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RADON TRANSFORM ON FINITE SYMMETRIC SPACES

Elinor Velasquez

The Radon transform belongs to the area of Inverse Prob-
lems. The reconstruction of a function from its projection
or averages is a central point of study. Besides having di-
rect applications in medical tomography, geophysics, there
are also applications in signal processing, statistics and prob-
ability. Hence, it is useful to consider discretized versions of
the Radon transform.

1. Introduction.

If G is a finite group, and S a fixed subset in G, then, given f : G→ C, the
Radon transform of f is defined by Diaconis and Graham [3] as

Rf(x) =
∑
y∈xS

f(y).(1)

See also Fill [5]. The goal of this paper is to describe the formulas which
reconstruct f when the space of functions is a finite symmetric space, as well
as to provide an example.

2. Radon transform on finite groups.

Assume that G is a finite group of Lie type and K is a subgroup of G such
that (G,K) is a symmetric pair. Denote by Ĝ the space of equivalence
classes of unitary representations of G. If Hπ is the representation space of
π ∈ Ĝ, then HK

π ⊂ Hπ is the space of K-fixed vectors in Hπ. The dimension
of HK

π is n(π). The set ĜK ⊂ Ĝ consists of all π ∈ Ĝ for which HK
π 6= 0. If

π ∈ ĜK is irreducible, then ωπ : K \G/K → C is a zonal spherical function
for (G,K). The order of a set A is denoted by |A|.

The following theorem makes use of the Moore-Penrose inverse of an oper-
ator L which gives a least squares approximation to the original function in
the case that the operator is not invertible. See Horn and Johnson [6]. This
is necessary since in our application of this theorem to the Radon transform
operator on finite upper half planes, we may have a non-invertible operator.
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Theorem 1. Fix S ⊂ K\G/K, with (G,K) as above. For f : K\G/K → C,
with Radon transform Rf defined by (1), then f(x) is least squares approxi-
mated by:

|K|2
∑
π∈ĜK

n(π)
∑

t∈K\G/K
λ÷π ωπ

(
t−1
)
Rf(t)ωπ(x),

with

λ÷π =


(
∑
s∈S ωπ(s−1))

−1
,

∑
s∈S ωπ(s−1) 6= 0,

zero, otherwise.

Proof. The proof is a direct application of the Peter-Weyl theorem for com-
pact, hence finite groups. The symmetric pair (G,K) is a Gelfand pair.
Hence, the regular representation on L2(G/K) decomposes into a direct
sum of representations of G. If f ∈ L2(G/K), then

f(xK) = f(x) =
1

|G|
∑
π∈ĜK

n(π)∑
i=1

∑
y∈G

n(π)πi1(y−1)f(y)πi1(x),

with πij the ij-th matrix entry of π, and π11 = ωπ. Similarly, f ∈ L2(K \G)
has the decomposition:

f(Kx) = f(x) =
1

|G|
∑
π∈ĜK

n(π)∑
j=1

∑
y∈G

n(π)π1j(y
−1)f(y)π1j(x).

If f ∈ L2(K \G) ∩ L2(G/K) = L2(K \G/K), then

f(KxK) = f(x) =
1

|G|
∑
π∈ĜK

n(π)
∑
y∈G

π11(y−1)f(y)π11(x).(2)

Note that if λπ =
∑
s∈S ωπ(s−1), and 1S−1(z) = 1, for z ∈ S−1 and 0

otherwise, then

λπ

|G|
∑
y∈G

ωπ(y−1)f(y) =
1

|G|
∑
z∈G

∑
y∈G

1S−1(z)ωπ(z−1)ωπ(y−1)f(y)

=
|K|
|G|

∑
z∈G/K

∑
y∈G

1S−1(z)ωπ(z−1)ωπ(y−1)f(y)

=
1

|G|
∑

z∈G/K

∑
y∈G

1S−1(z)
∑
k∈K

ωπ(z−1ky−1)f(y)
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=
1

|G|
∑
z∈G

∑
y∈G

1S−1(z)ωπ(z−1y−1)f(y)

=
1

|G|
∑
t∈G

∑
y∈G

1S−1(y−1t)ωπ(t−1)f(y)

=
1

|G|
∑
t∈G

ωπ(t−1)
∑
y∈tS

f(y)

=
1

|G|
∑
t∈G

ωπ(t−1)Rf(t)

=
|K|2
|G|

∑
t∈K\G/K

ωπ(t−1)Rf(t).(3)

Substituting this result into Formula (2) gives the intended result.

Theorem 2. Fix S0 ⊂ G/K, with (G,K) as before. If, given f : G/K → C,
Rf : G/K → C is its Radon transform, then

f(x) = |K|
∑
π∈ĜK

n(π)∑
i=1

n(π)λ÷π
∑

t∈G/K
πi1(t−1)Rf(t)πi1(x),

with λ÷π as before. Moreover, fix S1 ⊂ G/K. If, given g : K \ G → C,
Rg : K \G→ C is its Radon transform, then

g(x) = |K|
∑
π∈ĜK

n(π)∑
j=1

n(π)λ÷π
∑

t∈G/K
π1j(t

−1)Rf(t)π1j(x).

Proof. We have

f(xK) = f(x) =
1

|G|
∑
π∈ĜK

∑
y∈G

n(π)∑
i=1

n(π)πi1(y−1)πi1(x)f(y).

Note that if λπ =
∑
s∈S0

π11(s−1), then

λπ
∑
y∈G

πi1(y−1)f(y) =
|K|
|G|

∑
z∈G/K

∑
y∈G

1S−1
0

(z)π11(z−1)πi1(y−1)f(y)

=
1

|G|
∑

z∈G/K

∑
y∈G

1S−1
0

(z)
∑
k∈K

πi1(z−1ky−1)f(y)
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=
1

|G|
∑

z∈G/K

∑
y∈G

1S−1
0

(z)πi1(z−1y−1)
∑
k∈K

f(yk)

=
1

|G|
∑
t∈G

∑
y∈G

1S−1
0

(y−1t)πi1(t−1)f(y)

=
1

|G|
∑
t∈G

πi1(t−1)Rf(t).(4)

Hence,

f(x) =
∑
π∈ĜK

n(π)∑
i=1

n(π)λ÷π
∑
t∈G

πi1(t−1)Rf(t)πi1(x).

The reconstruction formula for g follows similarly.

3. Radon transform on finite upper half planes.

Let q = pr, with p an odd prime, and Fq be a finite field of characteristic
q. Fix δ ∈ F×q to be a nonsquare. If θ2 = δ, then Fq(θ) is the unique
quadratic extension. Consider the group G = GL(2,Fq), and take K to be
the subgroup

K =

{(
a bδ

b a

)
: a2 − b2δ 6= 0

}
.(5)

Note that K is isomorphic to the multiplicative group of Fq(θ) and thus has
order q2 − 1.

G/K ∼=
{(

y x

0 1

)
: y ∈ F×q , x ∈ Fq

}
.(6)

In this instance, when G and K are as indicated, G/K is a finite analogue
of the Poincaré upper half plane discussed by Angel et al [1], Terras [8], [9]
and Velasquez [10]. Define a function k : G/K ×G/K → R by

k(z, w) =
N(z − w)

Im(z) Im(w)
,(7)

with

N

((
y x

0 1

))
= x2 − y2θ2, Im

((
y x

0 1

))
= y.(8)
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The elements of K \G/K are the sets

Sr =

{(
y x

0 1

)
: k

((
y x

0 1

)
,

(
1 0

0 1

))
= r

}
(9)

with r ∈ Fq.
According to Soto-Andrade [7], Terras [8], the zonal spherical functions

associated to the principal series representations of G are functions ωa : K \
G/K → C, with a ∈ F×q . Given t ∈ Sb ⊂ K \G/K, some b ∈ Fq, then

ωa(t) = ωa(b) =
1

q + 1

∑
z∈Sb

νa(logh(Im(z))),(10)

with a ∈ F×q , νa, a multiplicative character of F×q , and h, a generator of F×q ,
ωa = 1.

By results of [7], Terras [8], the zonal spherical functions associated to
the cuspidal representations of G are the functions ωl : K \ G/K → C, for
l ∈ F×q . Let ε be the sign character of Fq defined as

ε(d) =

{
1, d square

−1, d nonsquare
.(11)

Fix l ∈ F×q , τl, multiplicative character of (Fq(θ))× such that τl 6= τ ql . If
z ∈ Fq(θ), write z = Re(z) + θ Im(z). Let

u = {z ∈ Fq(θ) : Nz = Re(z)− δ Im(z) = 1}.

Given t ∈ Sc ⊂ K \G/K, with c = a
δ
− 2, a ∈ Fq,

ωl(t) = ωl(c) =
∑
z∈U

ε(c+ 2 Re(z))τl(z).(12)

The rest of the spherical functions are calculated by Evans [4] to be

ωκ,l(t) =
∑
x∈Fq

ωl

((
0 −1

1 x

)
t

)
κ(x),(13)

where l = 1, . . . , q−1
2

and κ is a fixed additive character of Fq.
Define for x ∈ K \G/K,

b(x) = k
(
x
√
δ,
√
δ
)
,(14)

where k(z, w) is defined in Formula (7).
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Note. The Radon transform (1) for S given in (9) need not be invertible.
See [2] where it can be seen that for finite upper half planes G/K the adja-
cency operators (which are the Radon transforms) for q = 5, 7, 11 are only
invertible in 2 out of q − 2 cases.

Theorem 3. Let (G,K) be as described in formulas (5) to (6) and f : K \
G/K → C with Radon transform defined by (1). The reconstruction of f is
as follows. For x ∈ K \ G/K, x = Sr, r ∈ Fq, with b(x) = k(x

√
δ,
√
δ) = r

as in (14), then f(x) is least squares approximated by

(q2 − 1)2

(q + 1)2

{ ∑
a∈F×q

∑
b∈Fq

∑
s∈Sb

νa(logh(Im(s−1)))λ÷a
∑

y∈Sb(x)

νa(logh(Im(y)))Rf(y)

+ (q + 1)
∑
l∈F×

q2

∑
m∈Fq

∑
z,u∈U

ε

(
m

δ
− 2 + 2 Re(u−1)

)

· τl(u−1)λ÷l ε
(
b(x)

δ
− 2 + 2 Re(z)

)
τl(z)Rf(z)

}
,

(15)

with

λ÷a =

{
(λa)

−1, λa 6= 0,

zero, otherwise,
if

λa =
∑

b(p)∈Fq
p∈S⊂K\G/K

∑
t∈Sb(p)

νa(logh(Im(t−1)))

and

λ÷l =

{
(λl)

−1, λl 6= 0,

zero, otherwise,
if

λl =
∑

b(p)∈Fq
p∈S⊂K\G/K

∑
v∈U

ε

(
b(p)

δ
− 2 + 2 Re(v−1)

)
τl(v

−1).

Proof. This is proved by specializing Theorem 1 with G = GL(2,Fq) and K
defined by Equation (5).

Theorem 4. Let (G,K) be as described above. If Rf : G/K → C is the
Radon transform, the least squares reconstruction of f(t) is as follows. Set

c(x, t) = b

((
0 −1

1 x

)
t

)
= r,
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where b is defined above in Formula (14). Then f is least squares approxi-
mated by

(q2 − 1)2

(q + 1)2

{ ∑
a∈F×q

∑
b∈Fq

∑
s∈Sb

νa(logh(Im(s−1)))λ÷a
∑

y∈Sb(x)

νa(logh(Im(y)))Rf(y)

+ (q + 1)
∑
l∈F×

q2

∑
x,m∈Fq

∑
z,u∈U

ε

(
m

δ
− 2 + 2 Re(u−1)

)

· τl(u−1)λ÷l ε
(
c(x, t)

δ
− 2 + 2 Re(z)

)
τl(z)κ(x)Rf(z)

}
,

(16)

where λ÷a and λ÷l are as defined in Theorem 3.

Proof. This is proved by specializing Theorem 2 with G = GL(2,Fq) and K
defined by Equation (5).

References

[1] J. Angel, S. Poulos, A. Terras, C. Trimble and E. Velasquez, Spherical functions and
transforms on finite upper half planes: eigenvalues of the combinatorial Laplacian,
uncertainty, traces, Contemporary Math., 173, A.M.S., Providence, R.I., (1994),
15-70.

[2] N. Celniker, S. Poulos, A. Terras, C. Trimble and E. Velasquez, Is there life on finite
upper half planes, Contemporary Math., 143, A.M.S., Providence, R.I., (1993), 65-
88.

[3] P. Diaconis and R. Graham, The Radom transform on Zk2 , Pacific J. Math., 118
(1985), 323-345.

[4] R. Evans, Character sums as orthogonal eigenfunctions of adjacency operators for
Cayley graphs, Proc. Conf. on Finite Fields, A.M.S., Contemporary Math., 168
(1994).

[5] J. Fill, The Radon transform on Zn, S.I.A.M., J. Disc. Math., 2 (1989), 262-283.

[6] R.A. Horn and C.R. Johnson, Matrix analysis, Cambridge U. Press, Cambridge,
1985.

[7] J. Soto-Andrade, Geometrical Gelfand models, tensor quotients and Weil represen-
tations, Proc. Symp. Pure Math., 47 (1987), 305-316.

[8] A. Terras, Are finite upper half plane graphs Ramanujan?, DIMACS Series in Dis-
crete Math. and Theor. Comp. Sci., A.M.S., 10 (1993), 125-142.

[9] , Survey of spectra of Laplacians on finite symmetric spaces, Experimental
Math., in press.



376 ELINOR VELASQUEZ

[10] E. Velasquez, The Radon transform on finite groups, Dissertation, U.C.S.D., 1991.

Received September 2, 1993 and revised July 5, 1996.

University of California
Berkeley, CA 94720
E-mail address: velasque@math.berkeley.edu


