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RECTIFIABLE DIAMETERS OF THE GRASSMANN SPACES
OF CERTAIN VON NEUMANN ALGEBRAS AND

C*-ALGEBRAS

Shuang Zhang

We prove that any two homotopic projections in certain
C*-algebras can be connected by a rectifiable path of projec-
tions whose length is bounded by a universal constant. In
comparison, N.C. Phillips (1992) proved that there are C*-
algebras in which such a universal constant does not exist.
Our techniques are to estimate the number of symmetries
needed to conjugate any two homotopic projections and to
factor a unitary in the identity path component as a product
of a limited number of symmetries.

1. Introduction.

Let A be a C*-algebra and P(A) denote the space of all nontrivial projec-
tions (6= 0, 1) in A equipped with the norm topology, called the Grassmann
space of A. Investigations of P(A) from various angles have been made
during the last several decades by M. Breuer, L.G. Brown, G. Corach, J.
Dixmier, H. Porta, L. Recht, N. Salinas, and D.R. Wilkins, among others
(see the references of [Br]). For von Neumann algebras and certain simple
C*-algebras the homotopy groups of P(A) are closely related to the K-theory
of A [Bre1, Bre2, Zh11, Zh5]. L.G. Brown has recently considered a rec-
tifiable metric defined on P(L(H)) by

dr(p, q) := inf{length of γ : γ is a rectifiable path joining p and q},
where L(H) is the algebra of all bounded operators on a separable Hilbert
space H. He proved that dr(p, q) = sin−1 ‖p−q‖ if ‖p−q‖ < 1 and the range
of dr(p, q) is the whole interval [0, π]. He also proved that a minimizing path
connecting p and q exists if and only if rank(p∧ (1− q)) = rank(q ∧ (1− p))
([Br, 2.12]).

The main purpose of this article is to estimate the number of symmetries
(self-adjoint unitaries) that conjugate two homotopic projections and the
lengths of rectifiable paths which join two homotopic projections in certain
C*-algebras. We will be concerned with the following invariant

(∗) sup
p,q
{dr(p, q) : p ≈ q in P(A)},
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where ‘p ≈ q’ means that two projections p and q are in the same path
component of P(A). This invariant measures the uniform upper bound of the
infimum of the lengths of rectifiable paths connecting homotopic projections
in P(A), and hence, can be regarded as a rectifiable diameter of P(A). N.C.
Phillips has later investigated the number (∗) further in [Ph1] where the
invariant (∗) is called the C*-projective length of A.

First, we consider C*-algebras of real rank zero, including all von Neu-
mann factors. It turns out that any two homotopic projections in a type II1

factor, in a type III factor, in a type II∞ factor, and in L(H) can be conju-
gated by 2 (or 1+ε), 2, 3 (or 2+ε), and 3 (or 2+ε) symmetries, respectively,
where by n + ε symmetries we mean ‘by a product of n symmetries and a
unitary which is arbitrarily close to the identity in norm’. As a consequence,
we recapture the following results of L. G. Brown in [Br, 2.12, 3.3]: The
C*-projective length (∗) is less than or equal to

(I)

{
π
2

if A is a factor of type II1;

π if A is a factor of type III, or II∞, or L(H).

If A is a C*-algebra of real rank zero with cancellation, then any two homo-
topic projections in A can be conjugated by 2 (or 1 + ε) symmetries; if A
is purely infinite and simple, then any two homotopic projections in A can
be conjugated by 2 symmetries. As a consequence, the C*-projective length
(∗) is less than or equal to

(II)

{
π
2

if A has cancellation (i.e., tsr(A) = 1);

π if A is purely infinite and simple.

Secondly, we consider C*-algebras with one of the following forms

A⊗K, B ⊗ L(HC) and C(X, D̃),

where B is a unital C*-algebra, C is a σ-unital C*-algebra, D is a purely
infinite, simple C*-algebra, X is a compact Hausdorff space, and L(HC) is
isomorphic to the multiplier algebra M(C ⊗ K) of C ⊗ K. We prove that
any unitary in B ⊗L(HC) can be written as a product of seven symmetries,
and every unitary in the identity path component of the unitary group of
C(X, D̃) can be approximated by a product of six symmetries. Consequently,
the C*-projective length (∗) of A is less than or equal to

(III)


π if A ∼= A⊗K;

3π if A has the form B ⊗ L(HC);
3π if A has the form C(X, D̃).
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In particular, if the C*-algebra B above is the algebra of all complex numbers,
then

B ⊗ L(HC) ∼= L(HC) ∼= M(C ⊗ K).

As a consequence, the C*-projective length (∗) of the multiplier algebra of
any σ-unital stable C*-algebra is bounded above by 3π. If C is either a
σ-unital infinite simple C*-algebra or C is a σ-unital C*-algebra with can-
cellation, then the upper bounds (III) above can be improved from 3π to 2π
with the aid of [Zh8]. If C is a C*-algebra such that RR(L(HC)) = 0, then
the upper bounds (III) above can be improved from 3π to π. These improve-
ments can be done due to the fact that fewer symmetries are necessary to
conjugate two homotopic projections.

In addition, by factoring each unitary in B⊗L(HC) into a product of seven
symmetries we show that B⊗L(HC) is generated algebraically by projections,
although B and C may contain no non-trivial projections at all. In particular,
if either B = C(X) or B is the algebra of all complex numbers, then the
multiplier algebra M(C ⊗ K) and C(X,L(HC)) are generated algebraically
by projections. This includes the particularly important case C(X,L(H)).
A similar conclusion holds in C(X, D̃).

All proofs are carried out by elementary, but technical, constructions. In
comparison with our results, N.C. Phillips very recently proved [Ph1] that
the C*-projective length (∗) can be equal to +∞ for some C*-algebras with
the form M2(C(X)) where X is certain topological space. The reader is
referred to [Ph1] for further developments on the C*-projective length (∗).
Acknowledgment. The author wishes to thank L.G. Brown and N.C.
Phillips for their valuable comments on the preliminary version of this article.

2. Preliminaries.

Let Ã be the unital C*-algebra after joining an identity to A if A is non-
unital, and let Ã = A if A is unital. Two projections p and q in P(A) are
said to be equivalent, denoted by p ∼ q, if there exists a partial isometry
v in A such that vv∗ = p and v∗v = q. The equivalence class containing p
is denoted by [p]. Write [p] ≤ [q] if p is equivalent to a subprojection of q.
Two projections p and q are said to be unitarily equivalent, if there exists a
unitary u of Ã such that upu∗ = q; p and q are said to be homotopic, denoted
by p ≈ q, if p and q are in the same path component of P(A). Of course, two
homotopic projections are unitarily equivalent, and two unitarily equivalent
projections are equivalent. But the converses do not hold in general.

Lemma 1. Assume that A is a C*-algebra, p, q ∈ P(A), and 0 < δ < 1.
Then ‖p− pqp‖ ≤ δ2 and ‖(1− p)q(1− p)‖ ≤ δ2 if and only if ‖p− q‖ ≤ δ.
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The equivalence still holds if all inequalities ‘≤’ in the statement are replaced
by ‘<’.

Proof. It is well known that ‖p−q‖ = max{‖p(1−q)‖, ‖q(1−p)‖}. In fact, one
inequality≥ follows from (p−q)(1−p) = −q(1−p) and (p−q)(1−q) = p(1−q),
and the other ≤ follows from the following elementary estimate:

‖(p− q)ξ‖ = ‖(p− q)pξ + (p− q)(1− p)ξ‖
= ‖(1− q)pξ − q(1− p)ξ‖
≤ max{‖(1− q)pξ‖, ‖q(1− p)ξ‖},

where ξ is any unit vector in a Hilbert space on which A is faithfully rep-
resented. Then both directions of the lemma follow immediately from the
following equalities:

‖p(1− q)‖ = ‖p− pqp‖ 1
2 ,

‖q(1− p)‖ = ‖(1− p)q(1− p)‖ 1
2 .

Lemma 2. Assume that A is a C*-algebra, and p, q ∈ P(A). If ‖p−q‖ < 1,
then there is a symmetry s in C∗(p, q, 1) such that sps = q, where C∗(p, q, 1)
is the C*-subalgebra of Ã generated by p, q and the identity 1.

Proof. This is also a well known fact. In fact, set s := (1−(p−q)2)−
1
2 (p+q−1).

Then one can easily show that s is a symmetry such that sps = q.

From now on, we will identify A with its matrix decomposition according
to the following decomposition of the identity

n⊕
i=1

pi = 1, pi ∈ P (A), pipj = 0 (i 6= j).

This identification is a *-isomorphism which assigns to each x in A the
following matrix: 

p1xp1 p1xp2 . . . p1xpn

p2xp1
. . .

. . .
...

...
. . . pn−1xpn−1

...
pnxp1 . . . pnxpn−1 pnxpn


where the multiplication, addition, scalar multiplication, and the involution
∗ follow the standard rules of matrix manipulations. The matrix above is
called the matrix form of x with respect to the decomposition

⊕n
i=1 pi = 1.
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Proposition 3. Suppose that A is a C*-algebra.
(i) Let p, q ∈ P(A). Write the matrix form of q with respect to p⊕(1−p) =

1 as follows:

q =

(
a b

b∗ c

)
.

If max{‖p− a‖, ‖c‖} < 1, then there exists a symmetry s ∈ C∗(p, q, 1)
such that sqs = p.

(ii) If p0 and p1 are two homotopic projections in P(A), then there are
symmetries s1, s2, ..., sl of Ã such that s1s2...slp1sl...s2s1 = p0.

Proof. (i) Since p − pqp = p − a and (1 − p)q(1 − p) = c, the conclusion (i)
follows immediately from Lemma 1 and Lemma 2.

(ii) Let {p(t) : t ∈ [0, 1]} be a path in P(A) such that p(0) = p0 and
p(1) = p1. Take a subdivision of [0, 1], say 0 = t0 < t1 < t2 < ... < tl−1 <

tl = 1, such that

max
1≤i≤l

‖p(ti)− p(ti−1)‖ < 1.

Set

si =
(
1− (p(ti)− p(ti−1))2

)− 1
2 (p(ti) + p(ti−1)− 1) (1 ≤ i ≤ l).

Then s1s2...slp1sl...s2s1 = p0.

3. Main Results.

The main results of this article are labeled as Theorem 5, Theorem 9, and
Theorem 11. These results will be used to study factorizations in the unitary
group of certain C*-algebras [Zh9].

A C*-algebra A has real rank zero, denoted by RR(A) = 0, if and only
if every self-adjoint element of A can be approximated in norm by self-
adjoint elements with finite spectrum [BP, 2.6]. A simple C*-algebra A is
purely infinite if and only if RR(A) = 0 and every nonzero projection of
A is infinite [Zh7, Part I, 1.2(ii)]. In a purely infinite, simple C*-algebra
A, two nontrivial projections p and q are equivalent if and only if p and q

are homotopic ([EK, 2.4] and [Zh7, Part II, 1.1]). If RR(A) = 0 and A
has cancellation, then two equivalent projections are necessarily homotopic
([Zh3, 3.4]). Here a C*-algebra is said to have cancellation, if the conditions
p1 ⊕ r1 ∼ p2 ⊕ r2 and r1 ∼ r2 imply p1 ∼ p2, where p1, p2, r1, r2 ∈ P(A).
Under the condition RR(A) = 0, A has cancellation if and only if tsr(A) = 1
([Bl1, 6.5]).

The following is a key lemma which leads to Theorem 5.
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Lemma 4. Assume that A is a C*-algebra with RR(A) = 0 and p, q ∈
P(A). Then the following hold:
(i) There exists a symmetry s ∈ Ã such that sps = p1 ⊕ p2, where p1 is a

projection in qAq and p2 is a projection in (1− q)A(1− q).
(ii) If, in addition, [q] ≤ [1− q], then there exist two symmetries s and s′

in Ã such that s′spss′ = p′1 ⊕ p′2, where p′1 and p′2 are two projections
such that p′1 ≤ q, p′2 ≤ 1− q, and [p′1] ≤ [p′2].

Proof. (i) Write the matrix form of p with respect to q ⊕ (1 − q) = 1 as
follows:

p =

(
qpq qp(1− q)

(1− q)pq (1− q)p(1− q)

)
.

Using the construction in [Zh3, 2.1] (initiated by L.G. Brown for AF algebras
and further developed in [Zh3, 2.1] for C*-algebras of real rank zero), one
can find for each positive number δ < 1− 1√

2
a projection p0 such that

‖p− p0‖ < δ,

where the matrix form of p0 with respect to the decomposition f0 ⊕ (q −
f0)⊕ (1− q − e0)⊕ e0 = 1 is

p0 =


f0 0 0 0
0 a b 0
0 b∗ c 0
0 0 0 e0

 .
Let us explain the construction of a, b, c, f0, and e0. The element f0

above is a projection in qAq, e0 is a projection in (1 − q)A(1 − q), a :=
(q− f0)p0(q− f0) is a positive element such that its spectrum σ(a) is a finite
subset of [0, 1), say σ(a) \ {0} = {ti}mi=1, b := (q − f0)p0(1 − q − e0), and
c := (1−q−e0)p0(1−q−e0) is also a positive element in (1−q−e0)A(1−q−e0)
such that σ(c) \ {0} = {1 − ti}mi=1 ⊂ [0, 1). Furthermore, there is a close
relation between a and c as follows. Write

c =
m∑
i=1

(1− ti)ri,

where {ri}mi=1 is a set of mutually orthogonal subprojections of 1 − q − e0.

Then

a = v

(
m∑
i=1

ri − c
)
v∗ =

m∑
i=1

tivriv
∗,
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where v is some partial isometry in A such that v∗v =
∑m
i=1 ri. Set e := v∗v.

The element b is defined by

b = v(e− c) 1
2 .

Set vv∗ := f. Then f is a subprojection of q − f0. Of course, ef = 0, and f,

e are the range projections of a and c, respectively. For more details of the
construction of p0 the reader is referred to [Zh3, 2.1].

Set

r0 =

v
( ∑
{i:ti≥ 1

2}
ri

)
v∗ 0

0
∑

{i:ti< 1
2}
ri

 .
Then r0 is a projection in (e⊕f)A(e⊕f). It follows from a simple calculation
that

v

 ∑
{i:ti≥ 1

2}
ri

 v∗b
 ∑
{i:ti< 1

2}
ri

 = 0.

Consequently,

r0 − r0

(
a b

b∗ c

)
r0 =

v
( ∑
{i:ti≥ 1

2}
(1− ti)ri

)
v∗ 0

0
∑

{i:ti< 1
2}
tiri

 .
It follows that ∥∥∥∥∥r0 − r0

(
a b

b∗ c

)
r0

∥∥∥∥∥ ≤ 1

2
.

Similarly, one can show∥∥∥∥∥(e⊕ f − r0)

(
a b

b∗ c

)
(e⊕ f − r0)

∥∥∥∥∥ ≤ 1

2
.

Applying Lemma 1, one has∥∥∥∥∥r0 −
(
a b

b∗ c

)∥∥∥∥∥ ≤ 1√
2
.

Set

p′0 =



f0 0 0 0

0 v

( ∑
{i:ti≥ 1

2}
ri

)
v∗ 0 0

0 0
∑

{i:ti< 1
2}
ri 0

0 0 0 e0


.
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Then

‖p0 − p′0‖ ≤
∥∥∥∥∥r0 −

(
a b

b∗ c

)∥∥∥∥∥ ≤ 1√
2
.

It follows that

‖p− p′0‖ ≤ ‖p− p0‖+ ‖p0 − p′0‖ ≤
1√
2

+ δ < 1.

Set

p1 = f0 ⊕ v
 ∑
{i:ti≥ 1

2}
ri

 v∗ and p2 = e0 ⊕
∑

{i:ti< 1
2}
ri.

Then p′0 = p1 ⊕ p2, where p1 is a projection in qAq and p2 is a projection in
(1− q)A(1− q). Applying Lemma 2, one gets a symmetry s in Ã such that
sps = p1 ⊕ p2.

(ii) Let s, p1, and p2 be as in (i). Then p1 ≤ q and [q] ≤ [1 − q] =
[p2] + [1 − q − p2]. By the Riesz decomposition property in [Zh6, 1] and
[Zh2, 2.2] one can write

p1 = q1 ⊕ q2,

where [q1] ≤ [p2] and [q2] ≤ [1− q− p2]. Take a partial isometry w in A such
that ww∗ = q2 and w∗w ≤ 1− q − p2. Set

s′1 := w + w∗ + (q2 ⊕ (1− q − p2)− w∗w).

Then s′1 is a symmetry in (q2 ⊕ (1 − q − p2))Ã(q2 ⊕ (1 − q − p2)) such that
s′1q2s

′
1 = w∗w ≤ 1− q − p2. Set

p′1 = q1, p′2 = p2 ⊕ s′1q2s
′
1, and s′ = (q − q2)⊕ p2 ⊕ s′1.

Then s′ is a symmetry of Ã such that

s′spss′ = p′1 ⊕ p′2, and [p′1] ≤ [p′2].

The proof is complete.

Theorem 5. Assume that A is a C*-algebra with RR(A) = 0 and p, q
∈ P(A).
(i) If A has cancellation and two projections p, q ∈ P(A) are equivalent,

then there exist for each positive number ε a symmetry s and a unitary
uε in Ã such that ‖uε − 1‖ < ε and suεpu

∗
εs = q, and there exist two

symmetries s and s′ in Ã such that ss′ps′s = q.
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(ii) If A is a direct sum of finite dimensional C*-algebras and finitely many
copies of the algebra K of all compact operators, then two equivalent
projections p, q ∈ P(A) can be conjugated by one symmetry s ∈ A

(i.e., sps = q).

(iii) If A is a purely infinite, simple C*-algebra and p, q ∈ P(A) are equiv-
alent, then there exist two symmetries s, s′ in Ã such that s′spss′ = q.

If two equivalent projections p, q ∈ P(A) satisfy p < q or q < p, then
p and q can not be conjugated by one symmetry.

Proof. (i) Write the 2×2 matrix form of p with respect to the decomposition
q ⊕ (1− q) = 1 as in the proof of Lemma 4. By [Zh3, 2.1] for each positive
number δ < 1− 1√

2
there exists a projection p0 such that

‖p− p0‖ < δ,

where p0 has a matrix form as explained in the proof of Lemma 4(i). In the
following we adopt all notations in the proof of Lemma 4(i). If δ is small
enough, it is well known that there exists a unitary uε ∈ U(A) such that

‖uε − 1‖ < ε and uεpu
∗
ε = p0 ([Ef]).

On the other hand, there exists, by Lemma 2, a symmetry s′ such that
s′ps′ = p0.

Since σ(a) ∪ σ(c) ⊂ [0, 1), one sees that

‖a‖ < 1, ‖f − a‖ < 1,

‖c‖ < 1, ‖e− c‖ < 1.

Applying Lemma 1, one has∥∥∥∥∥
(
a b

b∗ c

)
− f

∥∥∥∥∥ < 1,

∥∥∥∥∥
(
a b

b∗ c

)
− e

∥∥∥∥∥ < 1.

By Lemma 2 there exists a symmetry s0 of (e⊕ f)A(e⊕ f) such that

s0fs0 =

(
a b

b∗ c

)
.

By the equivalence q ∼ p ∼ p0 and the cancellation property of A one sees

q − f0 − f ∼ e0.

Let v0 be a partial isometry in A such that

v0v
∗
0 = e0 and v∗0v0 = q − f0 − f.
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Since e0(q− f0 − f) = 0, then s1 := v0 + v∗0 is a symmetry in (e0 ⊕ (q− f0 −
f))A(e0 ⊕ (q − f0 − f)) such that

s1(q − f0 − f)s1 = e0.

Set s := s0 ⊕ s1 ⊕ f0 ⊕ (1 − q − e − e0). Then s is a symmetry of Ã such
that sp0s = q. Then one can choose either a unitary uε which is close to
the identity within ε in norm or a symmetry s′ such that uεpu

∗
ε = p0 and

s′ps′ = p0, respectively. It follows that either suεpu
∗
εs = q or ss′ps′s = q, as

desired.

(ii) One needs only to consider each summand which is either a full n× n
matrix algebra over complex numbers or K. For either case qpq and (1 −
q)p(1− q) have discrete spectra. Then p can be replaced by p0, as the proof
of (i) above indicates. Using the same proof of (i), one obtains a symmetry
s of Ã such that sps = q. We leave the details to the reader.

(iii) Assume that A is a purely infinite simple C*-algebra. Separate the
proof according to the two cases: pq = qp and pq 6= qp.

Case 1. pq = qp.
The 2×2 matrix form of p with respect to the decomposition (1−q)⊕q = 1

has two possibilities as follows:

p =

(
1− q 0

0 p′

)
, or p =

(
p′′ 0
0 p′

)
, where p′′ < 1− q.

The first possibility above (i.e., 1− q ≤ p) can happen only if A is unital.
First, consider the possibility: 1 − q ≤ p. In this case there exists one

symmetry s ∈ Ã such that sps = q. In fact, since p ∼ q and p, q 6= 0, 1, the
two projections p and q are unitarily equivalent ([EK, 2.4] or [Zh7, Part II]).
Then there exists a unitary u of Ã such that uqu∗ = p. Write the matrix
form of u with respect to (1− q)⊕ q = 1 as follows:

u :=

(
z x1

x2 y

)
.

By a simple calculation one sees that

x1x
∗
1 = 1− q, zz∗ + x1x

∗
1 = 1− q.

It follows that z = 0. Set

s =

(
0 x∗2
x2 yy∗

)
.
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Then s is a symmetry of Ã satisfying

su =

(
1− q 0

0 x2x1 + y

)
.

(The reader is referred to [Zh10, 2.1] where the construction of s was origi-
nated.) Then,

q = suqu∗s = sps.

Secondly, consider the other possibility: p =

(
p′′ 0
0 p′

)
. By a standard

argument for infinite simple C*-algebras [Cu2, 1.5], there is a projection
q′ < 1− q− p′′ such that p ∼ q′ and q ∼ q′. Let v1 ∈ A be a partial isometry
such that

v1v
∗
1 = p and v∗1v1 = q′.

Set s := v1 + v∗1 + (1 − p − q′). Then s is a symmetry such that sps = q′.
Similarly, there exists another symmetry s′ in Ã such that s′q′s′ = q. Hence,

s′spss′ = q.

If q < p (or p < q) and p ∼ q, then one symmetry is not enough to
conjugate p and q (We are indebted to N.C. Phillips for pointing out to
us that this observation also follows from [Br].) In fact, if there were one
symmetry, say 2r − 1 or 1− 2r for some projection r ∈ A, such that

(2r − 1)q(2r − 1) = p,

then q − p = 2rq(1 − r) + 2(1 − r)qr. With respect to the decomposition
r ⊕ (1− r) = 1, the nonzero projection q − p has the form

q − p =

(
0 2(1− r)qr

2rq(1− r) 0

)
,

which is impossible.

Case 2. qp 6= pq.
Clearly, qp(1 − q) 6= 0, and hence 0 < δ := ‖qpq − q‖ ≤ 1. Furthermore,

qpq is not a projection, since qpq− (qpq)2 = qp(1−q)pq 6= 0. Using the proof
of (i), one gets a projection p0 such that

‖p− p0‖ < δ0

4
,
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where p0 has a matrix form as explained in the proof of Lemma 4(i). It
follows that ∥∥∥∥∥qpq −

(
f0 0
0 a

)∥∥∥∥∥ < δ0

4
.

Then ∥∥∥∥∥
(
f0 0
0 a

)
− q

∥∥∥∥∥ ≥ ‖q − qpq‖ −
∥∥∥∥∥qpq −

(
f0 0
0 a

)∥∥∥∥∥ > 3δ0

16
.

There are two possibilities: either f0 ⊕ f < q or f0 ⊕ f = q.
Consider the first possibility: f0 ⊕ f < q. Then, by Lemma 4(i), there

exists a symmetry s ∈ Ã such that

sps = p1 ⊕ p2, where p1 ≤ f0 ⊕ f and p2 ≤ 1− q.

Then sps and q are equivalent projections in the unital hereditary C*-
subalgebra

(q ⊕ p2)A(q ⊕ p2);

notice that this hereditary C*-subalgebra is again a purely infinite simple
C*-algebra. Furthermore, sps commutes with q. Applying the proof of
Case 1 above, one obtains a symmetry s0 of (q ⊕ p2)A(q ⊕ p2) such that

s0spss0 = q.

Set s′ := s0 ⊕ (1− q − p2). Then s′ is a symmetry in Ã such that

s′spss′ = q.

Now consider the other possibility: f0 ⊕ f = q. From the construction of
a (in the proof of Lemma 4(i)) and the estimate above, one has∥∥∥∥∥q −

(
f0 0
0 a

)∥∥∥∥∥ =

∥∥∥∥∥
m∑
i=1

(1− ti)vriv∗
∥∥∥∥∥ > 3δ0

4
.

Then there is at least one i such that 1− ti > 3δ0
4

; ti < 1− 3δ0
4

for such an i.
Set

r′0 =



f0 0 0 0
0

∑
{i:ti>1− 3δ0

4 }
vriv

∗ 0 0

0 0
∑

{i:ti≤1− 3δ0
4 }
ri 0

0 0 0 e0

 .
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From a simple calculation and the construction of v (in the proof of Lemma 4(i))
one sees that

‖r′0 − r′0p0r
′
0‖ ≤

∥∥∥∥∥∥∥∥∥∥∥∥



0 0 0 0
0

∑
{i:ti>1− 3δ0

4 }
(1− ti)vriv∗ 0 0

0 0
∑

{i:ti≤1− 3δ0
4 }
tiri 0

0 0 0 0



∥∥∥∥∥∥∥∥∥∥∥∥
≤ max

{
3δ0

4
, 1− 3δ0

4

}
:= δ1.

Similarly, one has
‖(1− r′0)p0(1− r′0)‖ ≤ δ1.

Then Lemma 1 and the estimate above imply

‖r′0 − p0‖ ≤
√
δ1.

Thus,

‖p− r′0‖ ≤ ‖p− p0‖+ ‖p0 − r′0‖ ≤
δ0

16
+
√
δ1 < 1.

By Lemma 2 there is a symmetry s in Ã such that sps = r′0. Noticing that

f0 ⊕
∑

{i:ti>1− 3δ0
4 }
vriv

∗ < q,

we can once again apply the proof of the case 1 above to get another sym-
metry s′ of Ã such that

s′spss′ = q.

Hence, the conclusion (iii) holds. The proof is complete.

Corollary 6. Suppose that A is a C*-algebra with RR(A) = 0.
(i) If A has cancellation, then supp,q{dr(p, q) : p ≈ q in P(A)} ≤ π

2
.

(ii) If A is purely infinite and simple, then supp,q{dr(p, q) : p ≈ q in
P(A)} ≤ π.

Proof. (i) Observe first the following fact: If a rectifiable path {u(t) : 0 ≤
t ≤ 1} of unitaries in Ã has length l, then the length l0 of the corresponding
rectifiable path {u(t)pu(t)∗ : 0 ≤ t ≤ 1} in P(A) is less than or equal to
l (this statement is valid for any C*-algebra). A proof of this statement is
given in [Ph1], but the following one seems to be much simpler. It suffices
to show that

n∑
i=1

‖u(ti)pu(ti)
∗ − u(ti−1)pu(ti−1)∗‖ ≤

n∑
i=1

‖u(ti)− u(ti−1)‖
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for any subdivision of [0, 1]: 0 = t0 < t1 < t2 < ... < tn = 1. But the last
inequality follows from the following estimate:

‖u(ti)pu(ti)
∗ − u(ti−1)pu(ti−1)∗‖

= ‖p(u(ti)
∗u(ti−1)− 1)− (u(ti)

∗u(ti−1)− 1)p‖
≤ max{‖p(u(ti)

∗u(ti−1)− 1)(1− p)‖, ‖(1− p)(u(ti)
∗u(ti−1)− 1)p‖}

≤ ‖u(ti)
∗u(ti−1)− 1‖

= ‖u(ti)− u(ti−1)‖.
Assume that A has cancellation and p, q are any two homotopic projections
in P(A). By Theorem 5(i) there exist for any number ε > 0 a symmetry
s and a unitary uε in Ã such that suεpu

∗
εs = q. Then (−is)uεpu∗ε(is) = q.

Let r be the spectral projection of s associated with 1 ∈ σ(s). Then the
rectifiable path {

u(θ) := eθir + e−θi(1− r) : 0 ≤ θ ≤ π

2

}
has a length π

2
. This path joins is and the identity in the unitary group of

Ã. Using the observation above, one sees that the rectifiable path{
u(θ)pu(θ)∗ : 0 ≤ θ ≤ π

2

}
⊂ P(A)

joins p and q and has a length π
2
. Then dr(p, q) ≤ π

2
. Since p and q are any

two homotopic projections in P(A), the conclusion (i) follows, i.e.,

sup
p,q
{dr(p, q) : p ≈ q in P(A)} ≤ π

2
.

(ii) If s1, s2, ..., sm are symmetries in Ã such that

s1s2...smpsm...s2s1 = q,

then (−is1)(−is2)...(−ism)p(ism)...(is2)(is1) = q. The rectifiable path ob-
tained by joining recursively all −isk (1 ≤ k ≤ m) to the identity has a
length mπ

2
([Ph1]). Take m = 2. Then the conclusion (ii) follows from

Theorem 5 (iii).

Proposition 7. Two equivalent projections p and q in any stable C*-algebra
A⊗K are conjugated by a product of three symmetries, and also by a product
of two symmetries and a unitary which is arbitrarily close in norm to the
identity (of the unitization (A⊗K)†). As a consequence,

sup
p,q
{dr(p, q) : p ≈ q in P(A⊗K)} ≤ π.
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Proof. Given any number ε > 0. There are two projections p′ and q′ in
Mn(A) for some n with

‖p′ − p‖ < δ and ‖q′ − q‖ < δ.

Let δ be small enough so that one can choose unitaries u1 and u2 in (A⊗K)†

which are close to the identity within ε/2 and satisfy

u1pu
∗
1 = p′ and u2qu

∗
2 = q′.

One can also choose two symmetries s1 and s2 such that

s1p
′s1 = s2q

′s2 ≤ 1−
n∑
i=1

1⊗ eii,

where
∑n
i=1 1⊗ eii is the identity of Mn(Ã). It follows that

u∗2s2s1u1pu
∗
1s1s2u2 = q.

Rewrite u∗2s2s1u1 = (u∗2s2u2)(u∗2s1u2)(u∗2u1) and ‖u∗2u1 − 1‖ < ε, and set

s′1 = u∗2s1u2, s′2 = u∗2s2u2, and uε = u∗2u1.

Notice ‖u∗2u1pu
∗
1u2 − p‖ < 2ε < 1 (if ε < 1

2
). By Lemma 2 one can choose

another symmetry s3 such that

s′2s
′
1s3ps3s

′
1s
′
2 = q.

The consequence follows from the same proof as of Corollary 6(ii).

L.G. Brown has investigated whether a minimizing path joining two homo-
topic projections exists in L(H) (and he also pointed out that his techniques
work for all von Neumann algebras [Br, 2.12, 3.3]). One of his results as-
serts that the range of dr(p, q) is the whole interval [0, π], and consequently,
supp,q{dr(p, q) : p ≈ q in P(A)} = π. The following theorem gives an esti-
mate for the number of symmetries conjugating two homotopic projections
in L(H) and in a type II∞ factor, which in turn yields an estimate for the
projective length (covered by the result of L.G. Brown above). Here we point
out that our work only employs C*-algebra techniques.

Theorem 8. Suppose that M is either L(H) or a type II∞ factor and ε

is an arbitrary positive number. Then two projections p and q of M are
homotopic if and only if there exist two symmetries s1, s2 and a unitary uε
such that

‖uε − 1‖ < ε and s1s2u
∗
εpuεs2s1 = q;
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again if and only if there exist at most three symmetries s1, s2 and s3 such
that

s1s2s3ps3s2s1 = q.

Proof. Let p and q be two homotopic projections in either a type II∞ factor
or in L(H). Then a projection r in these algebras is finite if and only if r
has a finite trace value. If both p and q are finite projections, then p and q

are homotopic as long as they are equivalent. Applying the same arguments
as in the proof of Theorem 5 (i) to p and q, one gets two symmetries s1 and
s2 such that s2s1ps1s2 = q. If both 1 − p and 1 − q are finite homotopic
projections, then there exist two symmetries s1 and s2 of M such that

s2s1(1− p)s1s2 = 1− q, and hence s2s1ps1s2 = q.

Assume that all p, q, 1−p, and 1−q are infinite projections. As in the proof
of Theorem 5(iii) we separate the discussion into two cases: either pq = qp

or pq 6= qp.

Case 1. pq = qp.
Two possibilities of the matrix form of p with respect to the decomposition

(1− q)⊕ q = 1 are as follows:

p =

(
1− q 0

0 p′

)
or p =

(
p′′ 0
0 p′

)
, where p′′ < 1− q.

For the first possibility 1 − q ≤ p there exists one symmetry s such that
sps = q by the same arguments as in the proof of Theorem 5 (iii). For the
second possibility p′′ < 1 − q there are two situations: 1 − q − p′′ is either
finite or infinite. If 1−q−p′′ is infinite, then the same arguments in the proof
of Theorem 5 (iii) apply. If 1− q − p′′ is finite, then q − p′ must be infinite.
By considering the hereditary subalgebra supported by (q⊕ p′′) instead, one
reduces the problem to the first possibility.

Case 2. qp 6= pq.
As in the proof of Lemma 4(i) we approximate p within δ in norm by a

projection

p0 =


f0 0 0 0
0 a b 0
0 b∗ c 0
0 0 0 e0

 .
If δ is small enough, then there exist a unitary uε and a symmetry s3 such
that uεpu

∗
ε = p0 and s3ps3 = p0. It suffices to show that the product of two

symmetries conjugates p0 and q.
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If e⊕ e0 = 1− q where e is the projection onto the range of c, then there
exists one symmetry s2 conjugating p0 and

p1 =


f0 0 0 0
0 0 0 0
0 0 e 0
0 0 0 e0

 ,
where the construction of s2 is given in the proof of Lemma 4(i). Then 1−q ≤
p1, and hence, the arguments of Case 1 above apply. Thus, there exists
another symmetry s1 such that s1p1s1 = q. Therefore, either s1s2u

∗
εpuεs2s1 =

q or s1s2s3ps3s2s1 = q.

If e⊕ e0 < 1− q, then there are two possibilities: 1− q − e− e0 is either
finite or infinite. If 1−q−e−e0 is finite, then one works with the hereditary
subalgebra supported by q ⊕ e ⊕ e0 instead. In this way the problem is
reduced to what we just discussed in the last paragraph. If 1− q − e− e0 is
infinite, then one can choose a symmetry s2 such that s2p0s2 < 1−q−e−e0,
and then, choose another symmetry s1 such that s1s2p0s2s1 = q. The proof
is complete.

Recall that L(HA) is the C*-algebra of all bounded operators (with ad-
joints) on a Hilbert C*-module HA associated with a C*-algebra A ([Ks]).
It is well known that L(HA) ∼= M(A ⊗ K), where M(A ⊗ K) is the multi-
plier algebra of A ⊗ K ([Bl, 13.4.1]). Consider the following two classes of
C*-algebras:
(1) All C*-algebras with the following property: There is a map τ from the

semi-group D(A ⊗ K) consisting of equivalence classes of projections
in A⊗K to the non-negative numbers such that

(i) τ([r1] + [r2]) = τ([r1]) + τ([r2]),

(ii) [p] ≤ [q] whenever τ([p]) < τ([q]).

(2) All σ-unital, purely infinite, simple C*-algebras.

Theorem 9. Suppose that RR(L(HA)) = 0 and A is a σ-unital C*-algebra
in either class (1) or in class (2) above. Then two projections p and q of
L(HA) are homotopic if and only if there exist two symmetries s1, s2 and a
unitary uε such that

‖uε − 1‖ < ε and s1s2u
∗
εpuεs2s1 = q;

again if and only if there exist at most three symmetries s1, s2 and s3 such
that

s1s2s3ps3s2s1 = q.
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Proof. If A is a C*-algebra in the class (1), one can naturally extend τ on
D(L(HA)) with values in [0,+∞]. In fact, for each projection p ∈ L(HA)
choose an approximate identity of p(A ⊗ K)p consisting of a sequence of
projections, say {en}, such that en < en+1 for any n ≥ 1 ([Zh6, 1.2]). Define

τ([p]) = lim τ([en]).

All projections in L(HA) such that τ([p]) < ∞ generate a closed ideal J
of L(HA). Then one can prove by the Riesz decomposition property [Zh2]
that p ∈ J if and only if τ([p]) < ∞; and τ([p]) = ∞ if and only if p ∼ 1
([Lin1]). Under the assumption that RR(L(HA)) = 0, the conclusion follows
from exactly the same arguments as in the proof of Theorem 8 for type II∞
factors. The details are left to the reader.

Assume that A is a C*-algebra in the class (2). Then RR(L(HA)) = 0
if and only if K1(A) = 0 ([Zh7, Part I]). Assume that p and q are two
homotopic projections in L(HA). Since RR(L(HA)) = 0, the construction
in the proof of [Zh3, 2.1] applies to p and q. Using the fact [Zh2, 3.3] that
every projection of L(HA) not in A⊗K is equivalent to the identity, we can
apply the same arguments as in the proof of Theorem 8 for L(H), where the
condition whether a projection is finite or infinite is replaced by whether a
projection is in A⊗K or in L(HA) \A⊗K. We leave it to the reader to fill
the details. Here the reader may need the well known fact that 1− r ∼ 1 in
L(HA) whenever r is a projection in A⊗K ([Cu3, 3.6]).

Remark. Specific examples satisfying the hypotheses of Theorem 9 are
matroid algebras [El1], type II1 factors, simple AF algebras with unique
trace up to multiples ([Lin2]), the Cuntz algebras On 2 ≤ 2 ≤ +∞, and
type III factors [Zh7, Part I].

Corollary 10. Let A be a C*-algebra satisfying the hypotheses of Theorem 9.
Then

sup
p,q
{dr(p, q) : p ≈ q ∈ P(M(A⊗K))} ≤ π.

Proof. The estimate follows immediately from Theorem 9 and the proof of
Corollary 6.

Theorem 11.
(i) Let B be a unital C*-algebra and A be a σ-unital C*-algebra. Then

every unitary of B ⊗ L(HA) can be written as a product of at most
seven symmetries.

(ii) If D is a purely infinite, simple C*-algebra and X is any compact
Hausdorff space, then every unitary in the identity path component of
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the unitary group of C(X, D̃) can be approximated by some products of
six symmetries.

(iii) Two homotopic projections in B⊗L(HA) can be conjugated by a product
of at most six symmetries and a unitary which is arbitrarily close to
the identity in norm, and can also be conjugated by a product of at
most seven symmetries. The same conclusions hold also for any two
homotopic projections in C(X, D̃).

(iv) If E is a C*-algebra of the form B⊗L(HA) or the form C(X, D̃), then

sup
p,q
{dr(p, q) : p ≈ q ∈ P(E)} ≤ 3π.

Proof. A proof of (i) and (ii) can be found as a part of the proof of [Zh10]
(there for other purposes). The conclusion (iii) is an immediate corollary
of (i) and (ii); and the estimate (iv) is a corollary of (iii) and the proof of
Corollary 6.

Corollary 12. Let A, B, D, and X be the same as in Theorem 11. Then
B⊗L(HA) is generated algebraically by projections, and C(X, D̃) is generated
by projections.

Proof. It is well known that every element of a unital C*-algebra is a linear
combination of four unitaries [KR, I(4.1.7)]. Furthermore, these unitaries
can be chosen from the identity path component of the unitary group by the
proof of [KR, I]. Theorem 11 asserts that every unitary of B ⊗ L(HA) can
be written as a product of seven symmetries

(2r1 − 1)(2r2 − 1)...(2r7 − 1)

where r1, r2, ..., r7 are projections of B ⊗ L(HA). Hence, B ⊗ L(HA) is
generated algebraically by projections. Similarly, since every unitary in the
identity path component of the unitary group of C(X, D̃) can be approxi-
mated by products of six symmetries, the algebra C(X, D̃) is generated by
projections.

Corollary 13. Suppose that A is any σ-unital C*-algebra and X is any
compact Hausdorff space. Then the following hold:
(i) Both M(A⊗K) and C(X,L(HA)) are generated by projections.

(ii) If E is either M(A⊗K) or C(X,L(HA)), then

sup
p,q
{dr(p, q) : p ≈ q ∈ P(E)} ≤ 3π.
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Proof. In Corollary 11, if one takes B to be the algebra of complex numbers,
then B⊗L(HA) ∼= M(A⊗K). If one takes B to be C(X), then B⊗L(HA) ∼=
C(X,L(HA)).
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