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RADON TRANSFORM ON FINITE SYMMETRIC SPACES

ELINOR VELASQUEZ

The Radon transform belongs to the area of Inverse Prob-
lems. The reconstruction of a function from its projection
or averages is a central point of study. Besides having di-
rect applications in medical tomography, geophysics, there
are also applications in signal processing, statistics and prob-
ability. Hence, it is useful to consider discretized versions of
the Radon transform.

1. Introduction.

If G is a finite group, and S a fixed subset in G, then, given f: G — C, the
Radon transform of f is defined by Diaconis and Graham [3] as

(1) Rf(z)= ) f(y).

yexS

See also Fill [5]. The goal of this paper is to describe the formulas which
reconstruct f when the space of functions is a finite symmetric space, as well
as to provide an example.

2. Radon transform on finite groups.

Assume that G is a finite group of Lie type and K is a subgroup of G such
that (G, K) is a symmetric pair. Denote by G the space of equivalence
classes of unitary representations of G. If H, is the representation space of
e @, then HX C H, is the space of K-fixed vectors in H,. The dimension
of HX is n(r). The set Gx C G consists of all 7 € G for which HX 0. If
7 € Gk is irreducible, then w,: K \ G/K — C is a zonal spherical function
for (G, K). The order of a set A is denoted by |A|.

The following theorem makes use of the Moore-Penrose inverse of an oper-
ator L which gives a least squares approximation to the original function in
the case that the operator is not invertible. See Horn and Johnson [6]. This
is necessary since in our application of this theorem to the Radon transform
operator on finite upper half planes, we may have a non-invertible operator.
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Theorem 1. Fiz S C K\G/K, with (G, K) as above. For f: K\G/K — C,
with Radon transform Rf defined by (1), then f(x) is least squares approzi-
mated by:

(K2 Y n(m) D Mws (t7) Rf (wa(2),

7Gx te K\G/K
with
(Ceeswr(s™)) 7 Sieswals™) #0,
zero, otherwise.
Proof. The proof is a direct application of the Peter-Weyl theorem for com-
pact, hence finite groups. The symmetric pair (G, K) is a Gelfand pair.

Hence, the regular representation on L?(G/K) decomposes into a direct
sum of representations of G. If f € L?*(G/K), then

f(zK) = G Z Do n(mma(y ) f (y)ma (),
| A i=1 yeG
with 7;; the ij-th matrix entry of 7, and 7y, = w,. Similarly, f € L*(K \ G)

has the decomposition:
f(Ke) = f(z) = 1 X 2(_: zé m)my(y ™) f(y)my ().

If f € LK\ G) N L*(G/K) = L2(K \ G/K), then

(2) f(KzK) = Z ™) Y muly ) f()m(e).

Note that if Ax = > ,cqwa(s™
otherwise, then

|G| =) wa |G| D> 154 Hwey ()

yeG z€G yeG

D 1s Ny ()

2€G/K yeG

|G| Z Z 1g- Z wﬂ'(zilkyil)f(y)

2€G/K yeG keK

,and 1g-1(2) = 1, for 2 € S~! and 0

_ K]
e
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Zle 2)we (27 y ) f(y)

ZGG yeG
teG yeG

=G Zwﬂ DY )
teG yets
el

k=

K 2

Q — X wRA.
teK\G/K
Substituting this result into Formula (2) gives the intended result. Ul

Theorem 2. Fiz Sy C G/K, with (G, K) as before. If, given f: G/K — C,
Rf: G/K — C is its Radon transform, then

n(m)

= |K]| Z Z AL Y mat TR (z),

FEGK teG/K

with X\ as before. Moreover, fix S; C G/K. If, given g: K\ G — C,
Rg: K\ G — C is its Radon transform, then

n(m)
= K[ > > n(mA; D m(t )R (t)m,(z).
reGy I=1 teG/K
Proof. We have
n(m)
f(zK) = Z n(m)mia(y~ ) mia () f(y)-
a yeG i=1

Note that if A, =Y cg m11(s™"), then

Ar Z 7y ) f(y ’g“ Z Z Lg-1(2)mu(z Dma(y™ ") f ()

yeG 2€G/K yeG

5 X S X mal k)

2€G/K yeG keK
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Z Zl ﬂ-zlz y nyk

zEG/K yeG keK

G Z Z 1 y t Trzl(t 1)f(y)

‘ | teGyeG
(4) 7711

el t;;
Hence,

n(m) ’
Z Z A; Zﬂ'il(til)Rf(t>7Ti1(.T).
rely teG

The reconstruction formula for g follows similarly. O

3. Radon transform on finite upper half planes.

Let ¢ = p", with p an odd prime, and [F, be a finite field of characteristic
q- Fix § € Fy to be a nonsquare. If 6> = 4, then F,(6) is the unique
quadratic extension. Consider the group G = GL(2,F,), and take K to be
the subgroup

a bo
(5) Kz{(b a):a2—b25750}.

Note that K is isomorphic to the multiplicative group of F,(6) and thus has
order ¢ — 1.

(6) G/K%{CjT):yEF;, mEFq}.

In this instance, when G and K are as indicated, G/K is a finite analogue
of the Poincaré upper half plane discussed by Angel et al [1], Terras [8], [9]
and Velasquez [10]. Define a function k: G/K x G/K — R by
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The elements of K \ G/K are the sets

o s fled = (G b))

with r € F,.
According to Soto-Andrade [7], Terras [8], the zonal spherical functions

associated to the principal series representations of G are functions w,: K \
G/K — C, witha € F*. Givent € S, C K \ G/K, some b € F,, then

_ 1
Cg+1

(10) wa(t) = wa(b) va(log,, (Im(2))),

z€Sy

with a € F,
we = 1.

By results of [7], Terras [8], the zonal spherical functions associated to
the cuspidal representations of G are the functions w;: K \ G/K — C, for
L € F;. Let € be the sign character of F, defined as

Va, a multiplicative character of F*, and h, a generator of F,

1, d square

(11) e(d) = {

-1, d nonsquare

Fix | € FY, 7, multiplicative character of (IF,(6))* such that 7, # 7'. If
z € F,(0), write z = Re(z) + 0Im(z). Let

u={ze€F,(0): Nz =Re(z) — 6Im(z) = 1}.
Givent € S. C K\ G/K, with c= § -2, a € F,,

(12) wi(t) = wi(c) = Z e(c+ 2Re(2))7i(2).

zeU
The rest of the spherical functions are calculated by Evans [4] to be
0 -1
(13) wie(t) = Z wy t) k(zx),
z€F, 1 €

q—1

where [ = 1,... , %= and & is a fixed additive character of F,.
Define for z € K \ G/K,

(14) b(z) = k (2, V5),

where k(z,w) is defined in Formula (7).
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Note. The Radon transform (1) for S given in (9) need not be invertible.
See [2] where it can be seen that for finite upper half planes G/K the adja-
cency operators (which are the Radon transforms) for ¢ = 5,7,11 are only
invertible in 2 out of ¢ — 2 cases.

Theorem 3. Let (G, K) be as described in formulas (5) to (6) and f: K\
G/K — C with Radon transform defined by (1). The reconstruction of f is
as follows. Forx € K\ G/K, x = S,, r € F,, with b(z) = k(xv5,Vd) =r
as in (14), then f(x) is least squares approzimated by

(15)
(qu 11 { 33 vallog, (Im(s™ A Y wa(log, (Im(y))) R (y)
]17>< belF, s€Sy YESp(x)
+(q+1) Z Z Z <—2—|—2Re( ))
(A e (I)((f) 24 2Re(z)) Tl(z)Rf(z)},
with
A= {(Aarl, A #0, "
Z€ro, otherwise,
= ) > va(log, (Im(t ™))
b(p)eF,  t€Sbm)
pESCK\G/K
and

/\l_ _ {(Al)_lv )\l 7& 07 Zf

2Ero otherwise,

= Y Y« <—2+2Re( 1))71(01).

b(p)€F, velU
pESCK\G/K

Proof. This is proved by specializing Theorem 1 with G = GL(2,F,) and K
defined by Equation (5). u

Theorem 4. Let (G,K) be as described above. If Rf: G/K — C is the

Radon transform, the least squares reconstruction of f(t) is as follows. Set

c(z,t) =10 <<(1) _1> t> =r,
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where b is defined above in Formula (14). Then f is least squares approzi-
mated by

(16)

<q+1 {Z > > vallog,(Im(s™)))A; Y- va(log, (Im(y)) RS (y)

e[ﬁ‘x belF, s€Sy YESy(a)

DY X % e -2r2reu)

ZEFX z,meFy z,ucU

cr(u A € (c(ag, t —242 Re(z)) Tl(z)/i(l‘)Rf(Z)},

where X\ and A\, are as defined in Theorem 3.

Proof. This is proved by specializing Theorem 2 with G = GL(2,F,) and K
defined by Equation (5). O
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