL2(R) was first studied in [E-M] where two different versions
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of the theorem were obtained for biinvariant L1 functions. More precisely,
sufficient conditions for a single function f ∈ L1(G)0,0 to generate L1(G)0,0

as a closed ideal (under convolution) were established. The second version
was extended in [S] to determine sufficient conditions on a K-finite function
in L1(G/K) forcing it to generate L1(G/K) as a closed left L1(G) module.
In a recent paper [B-W], sufficient conditions are obtained on a family of
functions to generate L1(G)0,0.

Our point of departure in this article is the observation that both of the
theorems of [E-M] can be extended to Lp(G)n,n for all n ∈ Z. This is made
possible by:
(1) The isomorphism between each Lp-Schwartz space Cp(G) and its Fouri-

er transform Cp(Ĝ) which respects the spherical types as well as the
splitting in continuous and discrete parts ([T] and [Ba]) and hence
allows the continuous and discrete components of a Cp-function to be
treated separately.

(2) The fact that for any function of a fixed K-type, only finitely many
discrete series representations are relevant.

The W-T theorem for Lp(G)n,n can be extended further to Lp(G)n to give
an analogue of the L1(G/K) case treated in [S], using the techniques used
there. However, these techniques do not work unless the generating functions
are K-finite and are at most finitely many. But, coming to our problem, it is
not difficult to see that one can not generate the whole of Lp(G) by starting
from a K-finite function or by finitely many of them. Besides, for generating
Lp(G) one has to generate Lp(G)n for every n. And every Lp(G)n should be
generated by using the full strength of the generating function f ∈ Lp(G),
not simply by the right n type projection of f (which may be even zero!). All
the projections of f in various right types should work together to generate
Lp(G)n, for a particular n. This rules out the finitely-many-generators model
of [S] as a starting point of this extension. We bypass this obstacle by
taking resort to the result in [B-W] for biinvariant L1 functions. It enables
us to prove a W-T Theorem for Lp-sections of certain line bundles over
G/K without any K-finite restriction on the generator-sections. This is the
intermediate step we mentioned above. Before stating our result we establish
some more notation.

For each p let γ = 2
p
− 1 and define Sγ by

Sγ = {λ ∈ C| |<λ| ≤ 2/p− 1}.

Let Sγδ denote the augmented strip {λ ∈ C| |<λ| ≤ γ + δ} for δ > 0. Let
Γn denote the integers between 0 and n of parity opposite to n. Then for
f ∈ Lp(G)n (equivalently for the Lp-sections of the bundle corresponding to
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n) the natural domain of the continuous part of the Fourier transform, f̂H
is Sγ while that of the discrete part f̂B is Γn.

Theorem 1.1. Let {fα|α ∈ Λ} be a subset of Lp(G)n, Λ being an index set,
such that the Fourier transform f̂αH of each fα has a holomorphic extension

on
◦
Sγδ for some δ > 0 and all the matrix coefficients of f̂αH for all α vanish

at infinity, that is, lim|λ|→∞ |(f̂αH(λ))m,n| = 0 on Sγδ . Let there be an α0 ∈ Λ

such that one of its matrix coefficients, say (f̂α0

H )m0,n satisfies moreover the
condition on decay at infinity:

lim sup
|t|→∞

∣∣∣∣(f̂α0

H

)
m0,n

(it)eKe
|t|
∣∣∣∣ > 0 for all K > 0.(∗)

Also assume that the collections {f̂αH |α ∈ Λ} and {f̂αB|α ∈ Λ} do not have
common zeros on Sγδ and Γn respectively. Then the left L1(G) module gen-
erated by {fα|α ∈ Γ} is dense in Lp(G)n.

Moreover, in the case p = 1 and n = 0, if the collection {f̂α} does not
have any common zero on S1

δ except at ±1 then the left ideal generated by
{fα|α ∈ Λ} is dense in L1(G)0

0.

From now on, if a function satisfies the above decay condition (∗), we will
simply write that it does not ‘decay too rapidly at ∞’. Let M be {±I} ⊂
K and σ+ and σ− denote the trivial and the only nontrivial irreducible
representations of M, i.e. M̂ = {σ+, σ−}. Analogous to the K-types, we
talk of functions f on G being of M -type σ+ and σ−.

We are now in a position to describe our final result where the hypothesis
merely demands that the Fourier transforms of the generators do not vanish
simultaneously on any irreducible Lp−ε-tempered representation for some
ε > 0 and for each M -type at least one of the matrix coefficients of any of
the Fourier transforms does not ‘decay too rapidly at ∞’.

Theorem 1.2. Let {fα|α ∈ Λ} be a subset of Lp(G) such that for each

α ∈ Λ the Fourier transform f̂αH has holomorphic extension on M̂ ×
◦
Sγδ for

some δ > 0 and all matrix coefficients (f̂αH(σ, .))m,n, σ ∈ M̂ and m,n ∈ Z,
satisfy lim|λ|→∞ |(f̂αH(σ, λ))m,n| = 0 on Sγδ . Let two of the matrix coefficients,

one from each party, not decay too rapidly at ∞. If {f̂αH} and {f̂αB} do not
have common zero on M̂ × Sγδ ∪ {D+, D−} and Z∗ respectively, where D+

and D− are mock discrete series, then for p ∈ (1, 2) the L1(G)-bimodule
generated by {fα|α ∈ Λ} is dense in Lp(G).

Moreover, for the case p = 1, if there is at least one fα with nonvanishing
integral then the ideal generated by {fα|α ∈ Λ} is dense in L1(G). Otherwise,
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the ideal is dense in L1(G)0.

The ε > 0 mentioned above the theorem is brought in by the need to
choose a slightly larger domain for the Fourier transforms of the generating
functions. It is a common feature in all W-T theorems proved so far; if a
W-T theorem can be proved for L1(G)n,n without imposing this condition
then the corresponding stronger version of our result will immediately follow.
We will come back to this in the concluding remarks.

2. Notation and Preliminaries.

We denote the Lp-Schwartz space of G by Cp(G) [Ba, p. 13] and its im-
age under Fourier transform by Cp(Ĝ). Similarly Lp(Ĝ) is the image under
Fourier transform of Lp(G). Functions of left K-type m and right K-type n
are also mentioned as (m,n) type functions. By fm,n we denote the projec-
tion of f in left type m and right type n. Notation like fm are always locally
explained and may be consistent only locally. The element,(

cos θ sin θ
− sin θ cos θ

)
of K will be denoted by kθ. For details of the parametrization of representa-
tions {πσ,λ|(σ, λ) ∈ M̂ × C} of C and their realisation on L2(K) we refer to
[Ba]. However there are a few minor variations. We will mention about them
in this section. The standard orthonormal basis for L2(K) will be denoted
by en, n ∈ Z, where en(kθ) = einθ, kθ ∈ K. The (m,n)-th matrix coefficient
of the principle series representation πσ,λ will be denoted by Φm,n

σ,λ . It will
vanish when m or n does not belong to Zσ. The discrete series representa-
tions which occur as subrepresentations of πσ,k, where k is positive integer,
will be denoted by πk and their matrix coefficients will be denoted by Φm,n

k .

Here the matrix coefficients are with respect to vectors ekm and ekn, which are
suitable multiples of em and en, so as to have norm 1 in the representation
space of πk. Here we mention two estimates of the matrix coefficients:
(1) For every x ∈ G, σ ∈ M̂, m, n ∈ Zσ and λ ∈ S1 |Φm,n

σ,λ (x)| ≤ 1. ([E-M],
2.9.)

(2) For p ∈ (1, 2) and for arbitrary but fixed ε > 0, there exists Cε > 0,
such that

∫
G |Φm,n

s,λ (x)|q ≤ Cε, for all x ∈ G, σ ∈ M̂, m, n ∈ Zσ and
λ ∈ Sγ−ε.

Here Cε depends on ε and 1
p

+ 1
q

= 1. This result can also be stated as:
If an admissible representation is Lp tempered, then its matrix coefficients
are in Lq+δ for any δ > 0. (Follows from Theorem 4.1 of [Ba], which can
be considered as the definition of Lp-temperedness and from the inequalities
(3.3) and (3.4) of [Ba].)
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The representation πσ−,0 has two irreducible subrepresentations, so called
mock discrete series. We will denote them by D+ and D−. The representa-
tion spaces of D+ and D− contain en ∈ L2(K) respectively for positive odd
n’s and negative odd n’s where en(kθ) = einθ. For a function f, f̂H(D+) 6= 0
(resp. f̂H(D−) 6= 0) will mean that f̂H(σ−, 0) has a nonzero matrix coeffi-
cient, say, (f̂H(σ−, 0))m,n where em and en are in D+ (resp. D−).

The space Cp
H(Ĝ)m,n for m,n ∈ Z, consists of the continuous maps

F : Sγ → C satisfying the following properties: [Ba, p. 39]

(1) F is holomorphic on
◦Sγ , the interior of Sγ ,

(2) F (λ) = ϕm,nλ F (−λ) for all λ ∈ Sγ ,
(3) ρ̂H,l,r(F ) <∞ for all l ∈ N, r ∈ R+,

(4) F (k) = 0 if n,m < 0, k is of parity opposite to that of m,n and
|k| ≤ min{|m|, |n|, γ},

where ϕm,nλ = Pm,n(λ)

Pm,n(−λ)
for some polynomial Pm,n in λ involving m and n (see

[Ba], 7.1) and

ρ̂H,l,r(F ) = sup
λ∈Sγ

∣∣∣∣∣
(
d

dλ

)l
F (λ)

∣∣∣∣∣ (1 + |λ|)r.

In particular Pn,n = 1. So in the definition of Cp
H(Ĝ)n,n property 2 reduces

to F (λ) = F (−λ) and property 4 is not relevant.
Note that though Cp

H(Ĝ)n,n is the image under Fourier transform of func-
tions of Cp

H(G)n,n relative to the principal series representation, the definition
is independent of n. Also note that this definition is in a sense independent
of p. Only thing which changes with p is the width of the strip Sγ and so far
we want to use results of complex analysis involving holomorphic functions
on a vertical strip we are always in the same situation. For p ∈ (1, 2), anal-
ysis is rather simpler for the fact that Sγδ does not contain any integer point
parametrizing the discrete series, i.e. no discrete series is embedded in any
of the principal series parametrized by that strip.

Let

Z(k) =

{
{n ∈ Z|n > k and of parity opposite to k} if k > 0

{n ∈ Z|n < k and of parity opposite to k} if k < 0
,

Zγ(n) =

{
{k ∈ Z|γ < k < n and of parity opposite to n} if n > 0

{k ∈ Z|n < k < −γ and of parity opposite to n} if n < 0

and

Γn = Z0(n).
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Then Γn is the set of points parametrizing discrete series representations
which are relevant to a function of right or left K-type n and Zγ(n) consists
of those elements in Γn which are outside the strip Sγ .

Let Cp
B(Ĝ)n,n be the set of all functions F : Zγ(n)→ C. ([Ba, p. 37].)

Following [B-W], we define Ap◦(δ) to be the space of continuous functions
F : Sγδ → C satisfying the following properties:

(1) F is holomorphic on
◦
Sγδ ,

(2) F (λ) = F (−λ) for all λ ∈ Sγδ ,
(3) lim|λ|→∞ F (λ) = 0 for all λ ∈ Sγδ .

There is a conformal map ψ from the strip Sγδ onto the unit disc D so that
ψ(−λ) = −ψ(λ) and it maps iR onto the line segment from i to −i, namely,

ψ(λ) =
i(1− eπiλ/2(γ+δ))

(1 + eπiλ/2(γ+δ))
, λ ∈ Sγδ .

Let A0(D) be the algebra of all functions which are analytic on D and continu-
ous in its closure such that f(z) = f(−z) for all z ∈ D and f(i) = f(−i) = 0.
So if f ∈ A0(D), then f ◦ ψ ∈ Ap◦(δ).

Now one can generalize Lemma 1.3 and Lemma 1.4 of [B-W].

Lemma 2.1. Fix δ > 0. Then the set

F =

{
f ∈ Cp(G)n,n

∣∣∣∣∣f̂H can be extended holomorphically to Sγδ
and f̂H(λ)e−Kλ

2 ∈ Ap◦(δ) for some K > 0

}

is dense in Cp(G)n,n (and hence in Lp(G)n,n).

Proof. Take g ∈ C∞c (G)n,n ⊂ Cp(G)n,n. Find Fm such that Fm(λ) =
ĝH(λ)eλ

2/m ∈ Ap◦(δ) for all m ∈ N. Now using the same argument as in
Lemma 1.3 of [B-W] we show that Fm → ĝH in Cp

H(Ĝ)n,n. Actually this
proves that the set F̂H of all F ∈ Cp

H(Ĝ)n,n satisfying,
(i) F is holomorphically extendable to Sγδ and

(ii) F (λ)e−Kλ
2 ∈ Ap◦(δ) for some K > 0,

is dense in Cp
H(Ĝ)n,n.

So F̂H ⊕Cp
B(Ĝ)n,n is dense in Cp(Ĝ)n,n. But {f̂ |f ∈ F} = F̂H ⊕Cp

B(Ĝ)n,n
as for f ∈ F there is no restriction on its Fourier transform with respect to
discrete series representations

Lemma 2.2. Let δ > 0. Let fi, f be functions of type (n, n) such that
f̂iH , f̂H ∈ Ap◦(δ). If there is a K > 0 such that

f̂H(λ)e−Kλ
2 ∈ Ap◦(δ)
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and the sequence f̂iH(λ) converges to f̂H(λ)e−Kλ
2

in the topology of Ap◦(δ),
then f̂iH(λ)eKλ

2

converges to f̂H in Cp
H(Ĝ)n,n topology.

Proof. Same as the proof of Lemma 1.4 of [B-W].

Let f ∈ L1(G), then the operator valued Fourier transform f̂H(πσ,λ) =∫
f(x)(πσ,λ)(x) dx exists for <λ = 0. Now consider the matrix coefficient of

this operator valued Fourier transform, (f̂H(πσ,λ)em, en) =
∫
f(x)Φn,m

σ,λ (x) dx,

for σ ∈ M̂, <λ = 0, m, n ∈ Zσ. This last expression makes sense for all λ ∈ S1

and defines a holomorphic function on that strip for each m,n.

For f ∈ Lp(G), 1 ≤ p ≤ 2, we proceed to define the operator Fourier
transform in the following way. Write f = f1 + f2, where f1 ∈ L2(G)
and f2 ∈ L1(G). For instance, f1 = f.χ{|f |<1} and f2 = f.χ{|f |≥1}. Then

(f̂1H , f̂1B) is defined by the Plancherel theorem a.e. on <λ = 0 and on
k ∈ Z. The corresponding transforms for f2 are defined above and we write
f̂H(πσ,λ) = f̂1H(πσ,λ) + f̂2H(πσ,λ) and f̂B(πk) = f̂1B(πk) + f̂2B(πk), for σ ∈
M̂, a.e. on <λ = 0 and k ∈ Z. It can be easily checked that f̂H and f̂B
are independent of the expression f = f1 + f2. For <λ = 0, we also have
(f̂H)m,n(σ, λ) =

∫
fm,n(x)Φm,n

σ,λ (x) dx = f̂m,n(λ), where fm,n is the projection
of f on (m,n) type ([Ba, 2.4]) and σ is determined by the parity of m and
n. Moreover by the estimate (2) above in this section, f̂m,n extends to a
holomorphic function on the strip Sγ .

At this point we make an observation on the hypotheses of Theorem 1.1
and Theorem 1.2. We assume in both of them that the operator Fourier
transforms f̂H(πσ,λ) are defined for λ ∈ Sγ+δ for some δ > 0, to keep the
statement relatively simple. However, what we really need and make use of is
only that the matrix coefficients of the transforms (f̂H)m,n(λ) have analytic
extensions on Sγ+δ beyond their natural domain Sγ . The extension of the
operator transform is infact a mere notational convenience.

3. Main Results.

We now extend Theorem 1.1 of [B-W] from L1(G)0,0 to Lp(G)n,n. As always,
γ = 2

p
− 1.

Theorem 3.1. Let {fα|α ∈ Λ} be a subset of Lp(G)n,n, where Λ is an index
set. Suppose, for some δ > 0, each f̂αH can be extended holomorphically to
◦
Sγδ and satisfy lim|λ|→∞ f̂αH(λ) = 0 in

◦
Sγδ . Let there exist an α0 ∈ Λ such

that fα0

H does not ‘decay too rapidly at ∞’. Moreover, if the collections {f̂αH}
and {f̂αB} do not have common zeros on Sγδ and Γn respectively then the
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L1(G)n,n-module generated by {fα|α ∈ Λ} is dense in Lp(G)n,n.

Proof. Since f̂αH ∈ Ap0(δ) for all α ∈ Λ and fα0 does not ‘decay too rapidly
at ∞’, by Beurling-Rudin theorem (see [H]) and Lemma 1.2 of [B-W], the
algebraic ideal Î generated by f̂αH ’s is dense in Ap0(δ).

Let h ∈ F , where F is as in Lemma 2.1. Then ĥH(λ)e−Kλ
2 ∈ Ap0(δ). So

there is a sequence Fn ∈ Î such that Fn → ĥH(λ)e−Kλ
2

. Since Fn ∈ Î and
eKλ

2 ∈ Ap0(δ), Fne
Kλ2 ∈ Î and by Lemma 2.2 Fne

Kλ2

converges to ĥH(λ) in
the topology of Cp

H(Ĝ)n,n. Thus, we get a sequence in the ideal generated
by {f̂αeK′λ2}α∈Λ, for some K ′ < K, in Cp

H(Ĝ)n,n which converges to ĥH . For
p = 1 we will choose this sequence. For p > 1, using the facts that C1

H(Ĝ)n,n
is dense in Cp

H(Ĝ)n,n and Cp
H(Ĝ)n,n is a Frechét algebra, we will choose the

sequence to be in the module generated by {f̂αeK′λ2}α∈Λ over C1
H(Ĝ)n,n.

Let Zγ(n) = {ki|1 ≤ i ≤ r}. By hypothesis, for each i, 1 ≤ i ≤ r, there
exists an si ∈ Λ such that f siB (ki) 6= 0. Let Λ′ = {si|1 ≤ i ≤ r} ⊂ Λ. Let

gsi(kj) = δi,j
ĥB(kj)

f̂
sj
B (kj)

for 1 ≤ i, j ≤ r

and

gα(k) = 0 for all k ∈ Γn, for all α ∈ Λ− Λ′.

Now if we define GnB(k) =
∑
α f̂

α
B(k)gα(k) for k ∈ Γn, then GnB converges

to ĥB in the topology of Cp
B(Ĝ)n,n. This proves the theorem in view of

the existence of an isomorphism between Cp(Ĝ)n,n and Cp(G)n,n and the
injectiveness of the Fourier transform on Lp(G)n,n.

Working towards a proof of Theorem 1.1 stated in the introduction, we
recall that if f̂ = (f̂H , f̂B) ∈ Lp(Ĝ) then (f̂B(k))m,n = ηm,n(k)(f̂H(k))m,n
for k ∈ Sγ where ηm,n(k) is a positive number described in [Ba, p. 30].
Therefore (f̂B(k))m,n 6= 0⇔ (f̂H(k))m,n 6= 0.

Suppose that f̂B(k) 6= 0 for all k ∈ Γn. Then it implies the following:
(a) If n is a positive then f has at least one (non-zero component of) left

type m such that m ≥ n, because for every m < n, (f̂B(n−1))m,n = 0.
Similarly, when n is negative f has at least one left type m for some
m ≤ n.

(b) Let f ∈ L1(G)n. If n is even then there is exactly one point in the
strip S1 namely +1 or −1, which parametrizes a relevant discrete se-
ries representation depending on whether n is greater or less than zero
and δ can be chosen carefully to avoid any other such point in S1

δ . So
when n > 0 by above hypothesis f̂B(1) 6= 0. In fact there is a K-type
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m such that m ∈ Z(1) and (f̂B(1))m,n 6= 0. This is equivalent to say-
ing that (f̂H(1))m,n 6= 0. For n < 0 one can have a similar statement.
When n is odd neither the original strip S1 nor the (carefully chosen)
augmented strip S1

δ has any point-parameter of discrete series repre-
sentation relevant to this K-type n. For p ∈ (1, 2) the strip Sγ and its
δ augmentation Sγδ can avoid points which parametrize discrete series
representation.

Proof of Theorem 1.1. We will first consider the case when p = 1 and
the collection indexed by Λ contains exactly on function, f ∈ Lp(G)n. Let
fm(x) =

∫ 2π

0 e−imθf(kθx) dθ for all m ∈ Z. Then fm is an (m,n) type func-

tion and (m,n)-th matrix coefficient of f̂H , (f̂H)m,n = f̂mH . In particular
(f̂H)m0,n = f̂m0H . (Please note that the use of the notation fm for left pro-
jection of f to m type is absolutely local and has no connection with the
rest of the paper.)

Let Gm(λ) = e−λ
4

Pm(λ) where Pm is to be chosen a polynomial of λ
involving m,n. When m.n > 0 (i.e. when m is of same sign as n), then Pm
is in fact the numerator of the rational function φm,nλ (see [Ba, 7.1]), i.e.,
φm,nλ = Pm(λ)/Pm(−λ). Hence e−λ

4

Pm(λ) = φm,nλ e−λ
4

Pm(−λ) which shows
that Gm(λ) = eλ

4

Pm(λ) ∈ C1
H(Ĝ)n,m.

Ifm.n < 0 then we will have to choose the polynomial in a slightly different
way:

Case 1. Let n be odd. Then take the polynomial P ′m(λ) = Pm(λ).λ2.

Now P ′m(0) = 0 and e−λ
4

P ′m(λ) = ϕn,mλ e−λ
4

P ′m(λ). Therefore, in this case
Gm(λ) = e−λ

4

P ′m(λ) ∈ C1
H(Ĝ)n,m.

Case 2. Let n be even (hence |n|, |m| ≥ 2). Then the required polynomial
is given by P ′′m(λ) = Pm(λ).(1 − λ2). So P ′′m(±1) = 0 and e−λ

4

P ′′m(λ) =
ϕn,mλ e−λ

4

P ′′m(λ). Hence here Gm = e−λ
4

P ′′m(λ) ∈ C1
H(Ĝ)n,m.

In every case

Gm(λ)f̂mH(λ) = e−λ
4

Pm(λ)f̂mH(λ)

= e−λ
4

Pm(−λ)φn,mλ φm,nλ f̂m(−λ)

= Gm(−λ)f̂mH(−λ)

since f̂m(λ) = φm,n(λ)f̂m(−λ), fm being an (m,n) type function and φm,nλ =
1

φn,m
λ

) (see [Ba, Proposition 7.2 and Equation 9.8]). This shows that for

all m, Gmf̂mH(λ) is the Fourier transform of an (n, n) type function with
respect to principal series representation πλ. It is obvious that they can be

holomorphically extended to the strip
◦
S1
δ and that lim|λ|→∞ |Gm(λ)f̂mH(λ)| =

0 as the claims hold for fm’s.
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We will now show that Gm0
.f̂m0H does not ‘decay too rapidly at ∞’. Let

K > 0 be fixed. Take a K ′ such that 0 < K ′ < K. Then∣∣∣Gm0
(it)f̂m0H(it)eKe

|t| ∣∣∣ =
∣∣∣f̂m0H(it)Pm0

(it)eKe
|t|−λ4

∣∣∣
=
∣∣∣f̂m0H(it)Pm0

(it)e(K−K′)e|t|−t4eK
′e|t|
∣∣∣ .

So

lim sup
|t|→∞

∣∣∣Gm0
(it)f̂m0H(it)eKe

|t| ∣∣∣ > 0

as

lim sup
|t|→∞

∣∣∣f̂m0H(it)e(K−K′)e|t|−t4
∣∣∣ > 0,

∣∣∣eK′e|t| ∣∣∣ > 0.

Next, we want to show that for each λ ∈ Sγδ there is an m such that
Gm(λ)f̂mH(λ) 6= 0. The only possible zeros of the polynomials Pm, P

′
m and

P ′′m in the strip S1
δ are ±1 and 0 (where δ is chosen carefully). Let us

investigate this more closely:
(i) Pn,m(−1) = 0 if and only if n = 0 and m 6= 0,

Pn,m(+1) 6= 0 for all m 6= 0,
if n 6= 0, Pn,0(+1) = 0,
therefore, P ′n,m(±1) 6= 0 for all m 6= 0;

(ii) Pn,m(0) 6= 0 so, P ′′n,m(0) 6= 0;

(iii) P ′n,m(0) = 0 and P ′′n,m(±1) = 0.

By hypothesis there is anm such that f̂mH(0) 6= 0. So, if n is odd, then n.m >

0. Because otherwise, Φm,n
σ+,0 ≡ 0 ([Ba, Proposition 7.1]) which implies that

f̂mH(0) = 0. So the zeros of the polynomials P ′m at 0 will never be relevant.
If n is even then f̂mH is nonzero either at +1 or at −1 and so n,m can not

be of opposite sign. (If n.m < 0 then both |n|, |m| ≥ 2 being even integers.
Then Φm,n

1 ≡ 0 and hence f̂mH(±1) = 0.) So we can forget about the zeros
of P ′′m,n at ±1.

Thus the only polynomials we are concerned about are Pn,0 with n 6= 0
which have zero at +1 and P0,m with m 6= 0 which have zero at −1. For this
we have the following remedies:

When n > 0, by the discussion preceeding this proof, there exists an fr (as
one of the projections of f of type (r, n) with r ∈ Z(1)) such that f̂rH(1) 6= 0
and so Grf̂rH(1) 6= 0.

When n < 0, by discussion (b) above, there exists an s ∈ Z(−1) such that
f̂sH(−1) 6= 0. But f̂sH(1)φn,s1 = f̂sH(−1) (see [Ba, 9.8]), and φn,sλ has no
pole at λ = 1 (see [Ba, Proposition 7.2]). This implies that f̂sH(1) 6= 0 (see
[Ba, Proposition 7.2(v)]) and as s ∈ Z(−1), s 6= 0. Hence Gsf̂sH(1) 6= 0.
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If n = 0 then f̂mH = 0 for all m 6= 0 as Φm,0
1 ≡ 0 (see [Ba] Proposition 7.1).

But, then f̂H(1) 6= 0 forces f̂0H(−1) = f̂0H(1) to be non-zero. Therefore,
zeros of the polynomial P0,m with m 6= 0 will not concern us.

Let Gm(k) = e−k
4

Pm(k) for all k ∈ Γn. Now let for a k0 ∈ Γn, f̂m0B(k0) 6= 0.
Then m0 ∈ Z(k0). Therefore Pm0

(k0) 6= 0 as all the zeros of the polynomial
are either between m0 and n or between −m0 and −n (see [Ba] Proposition
7.1). Now by isomorphism of C1(G)n,m and its Fourier transform C1(Ĝ)n,m,
for every m, there exists gm ∈ C1(G)n,m such that ĝmH(λ) = Gm(λ) for
λ ∈ S1

δ and ĝmB(k) = Gm(k) for k ∈ Γn. So we have established that the
set of L1(G)n,n functions {gm ∗ fm|m ∈ Zσ} satisfies all the conditions of
Theorem 3.1 and hence the ideal generated by them is dense in L1(G)n,n.
But gm ∗ fm = gm ∗ f ; so the result follows for the fact that the left L1(G)
module generated by L1(G)n,n is all of L1(G)n.

The case when Λ is an arbitrary index set hardly needs a separate proof.
In fact, out of each fα by projections we get fαj for all j ∈ Z which are
functions of type (j, n). Now we apply previous arguments to the collection
{f̂αj |α ∈ Λ, j ∈ Z} of functions in L1(Ĝ)n. This completes the proof for L1

case.
The proof for p > 1 will almost follow the above word for word. In fact, the

case p > 1 is simpler as the troublesome points ±1 are not in the (carefully
chosen) strip Sγδ . Note that, whatever p we are working with, we will always
get a C1

H(Ĝ)-function, namely P (λ)e−λ
4

, to change the K-type of the Fourier
transforms. So arguments similar to that of the previous theorem will take
care of this function.

Now we are in a position to consider the final result, Theorem 1.2, stated
in the introduction. Before proving it let us note that trivial representation
is an irreducible L1-tempered representation. It is a subrepresentation of
the principal series representation πσ+,−1 [Ba, p. 16]. Fourier transform of
f(x) with respect to the trivial representation is

∫
G f(x) dx. In fact,∫

G

f(x) dx =

∫
G

f(x)Φ0,0
−1(x) dx =

(
f̂(−1)

)
0,0

=
(
f̂(1)

)
0,0
.

So the hypothesis
∫
G f(x) dx 6= 0 actually means that Fourier transform of

f with respect to trivial representation is nonzero.

Proof of Theorem 1.2. As we have seen in the proof of previous theorem,
it is enough to consider the case when p = 1 and the collection contains a
single function, namely f. Let fi be the projection of f to L1(G), for every
i ∈ Z. For each i and m in Z we choose a polynomial Pi,m in λ involving i
and m as explained below.
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When i.m > 0, Pi,m is simply the numerator of a rational function ϕi,mλ
(see [Ba, 7.1]). Then Pi.m(λ)e−λ

4 ∈ C1
H(Ĝ)i,m. So there exists a gi,m ∈

C1(G)i,m such that ĝi,mH(λ) = Pi,m(λ)e−λ
4

and ĝi,mB(k) = Pi,m(k)e−k
4 ∈

C1
B(G)i,m for k ∈ Γi.
When i.m < 0 and i,m are odd integers, we will have to use polynomial

P ′i,m(λ) = λ2Pi,m where Pi,m is as above. By L1-Schwartz space isomor-

phism between C1(G)i,m and C1(Ĝ)i,m we can find gi,m so that ĝi,mH(λ) =
P ′i,m(λ)e−λ

4

and ĝi,mB(k) = P ′i,m.e
−k4

. When i.m < 0 and i,m are even in-
tegers, the required polynomial will be P ′′i,m = (1−λ2).Pi,m and as above we
can find a gi,m. So for all m ∈ Z we can construct a collection of functions

Fm = {fi ∗ gi,m|i ∈ Z}
contained in L1(G)m.

First let us deal with the case m 6= 0. We will show that the collection
Fm satisfies the conditions of Theorem 1.1 and hence generates L1(G)m.

We will find a function fi ∗ gi,m in this collection so that its Fourier trans-
form at (σ+, 0) or at (σ−, 0) is nonzero according as it is of even or odd
parity. If m is even neither Pi,m nor P ′′i,m has any zero at 0. So if the (r, s)-th

matrix coefficient of f̂ is nonzero at (σ+, 0), fs ∗ gs,m will serve the purpose.
If m is odd and positive, we will have to consider the nonzero matrix co-
efficient f̂u1,v1 H(σ−, 0) where both u1 and v1 are positive. Such a matrix
coefficient exists by the hypothesis f̂H(D+) 6= 0. Then fv1

∗ gv1,m(σ−, 0) will
be nonzero. We are using the fact that v1 and m are both being positive,
ĝv1,m(σ−, 0) 6= 0. Similarly for the case m < 0 we will consider a nonzero
matrix coefficient corresponding to two K-finite vectors eu2

and ev2
, where

u2 and v2 are both negative. Next we note that

if |i| > |m| then Pi,m(1) 6= 0 and Pi,m(−1) 6= 0,

and if |i| < |m| then Pi,m(1) 6= 0 and Pi,m(−1) 6= 0, only when i = 0.

We will come across the polynomial P0,m only when we are dealing with an
even m.

As f̂B(−1) 6= 0 there is a matrix coefficient say (f̂B(−1))r,s which is
nonzero. Then obviously r, s < −1 and r, s are even integers. So, in par-
ticular, s 6= 0 and f̂s,H(σ+,−1) 6= 0. Therefore when m < 0, fs ∗ gs,m is
the function in the collection Fm which has nonzero Fourier transform at
(σ+,−1). Again as f̂B(+1) 6= 0 there is a non-zero matrix coefficient, say
(f̂B(1))r2,s2 , where r2, s2 > 1. Now as (f̂H(−1))r2,s2 = ϕr2,s2σ+,−1(f̂H(1))r2,s2 and

as ϕr2,s2σ+,−1 has no zero at −1 (see [Ba] Proposition 7.2), (f̂H(−1))r2,s2 6= 0.
Therefore when m > 0, fs2 ∗ gs2,m is a function in Fm such that its Fourier
transform is nonzero at (σ+,−1). Any other point of S1

δ including +1 is not
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a zero of the polynomials Pi,m when m 6= 0 and as we are appealing to the
nonvanishing of the Fourier transform at disgrete series the polynomials P ′m
and P ′′m are not relevant at all.

To find a function in Fm whose Fourier transform does not ‘decay too
rapidly at ∞’ we will get the matrix coefficient of the parity of m which has
that property. Let that matrix coefficient be the (α, β)-th one. Then the
Fourier transform of fβ ∗ gβm also will not ‘decay too rapidly at ∞’.

The collection Fm for m 6= 0 satisfies the conditions of Theorem 1.1 and
hence generates L1(G)m under left convolution.

We will now treat the case m = 0. Consider F0. For any i 6= 0, Pi,0(1) = 0
and Pi,0(−1) 6= 0. P0,0(±1) = 1.

By hypothesis
∫
G f(x) dx = (f̂(1))0,0 = f̂0(1) 6= 0 (see discussion pre-

ceeding this proof). So f0 ∗ g0,0 is the function in the collection F0 which
has nonzero Fourier transform at +1. So F0 generates L1(G)0 under left
convolution.

Now as fi ∗ gi,m = f ∗ gi,m, for every m, elements of Fm are right convo-
lutions of a single function f. So the two sided (closed) ideal generated by
f contains L1(G)m for all m. The smallest closed right G-invariant subspace
of L1(G) containing L1(G)m for all m ∈ Z is L1(G) itself. Hence the first
part of the theorem follows.

If we omit the condition
∫
G f(x) dx 6= 0, there is no effect on the collection

Fm for m 6= 0. But in this case F0 will generate L1(G)0
0, the space of L1(G)0

functions with integral zero. Note that L1(G)m for any m 6= 0 is contained in
L1(G)0, L1(G)m = L1(G)0

m. So in this case the function f under left and right
convolution generates an ideal which contains L1(G)0

m for all m ∈ Z. The
smallest closed right G-invariant subspace of L1(G)0 containing all L1(G)0

m

is L1(G)0. Hence the second part of the theorem.

4. Concluding Remarks.

As for any group G of real rank one Cp(Ĝ)0,0 is identical with Cp(ŜL2(R))0,0,

the proofs of W-T theorem for biinvariant L1 functions on SL2(R) given in
[B-W] and its extension to all p ∈ [1, 2) in this article, will actually go
through for biinvariant Lp functions on any such G.

We came to know about a research announcement [B-B-H-W] which has
proposed a proof for the conjecture 1.1 of [B-W] (i.e. for removing the
restriction of a wider strip), a slightly different ‘not decay too rapidly’ con-
dition: inff∈M δ∞(f̂) = 0. Here M ⊂ L1(G)0,0 is the set of generators and
δ∞(f) = − lim supt→+∞ e

πt log |f̂(it)|. The techniques of Theorem 1.1 will
give an immediate extension of this to a W-T theorem for the symmetric
space SL2(R)/SO(2,R). This verifies our remarks in the introduction follow-
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ing Theorem 1.2 for the case of Lp(G)0. More precisely assuming the results
in [B-B-H-W], we can prove:

Let {fα|α ∈ Λ} be a subset of Lp(G)0 and

inf
α∈Λ, n∈Z

δ∞

((
f̂αH

)
n,0

)
= 0.

Moreover if {f̂αH} do not have common zeros on Sγ , then for p ∈ [1, 2) the
left L1(G)-module generated by {fα|α ∈ Λ} is dense in Lp(G)0.
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