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FREE QUASI-FREE STATES

Dimitri Shlyakhtenko

To a real Hilbert space and a one-parameter group of
orthogonal transformations we associate a C∗-algebra which
admits a free quasi-free state. This construction is a free-
probability analog of the construction of quasi-free states on
the CAR and CCR algebras. We show that under certain
conditions, our C∗-algebras are simple, and the free quasi-free
states are unique.

The corresponding von Neumann algebras obtained via the
GNS construction are free analogs of the Araki-Woods fac-
tors. Such von Neumann algebras can be decomposed into
free products of other von Neumann algebras. For non-trivial
one-parameter groups, these von Neumann algebras are type
III factors. In the case the one-parameter group is nontriv-
ial and almost-periodic, we show that Connes’ Sd invariant
completely classifies these algebras.

1. Introduction.

We consider in this paper free analogs of the quasi-free states on the CAR
and CCR algebras.

Quasi-free states are important in mathematics and physics, and a vast
body of literature exists (a partial list includes [2, 1, 3, 7, 17, 22], see also
the references in [7]). In particular, quasi-free states on the CAR algebra
give rise, via the GNS construction, to the Araki-Woods factors. These
factors are examples of hyperfinite type III factors.

The free probability theory of Voiculescu (see [29]) has parallels with
the theory of hyperfinite algebras. For example, Voiculescu’s Free Gaussian
Functor ([27]) is a free analog of the CAR functor (see [14]). The principal
idea of this paper, suggested to us by D.-V. Voiculescu, is to extend this
parallel further, by constructing free analogs of quasi-free states. To this
end, we in a functorial way associate to a real Hilbert space HR with a one-
parameter group of orthogonal transformations Ut, a subalgebra Γ(HR, Ut) of
the extension of the Cuntz algebra associated to the complexification of HR.
The restriction of the vacuum expectation then becomes the free quasi-free
state ϕU .
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330 DIMITRI SHLYAKHTENKO

One application of free quasi-free states is to consider the free analogs of
Araki-Woods factors, i.e., the von Neumann algebras obtained in the GNS
representations associated to free quasi-free states. We show that such alge-
bras are always type III factors (unless the one-parameter group is trivial.)

Since free quasi-free states are constructed in a manner similar to the
construction of the trace on the algebras of the Free Gaussian Functor, it
becomes possible to model our algebras using “matricial models”. These are
generalizations of the random matrix techniques of [28, 29]. Using these
tools we prove that Connes’ Sd invariant ([9]) is a complete invariant for
the free analogs of Araki-Woods factors in the case of a nontrivial almost-
periodic one-parameter group.

Examples of type III factors involved in free probability theory were ob-
tained earlier by Rădulescu ([21, 20]), Dykema ([12, 13]) and Barnett ([6]).
One of the results of this paper is that some of the factors considered in
the above papers are isomorphic to free analogs of Araki-Woods factors. In
particular, using our classification result, it becomes possible to find isomor-
phisms between such factors.

The rest of the paper is divided as follows. Section 2 is devoted to the
definition and basic properties of the algebra Γ(HR, Ut) and of the free quasi-
free state ϕU . Section 3 considers Tomita theory for the GNS representation
associated to ϕU . In Section 4 we specialize to the case of two-dimensional
real Hilbert spaces (these are “building blocks” out of which algebras corre-
sponding to higher-dimensional Hilbert spaces with almost-periodic actions
can be constructed). We introduce “generalized circular elements”, and con-
sider their polar decomposition.

Section 5 is devoted to matricial models and some applications. Lastly,
in Section 6 we consider free analogs of Araki-Woods factors, and give their
classification in the case of nontrivial almost-periodic actions.

Some of the results of this paper were announced in [23].

Acknowledgments. I would like to thank my advisor, Prof. D.-V. Voicu-
lescu for the principal idea of the paper, general direction of the work, and
many helpful comments and discussions. I am also grateful to Profs. K. Dyke-
ma, M. Izumi, A. Kumjian, A. Nica and M. Rieffel for helpful discussions.
An early part of this work was completed while at the Fields Institute for
Research in Mathematical sciences, which the author thanks for the warm
and encouraging atmosphere.
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Given a separable real Hilbert space HR, and a one-parameter group of
orthogonal transformations Ut, consider the complex Hilbert space

HC = HR ⊗R C.

Denote by 〈·, ·〉 the inner product of HC (this Hermitian inner product, as
all Hermitian inner products in this paper, is assumed to be C-linear in the
second variable.) Embed HR into HC as HR ⊗ 1. As a real Hilbert space
(with inner product Re〈·, ·〉),

HC ∼= HR ⊕ iHR.

The operator
∗ : x+ iy 7→ x− iy

for x, y ∈ HR is a well-defined bounded anti-linear operator on HC. For
y ∈ HR, x ∈ HC,

〈x, y〉 = 〈y, x〉 = 〈y, ∗x〉.
Also, x ∈ HR if and only if ∗x = x.

The one-parameter group Ut extends to a group of unitary transformations
on HC by linearity. Let A be the closed (not necessarily bounded) operator
such that Ut = Ait; let H be the closed (not necessarily bounded) operator
such that Ut = exp(iHt). Thus A = exp(H). Since Ut is orthogonal for all
t, its infinitesimal generator, iH, is an unbounded operator from HR to HR.
Thus H maps the intersection of its domain with HR (which is nonempty
because the domains of H and iH are the same) into iHR. Hence ∗H = −H∗.
Since A = exp(H), it follows that ∗A = A−1∗.

Define another inner product on HC by

〈x, y〉U =

〈
2

1 +A−1
x, y

〉
.

This is an inner product because A ≥ 0, so 2/(1 + A−1) is bounded and
positive. Notice that 2/(1 + A−1) has an (unbounded) inverse; thus it has
empty kernel. Hence this new inner product is non-degenerate. Notice that
for x, y ∈ HR,

〈y, x〉U =

〈
2

1 +A−1
y, x

〉
=

〈
x, ∗ 2

1 +A−1
y

〉

=

〈
x,

2

1 +A
y

〉
=

〈
x,

2A−1

1 +A−1
y

〉
=

〈
2

1 +A−1
x,A−1y

〉
=
〈
x,A−1y

〉
U
.

(1)
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Let H be the complex Hilbert space obtained from HC by completing with
respect to 〈·, ·〉U . Since Ut clearly preserves this inner product, it defines a
one-parameter group of unitary transformations on H; we denote this group
once again by Ut. Notice that the norm induced on HR by 〈·, ·〉U is the same
as the original norm on HR. Indeed, for x ∈ HR,

〈x, x〉U =

〈
2

1 +A−1
x, x

〉
= 〈x, x〉+

〈
1−A−1

1 +A−1
x, x

〉
;

but just as above,〈
1−A−1

1 +A−1
x, x

〉
=

〈
x,

1−A
1 +A

x

〉
= −

〈
x,

1−A−1

1 +A−1
x

〉
= 0.

Thus we have constructed an isometric embedding of HR into a complex
Hilbert space H, which satisfies four properties:
(a) The restriction of the real part of the inner product on H is the inner

product on HR;

(b) HR + iHR is dense in H, and HR ∩ iHR = {0};
(c) Ut extends to a one-parameter group of unitaries on H;

(d) The restriction of the imaginary part of the inner product on H to HR
is given by

j =

〈
i
1−A−1

1 +A−1
·, ·
〉
HR
,

where Ut = Ait.
In (d), to check that

i
1−A−1

1 +A−1
x ∈ HR

for x ∈ HR, one observes that

∗
(
i
1−A−1

1 +A−1
x

)
= i

1−A−1

1 +A−1
(∗x)

and for x ∈ HR, ∗x = x and Ax ∈ HR + iHR. Moreover, for y ∈ HR + iHR,
y ∈ HR if and only if ∗y = y.

Observe that these properties define the embedding of HR into H. We
record that for x, y in a certain dense subset of HR, we have (by Equation
(1))

〈x, y〉U = 〈y,A−1x〉U .(2)
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Remark 2.1. There is another way to construct the embedding HR ⊂ H.
Let K = HR, and set H = K ⊗R C; let Ut be the extension (by linearity) of
Ut to H, and let A be such that Ait = Ut. Define the embedding HR ↪→ H
by

h 7→
√

2A1/4

√
A1/2 +A−1/2

h⊗ 1.

This embedding is isometric for the inner product 〈·, ·〉HR onHR and Re〈·, ·〉H.
Indeed,

Re

〈 √
2A1/4

√
A1/2 +A−1/2

h,

√
2A1/4

√
A1/2 +A−1/2

h

〉
H

= Re

〈
2A1/2

A1/2 +A−1/2
h, h

〉
H

=

〈
A1/2 +A−1/2

A1/2 +A−1/2
h, h

〉
= ‖h‖HR .

The image of HR under this embedding is A1/4√
A1/2+A−1/2

K ⊗ 1. Notice that

A has an (unbounded) inverse. If follows that since the complex span of
K ⊗ 1 is dense in H, so is the complex span of the image of HR. Similarly,
since K ⊗ 1 ∩ i(K ⊗ 1) = ∅, the same property holds for the image of HR.
Since Ait = Ut, the restriction of Ut to the image of HR is the original
one-parameter group on HR. Lastly, it is easily seen that

Im

〈 √
2A1/4

√
A1/2 +A−1/2

h,

√
2A1/4

√
A1/2 +A−1/2

g

〉
H

=

〈
i
1−A−1

1 +A−1
h, g

〉
HR
.

Thus this embedding satisfies properties (a)–(d) above.

Remark 2.2. In [19], Tomita theory was extended to the case of an
arbitrary embedding of a real Hilbert space HR into a complex Hilbert space
H, satisfying (a) and (b) above. It is not hard to check that in our case
U−t satisfies the KMS condition with respect to HR (see [19] for definition).
Thus U−t is the modular automorphism group for the embedding HR ⊂ H.

Consider now the full Fock space

F(H) = CΩ⊕
∞⊕
n>0

H⊗n

and for h ∈ H, define left and right creation operators by

`(h) : ξ 7→ h⊗ ξ, r(h) : ξ 7→ ξ ⊗ h
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where ξ ∈ H⊗m for some m. Let

s(h) = Re `(h), d(h) = Re r(h).

Notice that Ut defines a one-parameter group F(Ut) of unitary transforma-
tions on the full Fock space by

F(Ut)ξ1 ⊗ · · · ⊗ ξn = (Utξ1)⊗ · · · ⊗ (Utξn).

We now define an analog of Voiculescu’s Free Gaussian functor (see [27]),
and define the free quasi-free states on the resulting algebras.

Definition 2.3. Given HR and Ut as above, define
(i) Γ(HR, Ut) = C∗(s(HR));

(ii) πU to be the obvious representation on the Fock space;

(iii) the free quasi-free state ϕU on this algebra to be the vacuum ex-
pectation 〈Ω,Ω·〉U .

In the case Ut is trivial, H is the same as HC, and Γ(HR, Ut) coincides
with the algebra Φ(HR) of the Free Gaussian functor of [27].

Conjugation by the one-parameter group F(Ut) of unitaries on the Fock
space sends s(h) to s(Ut(h)) for h ∈ HR, and thus leaves Γ(HR, Ut) invari-
ant. The resulting one-parameter group of automorphisms on Γ(HR, Ut) is
denoted by α.

Remark 2.4. In fact, any unitary transformation on H which leaves HR
invariant gives rise in a similar way to an automorphism of Γ(HR, Ut). Thus
any element of O(HR) ∩ Sp(HR, j) defines an automorphism of Γ(HR, Ut);
here O(HR) denotes the group of orthogonal transformations on HR, j is as
in property (d), and Sp(HR, j) denotes all invertible linear transformations
on HR that preserve j.

Remark 2.5. The map from HR to Γ(HR, Ut) given by h 7→ s(h) is
R-linear. It has an inverse, which sends s(h) to s(h)Ω. Thus HR can be
identified with the real subspace of Γ(HR, Ut) spanned by all s(h), h ∈ HR.
In a similar way, we can define a C-linear map ŝ : HR + iHR → Γ(HR, Ut) by
setting ŝ(h + ig) = s(h) + is(g), h, g ∈ HR, and identify HR + iHR with an
appropriate subspace of Γ(HR, Ut). Notice that both s and ŝ are equivariant
with respect to Ut acting on HR and HR + iHR and αt acting on Γ(HR, Ut).
It follows that if h ∈ HR is an entire vector for Ut, then s(h) is entire for αt.
Moreover, since ŝ is C-linear, we have that

αir(s(h)) = ŝ(A−rh)
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for r ∈ C. Notice also that s and ŝ intertwine the restriction of 〈·, ·〉U to HR
and HR + iHR and the restriction of (x, y) 7→ ϕU(x∗y) to the appropriate
subspaces of Γ(HR, Ut). Finally, since ‖s(h)‖ = ‖h‖, s is isometric for the
Hilbert space norm on HR and the C∗-norm on Γ(HR, Ut).
Remark 2.6. We could also start with the inclusion HR ⊂ H, define
Ut to be the modular group of the inclusion ([19]) and write Γ(HR ⊂ H).
Alternatively, since the inclusion HR ⊂ K is determined completely by j =
(Im〈·, ·〉K)|HR , we could start with an appropriate anti-symmetric form j on
HR, and then construct H and Ut; then we could write Γ(HR, j).

Notice that Γ(HR, Ut) is generated by words in elements s(h) for h ∈ HR.
Each s(h) is distributed with respect to ϕU as a semicircular variable (see
[29]). Explicitly, the value of ϕU on a word in s(hi) is given by

ϕU(s(h1) · · · s(hn)) = 2−n
∑

({γ1,β1},...,{γn/2,βn/2})
∈NC(n), γi<βi

n/2∏
k=1

〈hγk , hβk〉U(3)

for n even and is zero otherwise. This formula can be also taken as a defini-
tion of ϕU . Here NC(k) stands for all non-crossing partitions of {1, . . . , k},
i.e., partitions for which whenever a < b < c < d, and a, c are in the same
class, b, d are in the same class, then all a, b, c, d are in the same class.

Speicher in [24] defined, for an arbitrary functional ψ on an algebra gen-
erated by elements x1, x2, . . . , certain multilinear functionals ωn, depending
on ψ, which are called free cumulants of ψ. The following formula defines
the free cumulants recursively; here aj ∈ {x1, x2, . . . }:

ψ(a1 . . . ak) =
∑

(A1,...,As)∈NC(k)

ω|A1|(aA1
)ω|A2|(aA2

) . . . ω|As|(aAs), ∀ai,

where we use the following notation: By (A1, . . . , As) ∈ NC(k) we mean a
non-crossing partition with classes A1, . . . , As. Also, if S is a finite subset
of N, by |S| we mean the number of elements of S, and aS stands for the
|S|-tuple of those ai for which i ∈ S. (For example, if S = {1, 4, 6}, then by
aS we mean (a1, a4, a6).)

In view of Formula (3), the free cumulants of ϕU are all zero, except
second-order, given by

ω2(s(h), s(g)) = ϕU(s(h)s(g)).

This is analogous to the situation for the CAR and CCR cases; indeed,
quasi-free states on those algebras can be characterized by requiring that all
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correlation functions (which are certain combinatorial multi-linear function-
als defined in terms of values of states on words in generators) are all zero,
except second-order (see e.g. [7]). Thus free cumulants of Speicher play the
role of correlation functions in our case.

Remark 2.7. Suppose that A is some C∗-algebra generated by elements
x1, x2, . . . , and ϕ is a faithful state on A, so that the cumulants ωn of ϕ
are all zero, except for n = 2. Take HR to be the closure of the real span
of x1, x2, . . . with respect to the norm ‖x‖2 = ϕ(x∗x), and H to be the
closure of the complex span of x1, x2, . . . with respect to the same norm.
Assume that HR ⊂ H satisfies conditions (a) and (b) above. We see that
A ∼= Γ(HR ⊂ H) (in the notation of Remark 2.6) in a way that maps ϕ
to the free quasi-free state on Γ(HR ⊂ H). The inner product on H is
then 〈x, y〉 = ϕ(x∗y). In particular suppose KR ⊂ HR is a real subspace,
let K be the complex span (in H) of KR. Then by the above, we have
Γ(KR ⊂ K) ∼= C∗(s(KR)) ⊂ Γ(HR ⊂ H).

Suppose KR ⊂ HR are real Hilbert spaces, and that P is the orthogonal
projection onto KR. We assume that P intertwines the modular groups of
HR ⊂ H and KR ⊂ K. This is of course equivalent to requiring that the
inclusion map from KR to HR intertwine the modular groups, i.e., leave
KR invariant. It follows that if we write HR = KR ⊕HR K⊥HRR , then the
modular group of HR ⊂ H preserves this decomposition. It follows that the
KR and K⊥HRR are perpendicular in the inner product of H. Thus Γ(HR ⊂
H) = Γ(KR ⊂ K) ∗r Γ(K⊥HRR ⊂ V), where V is the complex span of K⊥HRR
in H. Because of this free product decomposition, we see that there exists
a completely positive map Φ : Γ(HR ⊂ H) → Γ(KR ⊂ K). Notice that this
map is state-preserving.

Suppose now HR, KR are two real Hilbert spaces, with one-parameter
groups of orthogonal transformations Ut = exp(Ht) and Vt = exp(Kt), and
suppose A : HR → KR is a contraction, such that A intertwines Ut and Vt,
i.e., VtA = AUt (equivalently, KA = AH). Let LR = HR ⊕KR, and set

Wt = exp

(
t

(
H 0
0 K

))
,

B =

(
(1−A∗A)1/2 A∗

A −(1−AA∗)1/2

)
.

Then B is an orthogonal matrix, which commutes with Wt. Therefore the
map

Ξ : HR 3 ξ 7→ B

(
ξ

0

)
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is an isometry from HR to LR, which intertwines Ut and Wt. Also, the
projection

P =

(
0 0
0 1

)
from LR onto KR intertwines Wt and Vt. The composition of the map Ξ and
P is A.

Since Ξ induces an injection from Γ(HR, Ut) to Γ(LR,Wt), and P induces
a completely positive map from Γ(LR,Wt) onto Γ(KR, Vt), we obtain the
following:

Theorem 2.8. Γ is a functor from the category of pairs of real Hilbert spaces
with distinguished one-parameter automorphism groups and contractions that
intertwine these groups, to the category of C∗-algebras with distinguished
states and state-preserving completely positive maps.

This theorem is analogous to the properties of the Free Gaussian Functor
([27]) and the CAR functor ([14]).

Theorem 2.9. ϕU is a KMS state for αt at inverse temperature 1.

This theorem actually follows from the results of Section 3, but we give a
combinatorial proof nonetheless.

Proof. Recall that a state ψ satisfies the KMS condition (see e.g. [7]) for αt
at inverse temperature β if for all x, y which are entire for αt, one has

ψ(xy) = ψ(yαiβ(x)).

By [7], there is a dense subset of vectors in HR which are entire for Ut; since
αts(g) = s(Ut(g)), if g ∈ HR is entire for Ut, then also s(g) is entire for αt.
Thus it is sufficient to check the KMS condition for words in s(h), where h
runs over a dense set of entire elements in HR. It is clearly sufficient then to
show that

ϕU(s(h1) . . . s(hn)) = ϕU(s(h2) . . . s(hn)αi(s(h1)))

for hi entire in HR.
Remark that by Equation (3)

ϕU(s(g1) . . . s(gn−1)αt(s(gn)))

=


2−n

∑
({γ1,β1},...,{γn/2,βn/2})

∈NC(n), γi<βi

n/2∏
k=1

〈fγk , fβk〉U , n even

0, n odd
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where fi = gi for all i 6= n and fn = Utgn, gi ∈ HR, for all t. Since for
a non-crossing partition {{γ1, β1}, . . . , {γn/2, βn/2}} with γi < βi, it cannot
happen that γk = n, it follows that the value of the above expression (which
is clearly entire in t) at t = i is given by

ϕU(s(g1) . . . s(gn−1)αi(s(gn)))

=


2−n

∑
({γ1,β1},...,{γn/2,βn/2})

∈NC(n), γi<βi

n/2∏
k=1

〈fγk , fβk〉U , n even

0, n odd

where fk = gk for k 6= n and fn = Uign = A−1gn, gk ∈ HR.
Now we compare the expressions for

ϕU(s(h1) . . . s(hn))

and
ϕU(s(h2) . . . s(hn)αi(s(h1)))

using the above formulae.
For n odd, both expressions are zero. For n even, given a non-crossing

partition
{{γ1, β1}, . . . , {γn/2, βn/2}},

γk < βk, the term corresponding to this partition in the expression for

ϕU(s(h1) . . . s(hn))

is ∏
k

〈hγk , hβk〉U .

We associate to this term the term in the sum for

ϕU(s(h2) . . . s(hn)αi(s(h1)))

associated to the partition

{{γ′1, β′1}, . . . , {γ′n/2, β′n/2}},
where

γ′k = γk − 1, β′k = βk − 1,

and the arithmetic is performed modulo n. The resulting term in the sum
for

ϕU(s(h2) . . . s(hn)αi(s(h1)))
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is then equal to ∏
k

〈fγk , fβk〉U ,

where fγi = hγi , fβi = hβi for γi 6= 1, and for γj = 1, fβj = A−1h1, fγj = hβj .
The equality of the two terms follows since

〈h, g〉U = 〈g,A−1h〉U
(this was established in Equation (2)).

Remark 2.10. The proof above can be easily adapted to prove the fol-
lowing statement: Suppose ϕ is a functional on an algebra A, and x1, . . . , xn
are some generators of A. Suppose αt is a one-parameter group of automor-
phisms on A, such that αt(xk) is a linear combination of x1, . . . , xn. Then ψ
is KMS for αt if and only if each cumulant ωk of ψ satisfies:

ωk(a1, . . . , ak) = ωk(a2, . . . , ak, αi(a1)),

where aj ∈ {x1, . . . , xn}. Of course, when αt is trivial, this reduces to the
well-known characterization of when a functional is tracial in terms of its
cumulants.

Suppose H(k)
R is a family of real Hilbert spaces, with one-parameter groups

of orthogonal transformations U
(k)
t . Consider on

⊕
kH(k)

R the one-parameter
group

⊕
k U

(k)
t . Then it is easy to see that if H(k)

R ⊂ H(k), satisfy for each k

(a)–(d) above, then so does (
⊕

kH(k)
R ) ⊂ (

⊕
kH(k)). This, combined with the

fact that cumulants of the free product of two states are sums of cumulants
of those states (see [24, 15]) proves

Theorem 2.11. Let H(k)
R , U

(k)
t be as above. Then

∗
k

(
Γ(H(k)

R , U
(k)
t ), ϕU(k)

)
=

(
Γ
(⊕

k

H(k)
R ,

⊕
k

U
(k)
t

)
, ϕ⊕

k
U(k)

)
.

Remark 2.12. Notice that if HR is a finite-dimensional vector space (or if
in general the eigenvectors of A densely span H, i.e., Ut is almost periodic),
(HR, Ut) can be written as a direct sum of two-dimensional real Hilbert spaces
with nontrivial actions, and one-dimensional real Hilbert spaces with trivial
actions. Remark also that Γ(R, idt) is a commutative C∗-algebra, isomorphic
to C[−1, 1]; the free quasi-free state defines the semicircular measure on it
(see [27]). Thus Γ(HR, Ut) in this case is the free product of algebras of the
form Γ(R2, Vt) with Vt nontrivial, and/or Γ(R, idt).
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3. The Fock space representation πU .

The vacuum vector Ω is clearly cyclic for the representation πU . Given the
inclusion HR ⊂ H, consider the real subspace

H′R = iHR⊥Re〈·,·〉U = {g ∈ H : 〈g, h〉U ∈ R,∀h ∈ HR}.
This subspace is the “commutant” (in the sense of [19, 18]) of HR. The
results of this section, and Remark 2.2 allow one to view our construction as
a “functor” that translates Tomita theory for HR ⊂ H into Tomita theory
of the representation of Γ(HR, Ut)′′ on the Fock space.

Lemma 3.1. Let B = d(H′R)′′. Then B ⊂ Γ(HR, Ut)′.
Proof. In general, if ξ ⊥ Ω, then [d(h), s(g)]ξ = 0, for all h, g. Thus we only
need to show that [d(h), s(g)]Ω = 0 for h ∈ H′R, g ∈ HR. We have

d(h)s(g)Ω = 〈h, g〉UΩ + g ⊗ h

while

s(g)d(h)Ω = 〈g, h〉UΩ + g ⊗ h.
But 〈g, h〉U ∈ R so 〈g, h〉U = 〈h, g〉U .

Remark that H′R + iH′R is dense in H, so Ω is clearly cyclic for B; it
follows that it is separating for Γ(HR, Ut)′′. Thus Tomita theory (see e.g.
[26]) applies. Recall that the operator S is defined on a dense set of vectors
of the form xΩ, x ∈ Γ(HR, Ut)′′ by

S : xΩ 7→ x∗Ω.

Clearly it is enough to specify the values of S on tensors of the form h1 ⊗
· · · ⊗ hn for hi ∈ HR.

Lemma 3.2. Consider ξ = h1 ⊗ · · · ⊗ hn, where hi ∈ HR. Then Sξ =
hn ⊗ · · · ⊗ h1.

Proof. The proof proceeds by induction on the degree of the tensor ξ. If
ξ = h, h ∈ HR, then ξ = s(h)Ω, and since s(h) is self-adjoint, Sξ = ξ.
Suppose the formula holds for all n < k. Then

h1 ⊗ · · · ⊗ hk = s(h1) . . . s(hk)Ω− w,
where w is a sum of vectors of the form

h1 ⊗ · · · ⊗ hr〈hr+1, hr+2〉Uhr+3 ⊗ · · · ⊗ hs〈hs+1, hs+2〉U . . . ,
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where there is at least one term 〈hk, hk+1〉U . Applying S to w, by anti-
linearity of S, amounts to switching the order of all hi, just as applying it
to s(h1) . . . s(hk)Ω does.

The adjoint of S is defined by the formula

〈Sx, y〉U = 〈S∗y, x〉U .

Thus for hi, gi ∈ HR,

〈S∗h1 ⊗ · · · ⊗ hn, gm ⊗ · · · ⊗ g1〉U = δnm

n∏
j=1

〈gj, hj〉U

which by Equation (2) and because A = A∗, is the same as

δnm

n∏
j=1

〈A−1hj, gj〉U =
〈
(A−1)⊗nhn ⊗ · · · ⊗ h1, gm ⊗ · · · ⊗ g1

〉
U
.

Thus

S∗(h1 ⊗ · · · ⊗ hn) = (A−1)⊗nhn ⊗ · · · ⊗ h1.(4)

It follows that the modular operator ∆ = S∗S acts by

∆ : h1 ⊗ · · · ⊗ hn 7→ (A−1)⊗n(h1 ⊗ · · · ⊗ hn).(5)

Notice that ∆it = U−t, thus α−t is the modular group of ϕU ; compare
Remark 2.2 and Theorem 2.9.

Lastly, let S = J∆1/2 be the polar decomposition of S, where J is an
anti-linear isometry, J2 = 1. Thus ∆1/2 = JS, so

J(h1 ⊗ · · · ⊗ hn) = ∆1/2(hn ⊗ · · · ⊗ h1)

for hi ∈ HR. Thus the modular conjugation J is defined by anti-linearity
and

J(h1 ⊗ · · · ⊗ hn) = (A−1/2)⊗nhn ⊗ · · · ⊗ h1.(6)

With the help of J , we can now identify the commutant of Γ(HR, Ut).
Theorem 3.3. Γ(HR, Ut)′ = d(H′R)′′.

Proof. By Lemma 3.1, it is sufficient to show that

JΓ(HR, Ut)J ⊂ d(H′R)′′.
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Since conjugation by J is an anti-homomorphism, it is sufficient to show that

Js(h)J ∈ d(H′R)′′

for all h ∈ HR. We first claim that

Js(h) = d(A−1/2h)J.

For hi ∈ HR,

Js(h)h1 ⊗ · · · ⊗ hn = J〈h, h1〉Uh2 ⊗ · · · ⊗ hn + Jh⊗ h1 ⊗ · · · ⊗ hn,
which since J is anti-linear, is equal to

〈h1, h〉U(A−1/2)⊗(n−1)hn ⊗ · · · ⊗ h2 + (A−1/2)⊗(n+1)hn ⊗ · · · ⊗ h1 ⊗ h.
On the other hand,

d(A−1/2h)Jh1 ⊗ · · · ⊗ hn
is equal to

〈A−1/2h,A−1/2h1〉U(A−1/2)⊗(n−1)hn⊗· · ·⊗h2 +(A−1/2)⊗(n+1)hn⊗· · ·⊗h1⊗h.
Thus all we need to show is that

〈h1, h〉U = 〈A−1/2h,A−1/2h1〉U .
But the right hand side is the same (since A = A∗) as 〈h,A−1h1〉U , which
by Equation (2) is equal to 〈h1, h〉U .

To conclude the proof it is sufficient to show that for any h in a certain
dense subset of HR,

A−1/2h ∈ H′R.
To check this, all we need to show is that

〈A−1/2h, g〉U ∈ R
for all g ∈ HR. But

〈A−1/2h, g〉U =

〈
2A−1/2

1 +A−1
h, g

〉

=

〈
g,

2A1/2

1 +A
h

〉
=

〈
2

1 +A−1
g,A−1/2h

〉
=
〈
g,A−1/2h

〉
U
,

and so is real.
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4. The two-dimensional case.

Consider HR = R2 with a nontrivial action Ut. In a suitable orthonormal
basis e1, e2, Ut acts as the matrix(

cos log(λ)t − sin log(λ)t
sin log(λ)t cos log(λ)t

)
,

where 0 < λ < 1. In this case the inner product 〈·, ·〉U is defined by the
requirements that the norms of ei are 1, and 〈e1, e2〉U = −i(λ− 1)/(λ+ 1).
Therefore the desired inclusion HR ⊂ H can be obtained, for example, if one
picks an orthonormal basis g, h for C2 = H and lets HR be the real span of

e1 =
1√

1 + α2
(g + αh)

and

e2 =
1√

1 + α2
(ig − iαh),

where α = 1/
√
λ. Thus Γ(HR, Ut) can be viewed as generated by s(e1) and

s(e2).
Let

y =
s(e1) + is(e2)

2
.

Then C∗(y) = Γ(HR, Ut); moreover,

αt(y) = exp(−i log(λ)t)y;

notice that y is entire for α. If we let `1 = `(g), `2 = `(h), then y is up to a
constant multiple equal to

`2 +
√
λ`∗1.

Definition 4.1. An element y is a ∗-probability space (A,ϕ), whose ∗-
distribution is equal to the ∗-distribution of the element `2 +

√
λ`∗1 with

respect to the vacuum expectation, for some 0 ≤ λ ≤ 1, will be called a
generalized circular element.

For trivial Ut (formally λ = 1), such a y is (up to a constant multiple)
the circular element of Voiculescu (see [28, 29]), which justifies the term
“generalized circular element”. In that case in the polar decomposition y =
ub, u is a Haar unitary (i.e., all moments of u are zero, except zeroth), and
b is quarter-circular; in particular, b has no atoms in its distribution; also,
the distribution of b2 is free Poisson. Moreover, u and b are free. We aim
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to prove a similar result, for 0 < λ < 1. The proof is very similar to one in
[28].

Lemma 4.2. Suppose (A,ϕ) is a C∗-probability space, 1 ∈ B ⊂ A is a
subalgebra, v ∈ A and u ∈ A, such that u is a unitary and
(1) ϕ(v) = ϕ(v∗) = ϕ(u) = ϕ(u∗) = 0,

(2) u is ∗-free from B ∪ {v, v∗},
(3) if b ∈ B, then ϕ(b) = 0 implies that ϕ(vb) = ϕ(vbv∗) = ϕ(bv∗) = 0.

(4) v∗v = 1.
Then uv and B are ∗-free.

Proof. Let c = ϕ(vv∗). Notice that

ϕ
(
(uv)k((uv)∗)l

)
= δklc

k.(7)

Indeed, replacing in uv . . . uvv∗u∗ . . . v∗u∗ the term vv∗ by vv∗ − c + c, we
have

ϕ
(
(uv)k((uv)∗)l

)
= ϕ

(
(uv)k−1u(vv∗ − c)u∗(uv)l−1

)
+ cϕ

(
(uv)k−1(uv)l−1

)(8)

and ϕ((uv)k−1u(vv∗ − c)u∗(uv)l−1) = 0, since it can be written as
ur1x1u

r2x2 . . . u
rs , where ri = ±1, and xi is either v, v∗ or vv∗ − c. In

any case, ϕ(xi) = 0, xi ∈ C∗(v), and moreover ϕ(uri) = 0, so the freeness
condition applies. If in Equation (7) k 6= l, then applying Equation (8)
several times we eventually get ϕ(uvuvuv . . . uv), or ϕ((uv)∗(uv)∗ . . . (uv)∗),
both of which are zero by freeness of u and v. If k = l, then we eventually
get ckϕ(1) = ck. Thus Equation (7) holds.

Since uv is an isometry, (uv)∗(uv) = v∗u∗uv = 1, C∗(uv) is (densely)
linearly spanned by the irreducible nontrivial words in (uv), i.e., words of
the form

(uv)k((uv)∗)l, k, l ≥ 0, k + l > 0,

and also 1. Thus, using Equation (7), the linear subspace of C∗(uv) consist-
ing of elements the value of ϕ on which is zero, is (densely) linearly spanned
by elements of the form (uv)k((uv)∗)l − δklck, k, l ≥ 0, k + l 6= 0. It follows
that to check freeness of uv and B, we must show that for bk ∈ B, ϕ(bk) = 0
(except possibly b0 and/or bn are equal to 1),

ϕ(b0w1b1w2 . . . wnbn︸ ︷︷ ︸
W

) = 0(9)

where

wj = (uv)kj ((uv)∗)lj − δkj ljckj ,(10)
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kj, lj ≥ 0, kj + lj > 0, for all j. We shall prove Equation (9) under a weaker
assumption, which is that wj is also allowed to be

(uv)sju(vv∗ − c)u∗((uv)∗)tj ,(11)

sj, tj ≥ 0.
Given such a W , for each i such that wi is as in Equation (10) with both

kj and lj nonzero, but not as in Equation (11), i.e.,

wi = (uv)(uv) . . . (uv)︸ ︷︷ ︸
ki−1 uv’s

u(vv∗)u∗ (v∗u∗)(v∗u∗) . . . (v∗u∗)︸ ︷︷ ︸
li−1 (uv)∗’s

−δkilicki

replace this wi by

wi =
(
(uv)ki−1u(vv∗ − c)u∗((uv)∗)li−1

)
+
(
(uv)ki−1u(c)u∗((uv)∗)li−1 − δkilicki

)
= Ai +Bi.

(12)

In other words, we replace vv∗ in the middle of the word wi by (vv∗− c) + c

and redistribute.
After such a replacement is done, W can be rewritten as a sum of terms,

in which some wi are replaced by Ai’s and some by Bi’s. Consider the term
where all replacements are replacements by Ai’s. This term can be written
as

b0u
r1a1u

r2a2 . . . u
rmbn, ri = ±1, ai ∈ {v, v∗, vv∗ − c, bk, vbk, bkv∗, vbkv∗}.

(13)

In any case, ai ∈ C∗(B ∪ {v}) and ϕ(ai) = 0 by the hypothesis. Thus by
freeness of u and C∗(B ∪ {v}), ϕ is zero on such a term.

In the rest of the terms at least one wi is replaced by Bi. Then, since

Bi = c
(
(uv)ki−1((uv)∗)li−1 − δki−1,li−1c

ki−1
)
,

we see that such a term is once again

b0w
′
1b1w

′
2b2 . . . bn,

so of the same form as W in Equation (9), but now with the total number of
symbols v and u strictly smaller than the total number of such symbols in W .
Thus applying our replacement procedure to each of these terms repeatedly,
we finally get ϕ(W ) = ϕ(

∑
Wi), where each Wi has the same form as W in

Equation (9), but for which the substrings wi are either as in Equation (10)
with ki or li equal to zero, or wi is as in Equation (11) (so that no further
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replacements can be performed). But then each Wi can be rewritten as in
Equation (13), so as before ϕ(Wi) = 0. Thus ϕ(W ) = 0.

Lemma 4.3. For 0 < λ < 1, y = `1 +
√
λ`2
∗, the distribution of y∗y with

respect to ϕU has no atoms; moreover, y∗y is invertible. If y = v(y∗y)1/2 is
the polar decomposition of y, then v∗v = 1, vv∗ 6= 1.

Proof. Notice that ϕU is the vacuum expectation. Let

R = y∗y = 1 + λ`2`
∗
2 +
√
λ(`2`1 + (`2`1)∗),

and let Q be the projection

Q = `2`
∗
2 − `2`1`∗1`∗2.

Finally, let X ⊂ F(C2) be the subspace spanned by the vacuum vector Ω
and all tensors of the form (`2`1Ω)⊗n. Then for all ξ ∈ X , we have

Rξ = (R− λQ)ξ,

since QX = 0. Moreover, X is invariant under `2`1, (`2`1)∗ and `2`
∗
2, so

under R; also, Ω ∈ X . It follows that the distribution of R is the same as
the distribution of (R − λQ). But the latter is (up to a constant multiple)
(1 +

√
λ`)(1 +

√
λ`∗), where ` = `2`1. But ` in itself is ∗-distributed as, e.g.,

`1. So the distribution of y∗y is the same as the distribution of(
1 +
√
λ`1
) (

1 +
√
λ`∗1
)
.

We note that when 0 < λ < 1, 1 +
√
λ`1 is invertible. It follows that the

distribution of y∗y has support bounded away from zero. This coupled with
the earlier results showing that the vacuum expectation is a faithful state,
shows v∗v = 1, and that y∗y is invertible. Notice that the modular group acts
on v by scaling it by exp(−i log(λ)t). Thus by the KMS-condition applied
to 1 = ϕU(v∗v) we have that ϕU(vv∗) = λ 6= 1. Thus vv∗ 6= 1.

It remains to compute the distribution of y∗y, i.e., of(
1 +
√
λ`
) (

1 +
√
λ`∗
)

= A

(here ` is a creation operator). Let ϕ denote the vacuum expectation. Then

ϕ(Ak) = ϕ
((

1 +
√
λ`
)
Bk−1

(
1 +
√
λ`∗
))
,

where
B =

(
1 +
√
λ`∗
) (

1 +
√
λ`
)

= (1 + λ) +
(
2
√
λ
)
s,



FREE QUASI-FREE STATES 347

s denoting the semicircularly distributed variable (`+ `∗)/2. Observe that

ϕ(Ak) = ϕ(Bk−1);

this is because ϕ(`x) = ϕ(x`∗) = 0, for all x.
Notice that the distribution of B is supported away from zero for 0 <

λ < 1. Let f · dx be the distribution of B, where f is a continuous function
supported away from zero, and dx is the Lebesgue measure on the real line;
let ν be the distribution of A. Then for k > 0,

ϕ(Ak) =

∫
xkdν = ϕ(Bk−1) =

∫
xk−1f(x) · dx =

∫
xk
f(x)

x
· dx.

It follows that the distribution of A is f(x)

x
· dx perhaps plus a point mass at

zero. But we have seen above that it is supported away from zero. So the
distribution of A is f(x)/x · dx, and in particular has no atoms.

Remark 4.4. The distribution of y∗y is√
4λ− (t− (1 + λ))2

2πλt
dt

and is supported on the interval ((1 − √λ)2, (1 +
√
λ)2). The free Poisson

distribution with R-transform λ/(1− z) is (see [29])√
4λ− (t− (1 + λ))2

2πt
dt+ (1− λ)δ0

and is supported on the interval ((1 − √λ)2, (1 +
√
λ)2). It follows that

all moments (except zeroth) of this free Poisson distribution are equal to λ
times the corresponding moments of y∗y. By the KMS condition, we find
that ϕU((yy∗)k) = λϕU((y∗y)k), k > 0. It follows that the distribution of yy∗

is free Poisson. This is analogous to the statement that cc∗ is free Poisson,
if c is a circular variable.

Lemma 4.5. Let y = `1 +
√
λ`∗2 for 0 < λ < 1, and let y = vb be its polar

decomposition, b = (y∗y)1/2. Let u be a Haar unitary which is ∗-free from y.
Then uv and b are ∗-free with respect to the vacuum expectation.

Proof. Let ϕ stand for the vacuum expectation. We want to apply Lemma 4.2
to u, v and B = C∗(b).

Condition (1) is immediate, since the modular group action preserves the
state, so ϕ(v) = ϕ(−v).

Condition (2) is fulfilled because u is ∗-free from y, and W ∗(y) contains
both v and b.
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Next, ϕ(vd) = ϕ(dv∗) = 0 for all d ∈ B, because the generator of B, b,
is fixed under the modular group action, and since ϕ is KMS, it is invariant
with respect to the modular automorphism group, so we get ϕ(vd) = −ϕ(vd),
etc. Also,

ϕ(vdv∗) = ϕ(dv∗v)λ

by the KMS-condition. But v∗v = 1 by Lemma 4.3. So (3) and (4) fol-
low.

Lemma 4.6. Let y = `1 +
√
λ`∗2. Let u be a Haar unitary which is ∗-free

from y. Then the ∗-distribution of y is the same as the ∗-distribution of uy.

Proof. Since the joint distribution of free random variables only depends on
their individual distributions, we are free to choose u as we like, as long as u
and y are free. In particular, we may assume that u and `1, `2 are all ∗-free
with respect to some state ϕ, and that the restriction of ϕ to C∗(`1, `2) is
the vacuum expectation ψ. Now, uy is obtained from y by replacing `1 by
u`1 and `2 by `2u

∗.
It thus suffices to show that (`1, `2) have the same joint distribution as

(u`1, `2u
∗). The value of ψ on a word in `1, `2 and their adjoints is 1, if and

only if this word reduces to 1 using the relations

`∗i `j = δij1,

and is zero otherwise. Similarly, the value of ϕ on a word in u`1, `2u
∗ and

their adjoints is 1 if and only if this word reduces to 1 using the above
relations and the fact that u is a unitary, and is zero otherwise. Indeed, if
the word does not reduce, it means that it is of the form

uk0L1u
k1L2 . . . u

kr−1Lru
kr ,

where kt 6= 0 for 0 < t < r, and each Li is a nontrivial irreducible word in
`1, `2 and their adjoints. Thus ψ(Li) = 0, and the value of ϕ on the whole
word is zero by freeness.

So all we need to show now is that a word in `1, `2 and their adjoints
reduces to 1 if and only if the corresponding word with `1 replaced by u`1
and `2 replaced by `2u

∗, reduces to 1. If the former reduces to 1, then the
latter clearly reduces to 1. If the former reduces to 0, then it must contain
a string of the form

`∗1`2,

(or `∗2`1) which becomes

`∗1u
∗`2u

∗
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(or u`∗2u`1) and it is easy to see that a word containing such a string cannot
be reducible. Finally, if the word in `i’s does not reduce to either 1 or
0, it is seen easily that it cannot be reduced to 1 after the replacement is
done.

Remark 4.7. The proof of the above lemma is the only place where our
proof differs in an essential way from [28], where a random matrix model
was used to prove a similar lemma. Our proof can be used to give a com-
pletely combinatorial proof of Voiculescu’s result on polar decomposition of
a circular element. We also would like to mention a combinatorial proof of
Voiculescu’s result given recently by Banica ([5]).

Theorem 4.8. Assume 0 < λ < 1, and let y = (s(e1) + is(e2))/2, with ei
as in the beginning of Section 4. Then in the polar decomposition y = vb, v
is a non-unitary isometry with v∗v = 1, and b is invertible. Moreover, with
respect to the free quasi-free state ϕU , b has a distribution with no atoms,
ϕU(vk(v∗)l) = δklλ

k and furthermore v and b are ∗-free.

Proof. Since the distribution of uy and y are the same (Lemma 4.6) it follows
that the joint distribution of v and b is the same as the joint distribution
of uv and b (since uy = (uv)b is the polar decomposition of uy). But uv
and b are free by Lemma 4.5. Thus v and b are ∗-free. The results on
distribution of b are contained in Lemma 4.3. Lastly, by the KMS-condition,
ϕU(vk(v∗)l) = λkϕU((v∗)lvk). If k = l, this is 1, since v∗v = 1; if k 6= l, this
is either ϕU(vk−l) or ϕU((v∗)l−k), so zero, since ϕU is invariant under the
modular action, which scales v by nontrivial constants.

Corollary 4.9. For nontrivial Ut and HR two-dimensional, with the above
notation, Γ(HR, Ut) = C∗(y) = C∗(v) ∗r C∗(b), the reduced free product with
respect to the restriction of ϕU to C∗(v) and C∗(b).

Proof. If Ut is nontrivial, b is invertible, and so v ∈ C∗(y).

Notice C∗(b) is isomorphic to C[−1, 1]. Thus W ∗(b) is a diffuse commuta-
tive von Neumann algebra, and can be viewed as generated by, for example,
a semicircular element.

The algebra C∗(v) is isomorphic to the algebra T of Toeplitz operators:
by universality of the Toeplitz operators, there is a map from T into C∗(v),
sending the generating isometry S of T to v; but this map is equivariant with
respect to the circle action on T , scaling S by complex number of modulus 1,
and αt, so the map is an isomorphism. Notice then that W ∗(v) is isomorphic
to bounded operators on a Hilbert space, and thus is generated by matrix
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units {eij}∞i,j=0. The restriction of ϕU to this algebra is given by

ϕU(eij) = δijλ
j(1− λ).

Remark 4.10. Notice that for λ 6= 1, C∗(y) contains a nontrivial projec-
tion, namely vv∗. But for any nontrivial Ut, the algebra Γ(HR, Ut) contains a
unital subalgebra isomorphic to Γ(H′R, U ′t), where H′R is two-dimensional and
U ′t is nontrivial. This is because HR obviously contains a two-dimensional
real Hilbert space H′R with the property that the restriction of the inner
product of H to H′R is not real. Thus by the above, Γ(HR, Ut) contains a
projection. Since the algebras of the Free Gaussian Functor of Voiculescu
do not contain nontrivial projections ([16]) it follows that Γ(HR, Ut) is not
isomorphic to any of those algebras.

Suppose Ut is almost-periodic, i.e., its eigenvectors densely span H, and
assume that dimHR ≥ 3. Recall that if ψ is a state on an algebra B, then
the centralizer of ψ is the subalgebra

Bψ = {x ∈ B : ψ(xy) = ψ(yx), ∀y ∈ B}.

Remark that if y is as in Theorem 4.8, then y∗y is in the centralizer of the
free quasi-free state, because of the KMS condition.

We can write, using Corollary 4.9, Γ(HR, Ut) = C1 ∗r C2, where the cen-
tralizer of the restriction of ϕU to Ci contains a copy of C[−1, 1]. Moreover,
we may assume that the restriction of ϕU to this C[−1, 1] is the Lebesgue
measure. Since C[−1, 1] contains continuous functions on the circle, we can
find in C1 a unitary a, such that ϕU(a) = 0, and we can find in C2 unitaries
b, c such that ϕU(b) = ϕU(c) = ϕU(b∗c) = 0. Notice that then the free prod-
uct state is invariant under the adjoint actions of a, b, c, since they are in the
centralizer. Avitzour proved (see Proposition 3.1 in [4]) that under such an
assumption, for all x ∈ C1 ∗r C2 = Γ(HR, Ut), ϕU(x)1 is in the closure of the
convex hull of the set {uxu∗}, where u runs through the group generated by
a, b, c above.

Theorem 4.11. Suppose dimHR ≥ 3 and Ut is almost-periodic. Then
(i) Γ(HR, Ut) is simple;

(ii) ϕU is the unique KMS-state for α at inverse temperature 1;

(iii) If Ut is nontrivial, there are no states on Γ(HR, Ut) which are KMS for
α at inverse temperature β 6= 1.

Proof. (i) Suppose J is a closed ideal in Γ(HR, Ut), and 0 6= x ∈ J . Since ϕU
is faithful, ϕU(x∗x) 6= 0. But ϕU(x∗x)1 is in the closure of the convex hull
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of {uxu∗}, where u is in the group generated by a, b, c, which is a subset of
J . So 1 ∈ J .

(ii,iii) If ψ is another KMS-state for α at inverse temperature β, then a, b, c
are still in the centralizer of ψ. This follows from the KMS condition, and the
fact that α fixes a, b, c. Thus for any x, ψ is constant on the convex hull of
{uxu∗ : u in the group generated by a, b, c}. Since ϕU(x)1 is in the closure
of this convex hull, we see that ψ(x) = ϕU(x). If Ut is nontrivial, since Ut
is almost-periodic, it is easily seen that there is an element y ∈ Γ(HR, Ut),
for which αt(y) = exp(−it log λ)y, and ϕU(yy∗) = λϕU(y∗y) 6= 0. It follows
that ψ cannot be a KMS state at inverse temperature β 6= 1.

Remark that statement (3) of the above theorem shows that it is im-
possible, for Ut almost-periodic and nontrivial, and dimHR > 2, to find
an isomorphism between Γ(HR, Ut) and Γ(HR, Vt), where Vt = Uκt, κ 6= 1,
which is “covariant” with respect to Vt and Ut (i.e., one that would transfer
t 7→ Ut into t 7→ Vt/κ). While Properties (1) and (2) are very similar to the
situation one has for quasi-free states on the CAR algebra, Property (3) is
quite different.

The above theorem, with the same proof, also holds in the case when
dimHR = 2, and Ut has period 2π/ log λ, with 1 ≥ λ ≥ 1/2. In this case, to
find a, b, c, one uses Corollary 4.9 to rewrite Γ(HR, Ut) as the free product of
C[−1, 1] (wherein one finds b, c) and the Toeplitz operators. It is easily seen
that when 1 ≥ λ ≥ 1/2, there exists a unitary c in the centralizer of ϕU in
the Toeplitz operators with ϕU(c) = 0.

In general, by Remark 2.7, if dimHR ≥ 3, we can write HR =
⋃H(k)

R and

thus Γ(HR, Ut) =
⋃

Γ(H(k)
R ⊂ H(k)), where 3 ≤ dimH(k)

R < ∞, H(k) is the
complex span (in H) of H(k)

R , and we are using the notation of Remark 2.6.
Since by the above theorem, each Γ(H(k)

R ⊂ H(k)) is simple, we have

Corollary 4.12. Suppose dimHR ≥ 3. Then Γ(HR, Ut) is simple.

In fact, this argument shows that for each x ∈ Γ(HR, Ut), ϕU(x)1 is in the
closure of the convex hull of {uxu∗ : u ∈ Γ(HR, Ut) unitary}.

5. Matricial models.

In this section we develop several “matricial models,” which have applica-
tions as technical tools. The models are to a certain extend generalizations
of random matrix models (see [29, 28, 11]).

In what follows, let E∞ be the Cuntz algebra on an infinite number of
generators (see [10]), which can be viewed as generated by creation operators
`(h) where h are in some Hilbert space. The vacuum expectation 〈Ω, ·Ω〉



352 DIMITRI SHLYAKHTENKO

defines a state ψ on this algebra. It is known (e.g., [29]) that the operators
`(h) and `(g) are ∗-free with respect to ψ if h ⊥ g. We shall say that a
family F of isometries {Lk} is ∗-distributed (with respect to some state) as
a family of free creation operators, if the joint ∗-distribution of F is the same
as the joint ∗-distribution of {`(gk)} with respect to the vacuum state for
some orthonormal family {gk}. Notice that then Lk are all ∗-free.

Let M = MN be either N × N matrices, or bounded operators on a
separable Hilbert space (in which case we write N =∞). Notice that M is
generated by matrix units {eij}N−1

i,j=0. Let ω be a state on M , given by

ω = Tr(diag(c0, c1, . . . )·),

where ci are some nonnegative constants,
∑
ci = 1. For example, if N is

finite, we can take ci = 1/N , so ω is the normalized trace; another case of
interest will be when ck = λk/κ, where 0 < λ < 1 and κ is chosen so that∑
ck = 1. Let C = E∞ ⊗M , and consider the state θ = ψ ⊗ ω on C.

Theorem 5.1. With the above notation, given a set of unit vectors {hkij}
such that hkij ⊥ hk

′
ij′ for all i, j, j′, k, k′ with (j, k) 6= (j′, k′), consider in C the

operators

Lk =
N−1∑
i,j=0

`(hkij)⊗ eij
√
ci

(interpreted as a weak limit when N =∞). Then
(i) L∗sLt = δst1, and {Lk}k are jointly ∗-distributed with respect to θ as

free creation operators, in particular are ∗-free;

(ii) C∗({Lk}k) is free from the algebra generated by the projections
{1⊗ eii}N−1

i=0 .

Proof. (i) First, we check that Ls is an isometry:

L∗sLs =
∑
ijkl

(
`(hsji)

∗ ⊗ eij√cj
)

(`(hskl)⊗ ekl
√
ck) .

For eijekl to be nonzero, we must have j = k; since hsji ⊥ hsjl for i 6= l, we
also must have i = l. Thus the sum is equal to∑

ij

cj1⊗ eii

which is the identity, since
∑
i ci = 1. In exactly the same way we get

L∗r(Ls) = 0 for r 6= s. To check that {Lk}k are jointly ∗-distributed as a
family of free creation operators, in view of L∗rLs = δrs1, it is sufficient to
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check that θ is zero on any nontrivial irreducible word w in Lk’s and L∗k’s,
i.e., a word of the form

w = Li1 . . . LinL
∗
j1
. . . L∗jm ,

where n,m ≥ 0, n+m > 0. But viewed as a matrix, w has as entries sums
of terms like

`(hi1a1b1
) . . . `(hinanbn)`(hj1c1d1

)∗ . . . `(hjmcmdm)∗.

Each such term has zero expectation with respect to the state ψ; it follows
that θ(w) = 0, as desired.

(ii) Since C∗({Lk}) is densely linearly spanned by words in Lk’s and L∗k’s,
and 1; by (i), the linear subspace of this algebra of all elements that have
zero expectation with respect to θ is densely linearly spanned by nontrivial
irreducible words of the form Li1 . . . LinL

∗
j1
. . . L∗jm , n,m ≥ 0, n + m > 0.

Similarly, the linear subspace of the algebra generated by the projections
1⊗ eii consisting of elements that have expectation zero with respect to θ is
linearly spanned by elements of the form 1⊗eii−ci1. Thus to check freeness
in (ii) it is sufficient to show that θ(W ) = 0, where

W = f0w1f1 . . . wnfn,

wi is of the form Li1 . . . LinL
∗
j1
. . . L∗jm , m,n ≥ 0, m+ n 6= 0, and fi is of the

form 1⊗ ejj − cj, except possibly f0 and/or fn are 1.
Now, if W does not contain a substring of the form L∗rfsLt, it is easily

seen that as a matrix it has entries that have expectation zero with respect
to ψ, so θ(W ) = 0. If W contains such a substring, W = 0. Indeed,

L∗r1⊗ essLt =
∑
ijkl

(
`(hrji)

∗ ⊗ eij√cj
)

(1⊗ ess)
(
`(htkl)⊗ ekl

√
ck
)
.(14)

For a nonzero term, we must have j = s, s = k, so j = k. If r 6= t, then hrji ⊥
htkl for all i, l, by the hypothesis of the theorem, so all terms in the above sum
vanish. Thus if r 6= t, L∗r(1⊗ess−cs)Lt = L∗r(1⊗ess)Lt−csL∗rLt = 0. In the
case r = t, we get a nonzero term in Equation (14) if and only if i = l, since
otherwise hrji and htkl are orthogonal. Thus the sum in the equation is equal
to
∑
i 1 ⊗ eiics = cs1. Thus L∗r(1 ⊗ ess − cs)Lt = L∗r(1 ⊗ ess)Lt − csL∗rLt =

0.

The next model assumes more freeness among entries of L, but shows that
then L is free from the off-diagonal matrix units eij.

Theorem 5.2. Given an orthonormal set of vectors {hkij}, consider oper-
ators Lk in C given by

Lk =
N−1∑
i,j=0

`(hkij)⊗ eij
√
ci
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(interpreted as a weak limit when N =∞). Then
(i) L∗sLt = δst1, and {Lk}k are jointly ∗-distributed with respect to θ as

free creation operators, in particular are ∗-free;

(ii) C∗({Lk}k) is free from the algebra generated by the matrix units
{1⊗ eij}N−1

i,j=0.

Proof. (i) Follows from (i) of Theorem 5.1. (ii) Since elements 1⊗ eij − δijci
span the linear subspace of the algebra generated by {1⊗ eij} consisting of
elements that have zero expectation with respect to θ, just as in the proof
of (ii) of Theorem 5.1, it is sufficient to check that θ(W ) = 0, where

W = f0w1f1 . . . wnfn.

Here wi is of the form Li1 . . . LipL
∗
j1
. . . L∗jq , p, q ≥ 0, p + q > 0, and fi is of

the form 1 ⊗ eij − δijci, except possibly f0 and/or fn are 1. Once again, if
W does not contain a substring of the form L∗rfsLt, then when viewed as
a matrix it has entries that have zero expectation with respect to ψ, and
so θ(W ) = 0. If W contains such a substring, it is zero. Indeed, if fs is of
the form 1⊗ ekk − ck, L∗rfsLt = 0 by the computation in the proof of (ii) of
Theorem 5.1. If fs = epq, p 6= q, then

L∗rfsLt =
∑
ijkl

(
`(hrji)

∗ ⊗ eij√cj
)

(1⊗ epq)
(
`(htkl)⊗ ekl

√
ck
)
.

For a nonzero term we must have j = p, q = k, so j 6= k. But then hrji ⊥ htkl.
So the above expression is zero.

Remark 5.3. Theorem 5.2 implies results of Voiculescu and Dykema (e.g.,
Proposition 5.1.7 of [29]) but does not rely on random results models (like in
[11]), and is more general, allowing an arbitrary state on the matrix units.

As an application of the techniques we elaborated, we shall consider the
algebra Γ(HR, Ut)′′ for HR ∼= R2 and Ut nontrivial with period 2π/ log(λ).
By Remark 2.12, this is a “building block” out of which all Γ(HR, Ut)′′ for
almost periodic Ut are constructed. We shall denote such an algebra by Tλ;
we’ll abuse notation and write ϕλ for ϕU . Notice that Tλ (as well as free
products of countably many copies thereof) comes faithfully represented on
a separable Hilbert space, thus has a separable predual. In what follows, we
shall write (M,ϕ) ∼= (N,ψ), or say that these pairs are isomorphic, if there
exists an isomorphism of M with N , which is state-preserving.

Theorem 5.4. (Tλ, ϕλ) ∗ (L∞[−1, 1], µ) ∼= (Tλ, ϕλ), where µ is the semi-
circular measure on L∞[−1, 1].

Proof. By Theorem 4.8, Tλ is the free product of a diffuse commutative
von Neumann algebra (generated, e.g., by a semicircular element a), and an
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algebra generated by matrix units {fij}∞i,j=0 with the state whose value on
fij is δijλ

j(1− λ).
For an orthonormal family {hij}, take in Theorem 5.2

N =∞, ck = (1− λ)λk,

and put
s = L+ L∗, L =

∑
ij

`(hij)⊗ eij√ci;

thus s and the matrix units 1 ⊗ eij are free. Then Tλ can be viewed as
generated by s and the matrix units 1⊗eij, and the state ϕλ can be identified
with the restriction of the state θ of Theorem 5.2 to this algebra.

Similarly, (Tλ, ϕλ) ∗ (L∞[−1, 1], µ) can be viewed as generated by matrix
units 1⊗eij as well as elements L′+(L′)∗, L′′+(L′′)∗, where L′ =

∑
`(h′ij)⊗

eij
√
ci, L

′′ =
∑
`(h′′ij)⊗eij

√
ci, and {h′ij}∪{h′′ij} form an orthonormal family;

the free product state can be identified with the restriction of θ.
It is obvious from these considerations, that if we set

C = (1⊗ e00)Tλ(1⊗ e00),

D = (1⊗ e00)((Tλ, ϕλ) ∗ (L∞[−1, 1], µ))(1⊗ e00),

then

(Tλ, ϕλ) ∼= (C, θ(1⊗ e00 · 1⊗ e00))⊗ (B(H),Tr(diag(c0, c1, . . . )·))
and

(Tλ, ϕλ) ∗ (L∞[−1, 1], µ)

∼= (D, θ(1⊗ e00 · 1⊗ e00))⊗ (B(H),Tr(diag(c0, c1, . . . )·)).
Thus to prove the statement of the theorem, it is sufficient to prove that

(C, θ(1⊗ e00 · 1⊗ e00)) ∼= (D, θ(1⊗ e00 · 1⊗ e00)).

By Lemma 5.2.1 of [29], C is generated by elements of the form

cij = (1⊗ e0i)(L+ L∗)(1⊗ ej0) = (`(hij)
√
ci + `(hji)

∗√cj)⊗ e00.

Similarly, D is generated by elements

d′ij = (1⊗ e0i)(L
′ + (L′)∗)(1⊗ ej0) = (`(h′ij)

√
ci + `(h′ji)

√
cj)⊗ e00

and

d′′ij = (1⊗ e0i)(L
′′ + (L′′)∗)(1⊗ ej0) = (`(h′′ij)

√
ci + `(h′′ji)

√
cj)⊗ e00.
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With respect to 1
θ(1⊗e00)

θ(1 ⊗ e00 · 1 ⊗ e00), the elements cij are free for

different i ≤ j (notice that c∗ij = cji). Moreover, cij, up to a constant

multiple, is distributed as `+ `∗ for i = j, and `+
√
λi−j`′ for i < j, where

`, `′ are two free creation operators. By results of Section 4, we have that
cij generates either Tλj−i , i < j, or L∞[−1, 1] if i = j. Thus the cutdown
C, taken with the state 1

θ(1⊗e00)
θ(1 ⊗ e00 · 1 ⊗ e00), is isomorphic in a state-

preserving way to(∗
k∈Z

(L∞[−1, 1], µ)

)
∗
(∗
k∈Z

(Tλ, ϕλ)

)
∗
(∗
k∈Z

(Tλ2 , ϕλ2)

)
∗ . . .

Similarly, with respect to 1
θ(1⊗e00)

θ(1⊗ e00 · 1⊗ e00), the family {d′ij : i ≤
j}∪{d′′kl : k ≤ l} is free and generates the cutdown algebra D. Just as above,
we get that D, taken with the state 1

θ(1⊗e00)
θ(1⊗ e00 · 1⊗ e00), is isomorphic

in a state-preserving way to(∗
k∈Z

(L∞[−1, 1], µ)

)
∗
(∗
k∈Z

(Tλ, ϕλ)

)
∗
(∗
k∈Z

(Tλ2 , ϕλ2)

)
∗ . . .

Thus C and D are isomorphic in a state-preserving way.

Corollary 5.5. (Tλ, ϕλ) ∗ (L(Fn), trace) ∼= (Tλ, ϕλ).

6. Associated von Neumann algebras.

In this section we consider a general HR with an action Ut. First, we consider
the case when Ut is almost periodic; in this case the eigenvalues for A densely
span H. By Remark 2.12, Tλ is a “building block” for these algebras: by
Theorems 2.11, 5.4, for nontrivial Ut, the algebras are just (finite or infinite)
free products of Tλ’s.

Connes in [8] defined the T invariant of a factor M to be the subgroup of
R

T (M) = {t ∈ R : σϕt is inner}
where ϕ is some faithful normal weight, and σϕ denotes the corresponding
modular group. (See [8, 25] for further discussion of the T invariant.)

The S invariant of a factor M was defined in [8] to be the intersection
over all faithful normal weights ϕ of the spectra of the modular operators
∆ϕ. M is a type III factor if an only if 0 ∈ S(M); in that case Connes’ IIIλ
classification of M in terms of its S invariant is as follows:

S(M) =


{λn : n ∈ Z} ∪ {0}, if M is type IIIλ, 0 < λ < 1

[0,+∞), if M is type III1

{0, 1}, if M is type III0

.
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Recall that the centralizer of a faithful normal state ϕ on M is defined to
be

Mϕ = {x ∈M : ϕ(xy) = ϕ(yx), ∀y ∈M}.
IfMϕ is a factor, then S(M) is equal to the spectrum of the modular operator
corresponding to ϕ.

Barnett in [6] proved that if M , N are two von Neumann algebras with
states ϕ and ψ, and if Mϕ contains a discrete finite group of at least 3
orthogonal unitaries, while Nψ contains a discrete finite group of at least 2
orthogonal unitaries, then M ∗N is a full type IIIλ factor with λ 6= 0, (see
[9] for definition of full factors), the centralizer of the free product state in
M ∗N is a factor, and moreover the T invariant T (M ∗N) is given by

{t ∈ R : σψt = id, σϕt = id}

where σθ denotes the modular group of θ. Since (Tλ, ϕλ) ∼= (Tλ, ϕλ) ∗
(L∞[−1, 1], µ), (µ is the semicircular measure) the centralizer of ϕλ in Tλ
contains a diffuse commutative von Neumann algebra, and so a subgroup of
four orthogonal unitaries; moreover for Ut almost-periodic, Γ(HR, Ut)′′ is a
free product of Tλ’s and a diffuse commutative von Neumann algebra. Using
this, the fact that for a factor of type IIIλ with separable predual, λ 6= 0,

T (M) =


{0}, if λ = 1

2π

log(λ)
Z, if 0 < λ < 1

and that the modular action for the free quasi-free state on Tλ has, by
definition, period 2π/ log(λ), we obtain, using the notation R×+ for the mul-
tiplicative group of positive real numbers:

Theorem 6.1. Suppose Ut is almost-periodic, and let G be the closed
subgroup of R×+ generated by the spectrum of A (Ut = Ait). Then

Γ(HR, Ut)′′ is


type III1, if G = R+

type IIIλ, if G = λZ, 0 < λ < 1.

type II1, if G = {1}

Moreover, Γ(HR, Ut)′′ is full.

Of course, the type II1 case corresponds to trivial Ut, and Γ(HR, idt)′′ ∼=
L(FdimHR) by results of [27].

Notice that S(Γ(HR, Ut)′′) is the spectrum of the modular operator since
the centralizer of the free quasi-free state is a factor.
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The above theorem can also be obtained using the results of Dykema
([13]); those results also imply that the centralizer of the free quasi-free state
on Γ(HR, Ut)′′ for nontrivial almost-periodic Ut is isomorphic to L(F∞), and
the discrete core (see [13] for details) is isomorphic to L(F∞)⊗B(H).

Remark 6.2. In the proof of Theorem 6.1 we have only used the fact that
(Tλ, ϕλ) is stable under taking free products with a diffuse commutative
von Neumann algebra. Thus a similar theorem holds for any von Neumann
algebra A with a non-tracial faithful normal state ϕ, for which (A,ϕ) ∼=
(A,ϕ) ∗ (L∞[−1, 1], µ) (µ is the semicircular measure): A is then necessarily
a full type III factor, not of type III0, and its T invariant is given by {t ∈
R : σϕt = id}. Such a property may be called free absorption.

In what follows it will be notationally convenient to write (Tλ, ϕλ) for
(T1/λ, ϕ1/λ) when λ > 1, and (T1, ϕ1) for (L(F2), tr).

Proposition 6.3. For λ 6= 1,

(Tλ, ϕλ) ∗ (Tµ, ϕµ) ∼= (Tλ, ϕλ) ∗
( ∗
j,k∈Z

(Tµλk , ϕµλk)

)
.

Proof. Using Theorem 4.8, we can rewrite (Tλ, ϕλ)∗(Tµ, ϕµ) as a free product
of:
(a) An algebra generated by matrix units fij with a state whose value

on fij is (1 − λ)λjδij (these come from the polar part of the polar
decomposition of the generalized circular element generating Tλ, see
Section 4);

(b) A diffuse commutative von Neumann algebra, generated by a semicir-
cular element (this comes from the positive part of the polar decom-
position);

(c) Tµ, which can be viewed as generated by an appropriate generalized
circular element.

Thus if in Theorem 5.2 we take

N =∞, ck = (1− λ)λk,

and some orthonormal family {h1
ij} ∪ {h2

ij} ∪ {h3
ij}, we can view (Tλ, ϕλ) ∗

(Tµ, ϕµ) as the algebra generated by
(a) Matrix units 1⊗ eij
(b) L1 + L∗1
(c) L2 +

√
µL∗3

where
Lk =

∑
i,j

`(hkij)⊗ eij
√
ci.
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In this picture, the free product state on (Tλ, ϕλ)∗ (Tµ, ϕµ) is identified with
the state θ of Theorem 5.2.

Consider now the algebra

(1⊗ e00) ((Tλ, ϕλ) ∗ (Tµ, ϕµ)) (1⊗ e00)

with the state given by the restriction of the free product state. By Lemma
5.2.1 of [29], this cutdown is generated by elements of the form

ckl = 1⊗ e0k(L1 + L∗1)1⊗ el0
and

dkl = 1⊗ e0k(L2 +
√
µL∗3)1⊗ el0,

which are easily seen to be

ckl = (`(h1
kl)
√
ck + `(h1

lk)
∗√cl)⊗ e00

and

dkl = (`(h2
kl)
√
ck + `(h3

lk)
∗√clµ)⊗ e00.

Since hijk are orthonormal, we see that the family

{cij : i ≤ j} ∪ {dij}
in (1⊗e00)((Tλ, ϕλ)∗(Tµ, ϕµ))(1⊗e00), is ∗-free (with respect to 1

θ(1⊗e00)
θ(1⊗

e00 · 1⊗ e00)). Moreover, by results of Section 4, cij generates L∞[−1, 1] (the
restriction of 1

θ(1⊗e00)
θ to which is a semicircular measure) for i = j and

Tλj−i otherwise (the restriction of 1
θ(1⊗e00)

θ to this is ϕλj−i). Similarly, dij
generates Tµλj−i . It follows that

(1⊗ e00)((Tλ, ϕλ) ∗ (Tµ, ϕµ))(1⊗ e00)

∼=
( ∗
i,j∈Z

(Tλi , ϕλi)

)
∗
( ∗
i,j∈Z

(Tλiµ, ϕλiµ)

)(15)

in a state-preserving way.
Consider now the right hand side of the statement of our proposition,

(Tλ, ϕλ) ∗
( ∗
j,k∈Z

(Tµλk , ϕµλk)

)
.

Just as above, for a certain orthonormal family of vectors {g1
ij} ∪ {gkl,2ij } ∪

{gkl,3ij }, we can view this algebra as being generated by
(a) matrix units eij ⊗ 1



360 DIMITRI SHLYAKHTENKO

(b) the semicircular element L1 + L∗1
(c) generalized circular elements L

(kl)
2 +

√
µλkL

(kl)
3

where

L1 =
∑
ij

`(g1
ij)⊗ eij

√
ci

and

L(kl)
s =

∑
ij

`(gkl,sij )⊗ eij√ci, s = 1, 2.

Once again, the free product state is identified with θ. Considering the
cutdown of

(Tλ, ϕλ) ∗
( ∗
j,k∈Z

(Tµλk , ϕµλk)

)
by 1⊗ e00, we get an algebra generated by the entries of the matrices in (b)
and (c), i.e., elements of the form

rij = (`(g1
ij)
√
ci + `(g1

ji)
∗√cj)⊗ e00

and

tklij =

(
`(gkl,2ij )

√
ci + `(gkl,3ij )∗

√
cjµλk

)
⊗ e00.

We see that the family

{rij : i ≤ j} ∪ {tklij}
is ∗-free and that moreover, rii generates L∞[−1, 1], rij generates Tλj−i for
j 6= i, and tklij generates Tλj−i+kµ. Thus the cutdown algebra, considered with
the state 1

θ(1⊗e00)
θ(1⊗ e00 · 1⊗ e00) is isomorphic, in a state-preserving way,

to ( ∗
k,l∈Z

(Tλk , ϕλk)

)
∗
( ∗
i,j,k,l∈Z

(Tλj−i+kµ, ϕλj−i+kµ)

)
.

It is trivial to see that this is isomorphic (in a state-preserving way) to the
algebra of Equation (15). The statement of the theorem follows, since it
is obvious from our constructions that the algebras on the right and left
sides in the theorem are isomorphic to their cutdowns by 1⊗e00 (taken with
restriction of θ), tensor (B(H),Tr(diag(c0, c1, . . . )·)).

Theorem 6.4. Suppose Ut is almost-periodic and nontrivial, and let H be
the (not necessarily closed) subgroup of R+ generated by the point spectrum
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of A. Then (Γ(HR, Ut)′′, ϕU) depends up to state-preserving isomorphisms
only on H.

Proof. Write Γ(HR, Ut)′′ as the free product

∗
k

(Tλk , ϕλk),

λk 6= 1. Then H is the (not necessarily closed) subgroup of R×+ generated by
the λk’s. By Theorem 5.4,

(Tλ, ϕλ) ∼= (Tλ, ϕλ) ∗ (T1, ϕ1).

Applying Proposition 6.3 to (Tλ, ϕλ) ∗ (T1, ϕ1) with 1 6= λ, we find that

(Tλ, ϕλ) ∼= (Tλ, ϕλ) ∗
( ∗
j,k∈Z

(Tλk , ϕλk)

)
.

Thus

(Tλ, ϕλ) ∼= (Tλ, ϕλ) ∗ (Tλ, ϕλ).

By Proposition 6.3, for λ, µ 6= 1,

(Tλ, ϕλ) ∗ (Tµ, ϕµ) ∼= (Tλ, ϕλ) ∗
( ∗
i,j∈Z

(Tλiµ, ϕλiµ)

)
∼= (Tλ, ϕλ) ∗

( ∗
i,j∈Z

(Tλiµ, ϕλiµ) ∗ (Tµ, ϕµ)

)
which by the above is isomorphic to

∗
i,j∈Z

(Tλiµj , ϕλiµj ).

Now rewrite ∗k(Tλk , ϕλk), using the above isomorphisms, as

∗
r≥0
∗

i1,...,ir
(Tλi1 , ϕλi1 ) ∗ · · · ∗ (Tλir , ϕλir ) ∼= ∗

r≥0
∗

i1,...,ir
∗

ν∈Hi1,...,ir
(Tν , ϕν),

where Hi1,...,ir is the subgroup generated by λi1 , . . . , λir . By the above equa-
tions, since

H =
⋃
r

⋃
i1,...,ir

Hi1,...,ir ,

we get finally that ∗
k

(Tλk , ϕλk)
∼= ∗

ν∈H
(Tν , ϕν),

which clearly only depends on H.
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Corollary 6.5. For a given 0 < λ < 1, all type IIIλ factors of the form
Γ(HR, Ut)′′ are isomorphic.

For M a type III1 factor, Connes defined in [9] the Sd invariant of M as
the intersection over all faithful normal almost periodic weights (i.e., weights
for which eigenvectors of the associated modular operators densely span
the representation space) of the point spectra of the corresponding modular
operators.

Notice that for Ut almost-periodic but not periodic (so Γ(HR, Ut)′′ is type
III1), the state ϕU is almost periodic, as then the eigenvectors of the modular
operator ∆ densely span F(H). The point spectrum of ∆ is precisely the
subgroup H in Theorem 6.4; thus the Sd invariant is nontrivial and is not all
of R+. Moreover, since the centralizer of the free quasi-free state is a factor,
and Γ(HR, Ut)′′ is full, by Lemma 4.8 of [9], the Sd invariant is the point
spectrum of ∆. It follows that the group H of Theorem 6.4 is an invariant
of the factor Γ(HR, Ut)′′. In the case that Γ(HR, Ut)′′ is type IIIλ, 0 < λ < 1,
the group H is the S invariant. Thus in any case

Theorem 6.6. For Ut, U
′
t almost-periodic and nontrivial, Γ(HR, Ut)′′ is

isomorphic to Γ(H′R, U ′t)′′ if and only if the point spectra of the modular
operators corresponding to ϕU and ϕU ′ coincide.

If Ut is almost-periodic and nontrivial, then Γ(HR, Ut)′′ ∗ Γ(HR, Ut)′′ ∼=
Γ(HR, Ut)′′ (in fact, in a way that maps the state ϕU ∗ ϕU to ϕU).

In [21], Rădulescu showed that if ψλ for 0 < λ < 1 is a state on M2×2,
defined on matrix units {fij}1i,j=0 by

ψλ(fij) = δijλ
j/(1 + λ),

and L∞[−1, 1] is endowed with the semicircular measure µ, then

D = (M2×2, ψλ) ∗ (L∞[−1, 1], µ)

is a type IIIλ factor with core isomorphic to L(F∞)⊗B(H) (see [8, 26, 25]
for definitions).

Theorem 6.7. The factor (D,ψλ ∗ µ) of Rădulescu is isomorphic to
(Tλ, ϕλ).

Proof. Setting in Theorem 5.2

N = 2, ci =
λi

1 + λ
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we can view D as generated by matrix units {1⊗eij}1i,j=0 and a semicircular
element

L′ + (L′)∗,

where we set

L′ =
∑
ij

`(hij)⊗ eij√cj,

and {hij}1i,j=0 is an orthonormal family. Under such an identification, the
state ψλ ∗ µ is identified with the restriction of the state θ of Theorem 5.2.

The cutdown by 1⊗ e00 is generated by elements

(`(h00) + `(h00)∗)⊗ e00, (`(h11) + `(h11)∗)⊗ e00

and

(`(h01) +
√
λ`(h10)∗)⊗ e00.

It follows that the cutdown algebra, considered with the state 1
θ(1⊗e00)

θ(1⊗
e00 · 1⊗ e00), is isomorphic to

(Tλ, ϕλ) ∗ (L∞[−1, 1], µ) ∗ (L∞[−1, 1], µ) ∼= (Tλ, ϕλ)(16)

where all isomorphisms are state-preserving (the last isomorphism is by The-
orem 5.4). Notice that since D is type III, this implies that D and Tλ are
isomorphic, though perhaps in a way that does not preserve states.

Similarly, (Tλ, ϕλ) can be viewed as generated by matrix units

{1⊗ fij}∞i,j=0,

as well as the semicircular element

L+ L∗,

where

L =
∑
ij

`(gij)⊗ fij
√
c′i, c′j = (1− λ)λj;

here {gij} form an orthonormal family. The state ϕλ can be identified
with the restriction of the state θ′ given by the tensor product of the state
Tr(diag(c′0, c

′
1, . . . )) and the vacuum expectation.

Consider

p00 =
∑
i

1⊗ f2i2i, p11 = 1− p00
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and

p01 =
∑
i

1⊗ f2i2i+1, p10 = p∗01.

Then {pij}1i,j=0 is a system of matrix units; moreover, the restriction of θ′

to C∗({pij}) is the same as the restriction of θ to C∗({1 ⊗ eij}). Consider
elements

Lee =
∑
ij

`(h2i)⊗ f2i,2j

√
c′2i Leo =

∑
ij

`(h2i)⊗ f2i,2j+1

√
c′2i

Loe =
∑
ij

`(h2i+1)⊗ f2i+1,2j

√
c′2i+1 Loo =

∑
ij

`(h2i+1)⊗ f2i+1,2j+1

√
c′2i+1.

Then

L+ L∗ = Lee + L∗ee + Loe + L∗oe + Leo + L∗eo + Loo + L∗oo.

The cutdown p00Tλp00 is generated by the matrix units {1⊗ f2i2j} as well as

p00(L+ L∗)p00, p01(L+ L∗)p10, p01(L+ L∗)p00.

These are respectively equal to

Lee + L∗ee, p01(Loo + L∗oo)p10, p01(Loe + L∗eo).

Let

L1 =
√

1 + λLee, L2 =

√
1 +

1

λ
p01Loop10

L3 =

√
1 +

1

λ
p01Loe, L4 =

√
1 + λLeop10.

Then by Theorem 5.2, Li’s are ∗-free from each other and from the matrix
units {1⊗ f2i2j} with respect to the state 1

θ′(p00)
θ′(p00 · p00). Moreover, each

Li is distributed (with respect to that state) as a creation operator. Notice
that p00Tλp00 is generated by

{1⊗ f2i2j}, L1 + L∗1, L2 + L∗2, L3

√
λ+ L∗4.

Thus this cutdown, taken with the state 1
θ′(p00)

θ′(p00 · p00), is isomorphic in
a state-preserving way to the free product of
(a) (L∞[−1, 1], µ) (generated by L1 + L∗1);

(b) (Tλ2 , ϕλ2) (generated by L2 +L∗2 and the matrix units {1⊗f2i2j}), and

(c) (Tλ, ϕλ) (generated by L3

√
λ+ L∗4).
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By Theorem 6.4, this is isomorphic in a state-preserving way to Tλ, and thus
to the algebra in Equation (16). The statement of the theorem now follows,
since Tλ is isomorphic to its cutdown by p00 (taken with the restriction of θ′),
tensor (M2×2, ψλ), and similarly D is isomorphic to its cutdown by 1⊗ e00,
tensored with (M2×2, ψλ).

Corollary 6.8. Tλ is a type IIIλ factor with core isomorphic to L(F∞) ⊗
B(H).

This is of course because the IIIλ factor of Rădulescu has this core.
By [12], if one takes a state ψλ on N ×N matrices, given by

Tr(diag(c0, c1, . . . )·),

where ci/ci+1 = λ ∈ (0, 1), then

D = (MN×N , ψλ) ∗ L∞[−1, 1]

is a type III factor (here L∞[−1, 1] is taken with the semicircular measure).
Proceeding as in the proof of Theorem 6.7, we see that D can be modeled
by matrix units 1⊗eij, and a semicircular element L+L∗. Cutting down by
1⊗ e11 gives us an algebra generated by the entries of L+L∗, i.e., elements
of the form

`(hij)
√
ci + `∗(hji)

√
cj.

But such an element generates Tci/cj ; moreover, for different (i, j) (with
i ≤ j), such elements are free. By an argument just as in the proofs of
Theorem 6.7, and Theorem 6.6, we find that

Proposition 6.9. Let DN be MN×N ∗rL∞[−1, 1], where the state on MN×N
is ψλ, and the state on L∞[−1, 1] is the semicircular measure. Then DN

∼= Tλ
in a state-preserving way. In particular, for different N , the algebras DN

are isomorphic.

In a similar way one can express in terms of algebras of Theorem 6.6 alge-
bras of the form MN×N ∗rL∞[−1, 1], where the state on the matrices is arbi-
trary (so for a suitable choice of matrix units is given by Tr(diag(c0, . . . )·)),
and the state on L∞[−1, 1] is the semicircular measure. Using Theorem 6.6,
one can determine precisely when such algebras are isomorphic, in terms of
the constants ci.

This is of interest in relation to the work of Dykema ([13]). For example,
if one could show that reduced free products of MN×N and MK×K (with
nontracial states) are stable under taking free products with diffuse commu-
tative von Neumann algebras, it would be possible to use Theorem 6.6 to
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give a classification of such algebras; indeed, MN×N ∗rMK×K ∗r L∞[−1, 1] is
isomorphic, by the above theorems, to Γ(HR, Ut)′′ for some finite-dimensional
HR. It seems an interesting question in general to ask whether all “free type”
type III factors should be stable under taking free products with diffuse com-
mutative von Neumann algeras (where the free product is with respect to
some class of states on the type III factor).

Theorem 6.10. If the action Ut is has no eigenvectors on H, Γ(HR, Ut)′′
is a type III1 factor.

Proof. The action F(Ut) on the full Fock space will have no eigenvectors
either, so the centralizer of ϕU in Γ(HR, Ut)′′ is trivial. Thus Γ(HR, Ut)′′ is a
factor. Since in particular the centralizer is a factor, the S invariant is the
spectrum of ∆, so all of [0,+∞). So Γ(HR, Ut)′′ is a type III1 factor.

Since the centralizer of ϕU in this algebra is trivial there cannot exist
a state-preserving isomorphism of (Γ(HR, Ut)′′, ϕU) with (Γ(HR, Ut)′′, ϕU) ∗
(L∞[−1, 1], µ), where µ is a semicircular measure, since the centralizer of the
free product state in the algebra on the right hand side contains L∞[−1, 1].
It is not known whether Γ(HR, Ut)′′ has free absorption for some different
state.

For a general (HR, Ut), we can rewrite this pair as a direct sum of (H′R, U ′t),
with U ′t almost-periodic, and (H′′R, U ′′t ), with U ′′t ergodic. Thus

Γ(HR, Ut)′′ = Γ(H′R, U ′t)′′ ∗ Γ(H′′R, U ′′t )′′.

By [12, 6], we get the following corollary (notice that when Ut is nontrivial,
at least one of terms in the free product above is type III; moreover, all of
the algebras involved are diffuse, i.e., contain no minimal projections):

Corollary 6.11. If Ut is nontrivial, Γ(HR, Ut)′′ is a type III factor.
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[29] D.-V. Voiculescu, K. Dykema and A. Nica, Free random variables, CRM monograph

series, vol. 1, American Mathematical Society, 1992.

Received February 5, 1996. This material is based upon work supported under a National

Science Foundation Graduate Research Fellowship.

University of California
Berkeley, CA 94720
E-mail address: shlyakht@math.berkeley.edu


