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A GEOMETRIC CRITERION FOR GELFAND PAIRS
ASSOCIATED WITH THE HEISENBERG GROUP

Chal Benson, Joe Jenkins, Ronald L. Lipsman and Gail Ratcliff

Let K be a closed subgroup of U(n) acting on the (2n+ 1)-
dimensional Heisenberg group Hn by automorphisms. One
calls (K,Hn) a Gelfand pair when the integrable K-invariant
functions on Hn form a commutative algebra under convolu-
tion. We prove that this is the case if and only if the coadjoint
orbits for G := K n Hn which meet the annihilator k⊥ of the
Lie algebra k of K do so in single K-orbits. Equivalently, the
representation of K on the polynomial algebra over Cn is mul-
tiplicity free if and only if the moment map from Cn to k∗ is
one-to-one on K-orbits.

It is also natural to conjecture that the spectrum of the
quasi-regular representation of G on L2(G/K) corresponds pre-
cisely to the integral coadjoint orbits that meet k⊥. We prove
that the representations occurring in the quasi-regular repre-
sentation are all given by integral coadjoint orbits that meet
k⊥. Such orbits can, however, also give rise to representations
that do not appear in L2(G/K).

1. Introduction.

Let V ∼= Cn be a finite dimensional complex vector space with Hermitian
inner product 〈·, ·〉. We denote the real and imaginary parts of 〈·, ·〉 by (·, ·)
and ω(·, ·) so that

〈·, ·〉 = (·, ·) + iω(·, ·).(1.1)

The bilinear forms (·, ·) and ω(·, ·) are a positive definite inner product and
a symplectic structure respectively on the underlying real vector space VR ∼=
R2n of V . The associated Heisenberg group HV

∼= Hn is

HV := V × R with product (z, t)(z′, t′) :=
(
z + z′, t+ t′ − 1

2
ω(z, z′)

)
.

(1.2)

This is a real 2-step nilpotent Lie group of dimension 2n + 1 with center
{0} × R.
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Let K be a compact Lie subgroup of Aut(HV ). We say that (K,HV )
is a Gelfand pair when the subalgebra L1

K(HV ) of K-invariant elements in
L1(HV ) is commutative under convolution. Equivalently, the K-bi-invariant
L1-functions on

G := K nHV(1.3)

form a commutative algebra. We will prove below in Section 2.1 that (K,HV )
is a Gelfand pair if and only if (K◦, HV ) is a Gelfand pair where K◦ is the
identity component in K. Moreover, if (K,HV ) is a Gelfand pair then so is
(K ′, HV ) for any conjugate K ′ of K inside Aut(HV ) [2]. The unitary group
U(V ) ∼= U(n) of automorphisms of V preserving 〈·, ·〉 embeds in Aut(HV )
via

k · (z, t) := (kz, t)(1.4)

and yields a maximal compact connected subgroup of Aut(HV ). These ob-
servations allow us to restrict attention to closed connected subgroups of
U(V ).

The following result summarizes some conditions that are known to be
equivalent to (K,HV ) being a Gelfand pair. A unitary representation is said
to be multiplicity free if its isotypic components are irreducible. The action
of K on V is said to be a multiplicity free action when the representation of
K on C[V ] given by (k · p)(z) := p(k−1z) is multiplicity free. Equivalently,
the complexified representation of Kc on C[V ] is multiplicity free.

Theorem 1.1. Let K be a closed connected subgroup of U(V ). The following
conditions are equivalent:
(1) (K,HV ) is a Gelfand pair.

(2) For all π in the unitary dual Ĝ = K̂ nHV , the multiplicity of the
trivial representation 1K in π|K is 0 or 1.

(3) The quasi-regular representation IndGK(1K) of G on L2(G/K) ∼=
L2(HV ) is multiplicity free.

(4) For all π ∈ ĤV , the representation Wπ of

Kπ := {k ∈ K : π ◦ k is unitarily equivalent to π}

on the representation space Hπ of π by intertwining operators is mul-
tiplicity free.

(5) The action of K on V is a multiplicity free action.
(6) A Borel subgroup in Kc has a Zariski-open orbit in V .
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(7) The algebra PD(V )K = PD(V )Kc of K-invariant polynomial coeffi-
cient differential operators on V is abelian.

The equivalence of (1) and (2) is a special case of a standard result due to
I.M. Gelfand [9]. Conditions (2) and (3) are equivalent by Ahn reciprocity
[23, pp. 56-58]. One uses the Mackey machine for Ĝ to show that (2) and
(4) are equivalent [2, 4]. In fact, it suffices that (4) hold for a.e. π ∈ ĤV [2].
One can show that conditions (5) and (4) are equivalent by using the Fock
model for the generic representations of HV [2]. The equivalence of (5) and
(6) can be found, for example, in [16], and (6)⇔ (7) is proved in [15].

Remark 1.1. Conditions (2), (3) and (4) are equivalent to (K,HV ) being
a Gelfand pair for any compact subgroup K ⊂ Aut(HV ). Also, (5) and (1)
are equivalent even when K fails to be connected. We use these facts later
in the proof of Proposition 2.2.

We wish to develop criteria for Gelfand pairs which involve the geometry
of coadjoint orbits. Representations of some classes of Lie groups may be
obtained via the orbit method (also called geometric quantization), a process
which begins with (integral) coadjoint orbits. For example, this method
describes the unitary dual of compact groups [10, 12], nilpotent groups
(where it reduces to the usual Kirillov correspondence [17]) and of semidirect
products of nilpotent groups by compact groups [24]. In particular, there is
a correspondence between irreducible unitary representations of G = KnHV

and integral coadjoint orbits in the dual g∗ of the Lie algebra g of G.
Known geometric multiplicity formulae take the following general form:

Given a subgroup H of the Lie group L, let π◦ ∈ Ĥ and π ∈ L̂ correspond
to coadjoint orbits O◦ ⊂ h∗ and O ⊂ l∗ respectively. Let p : l∗ → h∗ be the
restriction map. Then it should follow that the multiplicity of π◦ in π|H or
of π in IndGH(π◦) is #(O ∩ p−1(O◦))/H, the number of H-orbits in O which
restrict to O◦. Such formulae appear in direct integral decompositions for
nilpotent groups [5, 6, 7, 25], completely solvable and exponentially solvable
groups [25, 26]. It is also known to hold “asymptotically” for representations
of compact groups [10, 12] and to some extent for Riemannian symmetric
spaces [25].

Consider the groupG = KnHV with Lie algebra g = knhV and restriction
map p : g∗ → k∗. The coadjoint orbit corresponding to 1K ∈ K̂ is {0}
and p−1({0}) = k⊥ ∼= h∗V . One should hope that representations π of G
occurring in IndGK(1K) (equivalently those whose restriction to K contains
1K) correspond to integral coadjoint orbits in g∗ which meet k⊥. Moreover,
one expects the multiplicity of 1K in π|K to be the number of K-orbits in
the intersection O∩k⊥ where O ⊂ g∗ is the coadjoint orbit for π. Denote the
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coadjoint orbit in g∗ through ξ ∈ g∗ by OGξ . Then, in view of the equivalence
of conditions (1) and (2) in Theorem 1.1, the preceding discussion suggests
the following theorem, which is our main result.

Theorem 1.2. Let K be a compact connected subgroup of U(V ). Then
(K,HV ) is a Gelfand pair if and only if

(OC) for every ξ ∈ k⊥, OGξ ∩ k⊥ is a single K-orbit.

A closely related result, due to V. Guillemin and S. Sternberg, concerns
compact group actions on cotangent bundles [11]. In fact, [11] contains a
geometric characterization of compact Gelfand pairs. Suppose that L is a
compact connected Lie group and that K is a closed Lie subgroup of L. In
this setting, K ⊂ L is a Gelfand pair1 if and only ifOLξ ∩k⊥ is a finite union of
K-orbits for generic integral points ξ ∈ k⊥. Our proof of Theorem 1.2, given
in Section 5, involves different methods from those in [11], since G := KnHV

is not compact.
We say that ξ ∈ g∗ is integral when OGξ is an integral coadjoint orbit

and write ρξ for the corresponding representation of G. Integrality means
that the map Gξ → T defined by exp(X) 7→ eiξ(X) is a unitary character
on the stabilizer Gξ of ξ under the coadjoint action. The set of irreducible
representations weakly contained in a given unitary representation is called
its spectrum. Another natural conjecture is the following:

(SC) The spectrum of IndGK(1K) is
{
ρξ | ξ is an integral point in k⊥

}
.

Indeed, the orbit method folklore discussed above motivates this “guess”.
We will show that

{
ρξ | ξ is an integral point in k⊥

}
always contains the

spectrum of IndGK(1K). (See Proposition 4.1.) We will, however, present
examples showing that this containment can be proper, even when (K,HV )
is a Gelfand pair. (See Examples 4.1 and 7.2.) Characterizing the situations
where Condition (SC) holds seems to be an interesting but difficult problem.

In Section 3, we reformulate conditions (OC) and (SC) in terms of the
actions of K on V and C[V ]. A key ingredient is the (un-normalized) moment
map τ : V → k∗ for the action of K on V defined by

τ(z)(A) := ω(z,Az) for z ∈ V , A ∈ k.(1.5)

It is easy to see that τ is K-equivariant. We show in Theorem 3.1 that Con-
dition (OC) holds if and only if τ is injective on K-orbits. In Theorem 3.2,

1i.e. the K-bi-invariant L1-functions on L form a commutative convolution algebra
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we show that Condition (SC) holds for (K,HV ) if and only if the spectrum of
the representation of K on C[V ] is given precisely by the integral coadjoint
orbits which lie in τ(V ) ⊂ k∗. These results together with Condition (5) in
Theorem 1.1 enable one to remove the semidirect product G = KnHV from
the picture. All of this rests on a description of the coadjoint orbits in G
derived in Section 2.5. The reformulated version of Theorem 1.2 reads:

Theorem 1.3. The action of K on V is multiplicity free if and only if τ is
one-to-one on K-orbits.

The condition in Theorem 1.3 means that if τ(Kv1) = τ(Kv2) then Kv1 =
Kv2. Equivalently, τ−1(OKα ) is at most a single K-orbit for each α ∈ k∗. In
the language of symplectic geometry, the Marsden-Weinstein reduction of V
at α is a single point for each α ∈ τ(V ).

The moment map induces a map τ ∗ : I[k∗] → C[VR]K from the Ad∗(K)-
invariant polynomials I[k∗] on k∗ to the K-invariant polynomials C[VR]K on
VR. Our proof of Theorem 1.3 in Section 5 rests on the fact that the multi-
plicity free condition and injectivity of τ on K-orbits are both equivalent to
algebraic conditions involving the ring inclusion τ ∗(I[k∗]) ⊂ C[VR]K . In par-
ticular, the fraction field of C[VR]K must be a finite extension of the fraction
field of τ ∗(I[k∗]). (See Propositions 5.3 and 5.4.)

The condition concerning fraction fields certainly holds whenever τ ∗ is
surjective. We say that the action of K on V is a Capelli action in this
case. In Section 6 we show that an action is Capelli if and only if the
“abstract Capelli problem” for its complexification (introduced in [15]) has
an affirmative answer. Capelli actions provide a special class of multiplicity
free actions. The algebraic conditions established in Section 5 show that a
general multiplicity free action is “almost” a Capelli action. We examine
several examples of Capelli actions more closely in Section 7, considering
Condition (SC) in each case.

Variants of the main results in this paper were announced in [1]. Theorems
1.2 and 1.3 appear in [1] as conjectures. In fact, Theorem 1.3 can be obtained
from the somewhat weaker result in [1] by appealing to a result, due to
Lerman, Montgomery and Sjamaar, concerning connectivity of the fibers of
the moment map for a compact linear action. This is explained below in
Section 5. We are indebted to Yael Karshon for drawing our attention to
the paper [21].

1.1. Notation. Throughout this paper, HV will denote the Heisenberg
group given by a Hermitian vector space (V, 〈·, ·〉) of complex dimension
n. K will denote a compact Lie subgroup of Aut(HV ). After Section 2.1,
K will always be a connected subgroup of U(V ) unless stated otherwise. G
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denotes the semidirect product G = KnHV . The Lie algebras of HV , K and
G are hV , k and g. kc = k⊗C is the Lie algebra of the complexification Kc of
K. For γ in the linear duals k∗, g∗ or h∗V , OKγ , OGγ and OHVγ denote K-, G-
and HV -coadjoint orbits respectively through γ. k⊥ ⊂ g∗ is the annihilator
of k in g∗. C[V ] denotes the algebra of holomorphic polynomials on the com-
plex vector space V and C[VR] are the polynomials on the underlying real
vector space VR. C[VR]K denotes the algebra of K-invariant polynomials for
the contragredient action of K on C[VR]. I[k] and I[k∗] denote the algebras
of Ad(K)- and Ad∗(K)-invariant complex valued polynomials on the real
vector spaces k and k∗.
1.2. Acknowledgment. This work has benefited greatly from conversa-
tions and correspondence with other mathematicians. We especially wish to
thank Roger Howe, Yael Karshon, Friedrich Knop and Prabhakar Rao for
their helpful suggestions.

2. Preliminaries.

2.1. Connectivity of K. The following Lemma shows that the notion of
Gelfand pair cannot be generalized by replacing the “multiplicity free” crite-
rion by a “bounded multiplicity” condition. This result has a folklore status
among researchers. We learned of it from Frederic Bien and Roger Howe on
separate occasions and a related result appears in [20]. We include a brief
proof for the reader’s convenience.

Lemma 2.1. Let K ⊂ U(V ) be connected. If (K,HV ) is not a Gelfand pair
then C[V ] contains irreducible K-modules with arbitrarily large multiplicities.

Proof. Let C[V ] =
∑
α Pα be a decomposition of C[V ] into K-irreducibles.

Since (K,HV ) is not a Gelfand pair, there are two factors, Pα and Pβ say,
which are equivalent as K-modules. Let pα and pβ denote highest weight
vectors in Pα and Pβ with common highest weight χ on a maximal torus
T ⊂ K. By removing any common prime factors, we can assume that pα and
pβ are relatively prime. For any fixed integer N > 0, pkαp

N−k
β is a highest

weight vector with weight χN for each k = 0, 1, . . . , N . We claim that{
pkαp

N−k
β | k = 0, 1, . . . , N

}
is a linearly independent set in C[V ]. Otherwise

we could write some pk◦α p
N−k◦
β as a linear combination

pk◦α p
N−k◦
β =

N∑
k=k◦+1

ckp
k
αp

N−k
β(2.1)

and conclude that pk◦+1
α divides pk◦α p

N−k◦
β . This is impossible since pα and

pβ are relatively prime. Thus, the K-modules generated by pkαp
N−k
β for
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k = 0, 1, . . . , N are pair-wise distinct copies in C[V ] of a single K-irreducible.

The unitary automorphisms U(V ), given by Equation 1.4, together with
the flip automorphism f : HV → HV , (z, t) 7→ (z̄,−t) generate a maximal
compact subgroupM of Aut(HV ).2 LetK be a (possibly disconnected) com-
pact subgroup of Aut(HV ). We can assume that K ⊂ M since the Gelfand
pair property is invariant under conjugation inside Aut(HV ) [2]. The orbit
picture for ĤV makes it clear that Kπ = K ∩ U(V ) for the generic (infinite
dimensional) representations π ∈ ĤV . Thus, Condition (4) in Theorem 1.1
will hold for K if and only if it holds for K ∩ U(V ). That is, (K,HV ) is a
Gelfand pair if and only if (K ∩ U(V ), HV ) is a Gelfand pair.

Proposition 2.2. Let K be a compact subgroup of Aut(HV ) with identity
component K◦. Then (K,HV ) is a Gelfand pair if and only if (K◦, HV ) is a
Gelfand pair.

Proof. Since L1
K(HV ) ⊂ L1

K◦(HV ) it is clear that (K,HV ) is a Gelfand pair
whenever (K◦, HV ) is a Gelfand pair. On the other hand, suppose that
(K,HV ) is a Gelfand pair. As explained above, we can assume that K ⊂M
and even K ⊂ U(V ). Let

C[V ] =
∑
α

Pα(2.2)

denote the (multiplicity free) decomposition of C[V ] into K-irreducibles.
Suppose that K has ` components and let k1, . . . , k` ∈ K give a complete

set of coset representatives for the K◦-cosets in K. Suppose that (K◦, HV )
is not a Gelfand pair. Lemma 2.1 shows that for any N ≥ 1, we can find
an irreducible K◦-module ρ with multiplicity at least N`2`. Since the Pα’s
are K◦-invariant, each of these copies of ρ is contained in some Pα. Suppose
that W is a copy of ρ inside Pα. Then kiW ⊂ Pα is K◦-invariant (as K◦ is
normal in K) and equivalent to ρki ∈ K̂◦ defined by

ρki(k) = ρ(kikk−1
i ).(2.3)

Since Pα is K-irreducible,

Pα =
⊕
j∈J

kiW(2.4)

for some J ⊂ {1, . . . , `} and hence Pα is equivalent to
∑
i∈J ρki as a K◦-

module.
2We can write M = Z2 n U(V ) where Z2 acts on HV via f and on U(V ) via k 7→ k̄.
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Since there are at most ` factors in Equation 2.4, at least N2` distinct
Pα’s must contain copies of ρ. As there are only 2` possibilities for J , at
least N of these Pα’s must be equivalent as K◦-modules.

We have shown that for each N , one can find N distinct irreducible K-
modules that are equivalent as K◦-modules. This is impossible since K/K◦
is a finite group.

As explained in Section 1, Proposition 2.2 allows us to restrict our atten-
tion to connected subgroups of U(V ). Henceforth, unless otherwise stated,
K will always denote a compact connected subgroup of U(V ).

2.2. Invariants and orbits. The following result is well known. A proof
can be found on page 133 in [28].

Proposition 2.3. Let K be a compact group acting smoothly on a real vector
space W . Then the invariants C[W ]K separate K-orbits in W .

Suppose now that K ⊂ U(V ) where V is a complex vector space. Propo-
sition 2.3 shows that C[VR]K separates K-orbits in V . If V ∼= Cn then
C[V ] ∼= C[z1, . . . , zn] and C[VR] ∼= C[z1, . . . , zn, z1, . . . , zn]. Note that the
holomorphic K-invariants C[V ]K need not separate K-orbits. In particu-
lar, when (K,HV ) is a Gelfand pair, 1K occurs in C[V ] with multiplicity 1
and it follows that the only K-invariant holomorphic polynomials on V are
constants.

Other applications of Proposition 2.3 in this paper concern the adjoint
action of K on k and the coadjoint action of K on k∗.

Corollary 2.4. Let K be a compact connected Lie group with Lie algebra
k. The Ad(K)-invariant polynomials I[k] := C[k]Ad(K) separate the adjoint
orbits in k. Similarly, I[k∗] := C[k∗]Ad∗(K) separates the coadjoint orbits in
k∗.

2.3. The orbit method for compact groups. We recall how the orbit
method for a compact group K is related to the classical theory of highest
weights. For details, we refer the reader to [12] or [24]. Let T be a maximal
torus in K with Lie algebra t ⊂ k and let 〈·|·〉 be a negative definite Ad(K)-
invariant inner product on k. We identify t∗ with the subset {〈X|·〉 | X ∈ t}
of k∗. Each coadjoint orbit in k∗ meets t∗ ⊂ k∗ in an orbit of the Weyl group.
A point α ∈ t∗ is an integral point provided

X ∈ Ker(exp : t→ T ) implies that α(X) ∈ Z.(2.5)
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In this case, if iα : t→ iR is the highest weight for some representation ηα,
then OKα corresponds to ηα via the orbit method. For K ⊂ U(n), a suitable
pairing 〈·|·〉 as above is given by

〈A|B〉 := tr(AB).(2.6)

Remark 2.1. Although K denotes a subgroup of U(V ), in some of the
examples K merely acts on V by some unitary representation. In this case
one can replace K by its image in U(V ) but we need to be careful when
speaking of integral points if the representation is not faithful. In this setting,
an integral point α ∈ t∗ is one for which

X ∈ Ker
(
t −−→

exp
T → U(V )

)
implies that α(X) ∈ Z.(2.7)

2.4. Spectrum of the quasi-regular representation. We supply here a
result which we believe must be known but which we could not locate in the
literature.

Proposition 2.5 Let G be type I and K ⊂ G a compact subgroup. Then
π ∈ Ĝ is weakly contained in the quasi-regular representation IndGK(1K) if
and only if π is weakly contained in the regular representation and contains
a K-fixed vector.

Corollary 2.6. If G is amenable and type I (in particular, for G = KnHV ),
π is weakly contained in the quasi-regular representation if and only if π
contains a K-fixed vector.

The corollary is an immediate consequence of Proposition 2.5 since every
irreducible unitary representation of an amenable group is weakly contained
in its regular representation.

Proof of Proposition 2.5. Since K is compact, the quasi-regular representa-
tion is a subrepresentation of the regular representation. Thus any represen-
tation weakly contained in the quasi-regular representation is also weakly
contained in the regular representation. Furthermore, it follows from the
Ahn Reciprocity Theorem (see [23, pp.56-58]) that a.e. π ∈ Ĝ contains
a K-fixed vector. Since this is a closed condition in the Fell topology, the
“only if” portion of the proposition is clear.

Conversely, let π be in the reduced dual and let ξ be a K-fixed vector in
the space of π. The matrix coefficient 〈π(g)ξ, ξ〉 is uniformly approximable
on compacta by matrix coefficients of the regular representation, i.e. by
functions of the form h1 ∗ h2 where h1, h2 ∈ L2(G). Let U ⊂ G be compact
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and assume (without loss of generality) that KUK = U . Averaging the hj
over K does not disturb an approximation to the matrix coefficient on U .
Hence, the approximation can be made using K-invariant functions. Since π
is irreducible, this implies that π is weakly contained in IndGK(1K).

In light of Corollary 2.6, the spectrum of IndGK(1K) is exactly the set

ĜK :=
{
π ∈ Ĝ | π contains a K-fixed vector

}
.(2.8)

Alternatively, there is no ambiguity in referring to the members of the set
ĜK as the irreducibles which “occur in” IndGK(1K).

2.5. Coadjoint orbits in G = K nHV . We identify the Lie algebra hV of
HV with HV via the exponential map. The Lie bracket on hV is given by

[(z, t), (z′, t′)] = (0,−ω(z, z′))(2.9)

and the derived action of the Lie algebra k ⊂ u(V ) ∼= u(n) of K ⊂ U(V ) on
hV is

A · (z, t) = (Az, 0).(2.10)

Points in g = k n hV will be written as triples (A, z, t) where A ∈ k and
(z, t) ∈ hV . Using the Baker-Campbell-Hausdorff formula, one sees that

ExpG(sA1, sz1, st1) = (ExpK(sA1), sz1 +O(s2), st1).(2.11)

Thus, we compute

Ad(k, z, t)(A1, z1, t1) =
d

ds

∣∣∣∣
0

[
(k, z, t) ExpG(sA1, sz1, st1)(k, z, t)−1

]
=

d

ds

∣∣∣∣
0

[(k, z, t)(ExpK(sA1), sz1, st1)(k−1,−k−1z,−t)]

=
d

ds

∣∣∣∣
0

[
(kExpK(sA1), z + skz1, t+ st1 − s

2
ω(z, kz1))(k−1,−k−1z,−t)

]
=

d

ds

∣∣∣∣
0

(
k ExpK(sA1)k−1, z + skz1 − k ExpK(sA1)k−1z, st1

−s
2
ω(z, kz1) +

1
2
ω(z, k ExpK(sA1)k−1z) +

s

2
ω(kz1, k ExpK(sA1)k−1z)

)
=
(
AdK(k)A1, kz1 − (AdK(k)A1)z, t1 + ω(kz1, z) +

1
2
ω(z, (AdK(k)A1)z)

)
.

That is,

(2.12) Ad(k, z, t)(A1, z1, t1)
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=
(
k ·A1, kz1 − (k ·A1)z, t1 + ω(kz1, z) +

1
2
ω(z, (k ·A1)z)

)
where we now write k ·A for the adjoint action of K on k. Note in particular
that

Ad(k)(A1, z1, t1) = (k ·A1, kz1, t1).(2.13)

For z ∈ V , define z∗ ∈ V ∗ by

z∗(z′) := ω(z, z′).(2.14)

We define a map × : V × V → k∗, (z, z′) 7→ z × z′ by

z × z′(A) := (z′)∗(Az) = ω(z′, Az) for A ∈ k.(2.15)

It is easy to verify that for k ∈ K, A ∈ k and z, z′ ∈ V one has

kz∗ := z∗ ◦ k−1 = (kz)∗(2.16)

z∗ ◦A =− (Az)∗(2.17)

z × z′ = z′ × z(2.18)

k · (z × z′) = (kz)× (kz′).(2.19)

We will identify g∗ = (k n hV )∗ = h⊥V ⊕ k⊥ ∼= k∗ ⊕ h∗V with k∗ ⊕ hV .
Specifically, we will write µ(α,z,λ) to denote the element in g∗ given by

µ(α,z,λ)(A, z′, t) := α(A) + z∗(z′) + λt.(2.20)

For α ∈ k∗, µ ∈ g∗ and k ∈ K we write k · α and k · µ as shorthand for
Ad∗(k)(α) and Ad∗(k)(µ). In view of Equations 2.13 and 2.16, we have

k · µ(α,z,λ) = µ(k·α,kz,t).(2.21)

Working from Equations 2.12, 2.16 and 2.19 we compute

Ad∗((k, z, t)−1)µ(α,z◦,λ)(A1, z1, t1)

= µ(α,z◦,λ)(Ad(k, z, t)(A1, z1, t1))

= α(k ·A1) + z∗◦(kz1)− z∗◦((k ·A1)z) + λt1

+ λω(kz1, z) +
λ

2
ω(z, (k ·A1)z)

=
(
k−1 · α− k−1 · (z × z◦) +

λ

2
k−1 · (z × z)

)
(A1)

+
(
(k−1z◦)∗ − λ(k−1z)∗

)
(z1) + λt1.
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Replacing (k, z, t) above by (k, z, t)−1 = (k−1,−k−1z,−t) yields the following
formula for the coadjoint action of G on g∗.

Lemma 2.7 Ad∗(k, z, t)µ(α,z◦,λ) = µ(k·α+z×kz◦+λ
2 z×z,kz◦+λz,λ) where z×z′(A) :=

(z′)∗(Az) = ω(z′, Az).

Letting k and z vary over K and V respectively, we see that the coadjoint
orbit OG(α,z◦,λ) through µ(α,z◦,λ) is

OG(α,z◦,λ) =
{
µ(k·α+z×kz◦+λ

2 z×z,kz◦+λz,λ) | k ∈ K, z ∈ V
}

(2.22)

or equivalently, replacing z by kz and using Equation 2.21,

OG(α,z◦,λ) =
{
k · µ(α+z×z◦+λ

2 z×z,z◦+λz,λ) | k ∈ K, z ∈ V
}
.(2.23)

3. Reformulations of conditions (OC) and (SC).

In this section we will derive versions of Conditions (OC) and (SC) that
involve only the actions of K on V and C[V ]. A key ingredient is an un-
normalized version of the moment map for a Lie group representation [29].

Definition 3.1. Define the moment map τ : V → k∗ for the action of K
on V by τ(z) := z × z for z ∈ V . That is, τ(z)(A) = ω(z,Az).

Note that since 〈z,Az〉 is pure imaginary, one can also write τ(z)(A) =
1
i
〈z,Az〉 = i〈Az, z〉. The moment map satisfies

τ(cz) = |c|2τ(z) for c ∈ C,(3.1)

τ(kz) = k · τ(z) for k ∈ K.(3.2)

We will also consider the induced algebra map,

τ ∗ : C[k∗]→ C[VR], (τ ∗(p)) (v) := p (τ(v)) .(3.3)

In view of Equation 3.2, τ ∗ is K-equivariant and yields an algebra map

τ ∗ : I[k∗]→ C[VR]K(3.4)

by restriction to the Ad∗(K)-invariant polynomials.
If we identify V with Cn by using some orthonormal basis for V , then K

can be regarded as a subgroup of the n by n unitary matrices U(n), and k
as a subalgebra of the skew Hermitian matrices u(n). An easy computation
shows that τ is given by the formula

τ(z)(A) = i
∑
j,`

aj,`z`zj = i tr(Azz∗), z ∈ V, A ∈ k.(3.5)
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Here we regard z as a column vector z =

 z1

...
zn

 and z∗ := zt. So izz∗ is the

n by n skew Hermitian matrix whose entries are given by (izz∗)`,j = iz`zj.
The algebra map τ ∗ : C[k∗] → C[VR] is determined by its behavior on

homogeneous polynomials of degree 1. For A ∈ k, let

ψA ∈ k∗∗ ⊂ C[k∗] be given by ψA(α) = α(A).(3.6)

Then

τ ∗(ψA)(z) = i tr(Azz∗).(3.7)

Remark 3.1. If one uses a negative definite Ad(K)-invariant inner prod-
uct on k to identify k with k∗, then τ and τ ∗ become maps τ : V → k and
τ ∗ : I[k]→ C[VR]K . Such identifications are useful when working with exam-
ples. In particular, for the action of U(n) on Cn one has τ(z) = izz∗ ∈ u(n)
when one uses the pairing 2.6 to identify u(n)∗ with u(n).

Our first goal is to reformulate Condition (OC). We must consider inter-
sections of the form OG(α,z◦,λ)∩ k⊥. We will write points in h∗V as ν(z,λ), where
ν(z,λ)(z′, t) := z∗(z′) + λt and identify k⊥ with h∗V via µ(0,z,λ) ↔ ν(z,λ). Note
that this identification is Ad∗(G)-equivariant. Equation 2.23 shows that

(3.8) OG(α,z◦,λ) ∩ k⊥

=
{
k · ν(z◦+λz,λ) | k ∈ K and z ∈ V with α+ z × z◦ +

λ

2
τ(z) = 0

}
.

In particular, OG(α,z◦,λ) ∩ k⊥ is K-saturated.
We shall refer to the orbits OG(α,z◦,λ) with λ 6= 0 as the generic orbits

in g∗. In this case, Equation 2.23 shows that OG(α,z◦,λ) contains the point
µ(α− 1

2λ τ(z◦),0,λ). Thus, we may as well take z◦ = 0 here. Note that the orbits
OG(α,0,λ) are all distinct, so that (k∗/K)× (R\ {0}) parameterizes the generic
coadjoint orbits in g∗. We have

OG(α,0,λ) ∩ k⊥ =
{
k · ν(z,λ) | τ(z) = −2λα

}
=
{
ν(z,λ) | τ(z) ∈ OK−2λα

}
.

(3.9)

Fixing λ = λ◦ 6= 0 and letting α = − 1
2λ◦
β vary over k∗, we see that Condition

(OC) holds for all orbits OG(α,0,λ◦) if and only if τ−1(OKβ ) consists of at most
one K-orbit in V . As this condition is independent of λ◦, (OC) holds for
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all generic orbits if and only if τ induces an injective map V/K → k∗/K on
K-orbits.

Non-generic coadjoint orbits have the form

OG(α,z◦,0) =
{
k · µ(α+z×z◦,z◦,0) | k ∈ K, z ∈ V

}
.(3.10)

We see that OG(α,z◦,0) meets k⊥ only when α = −z × z◦ for some z ∈ V .
In this case, OG(α,z◦,0) ∩ k⊥ =

{
ν(kz◦,0) | k ∈ K

}
is a single K-orbit. That is,

Condition (OC) always holds for the non-generic orbits.

Theorem 3.1. The following conditions are equivalent for K ⊂ U(V ):
(1) (K,HV ) satisfies Condition (OC).
(2) The moment map τ : V → k∗ is injective on K-orbits. That is, if

OKτ(z) = OKτ(z′) then Kz = Kz′.
(3) If z × z′ = 0 then K(z + z′) = K(z − z′).
(4) The algebra τ ∗ (I[k∗]) ⊂ C[VR]K separates K-orbits in V .

Proof. We have seen that Condition (OC) holds for all coadjoint orbits
OG(α,z◦,λ) if and only if (OC) holds for the generic orbits OG(α,0,λ). As explained
above, this is equivalent to τ being injective on K-orbits. To see that (2)
and (3) are equivalent, note that

τ(z ± z′) = τ(z) + τ(z′)± 2z × z′.(3.11)

Here we have used Equation 2.18.
Suppose that Kz 6= Kz′. If (2) holds then OKτ(z) 6= OKτ(z′). As I[k∗]

separates K-coadjoint orbits (Corollary 2.4), there is a polynomial p ∈ I[k∗]
with p

(
OKτ(z)

)
6= p

(
OKτ(z′)

)
. But then τ ∗(p) (Kz) 6= τ ∗(p) (Kz′). This shows

that (2) implies (4). On the other hand, if (4) holds and Kz 6= Kz′ then
for some p ∈ I[k∗] we have τ ∗(p) (Kz) 6= τ ∗(p) (Kz′). Thus p

(
OKτ(z)

)
6=

p
(
OKτ(z′)

)
and we have OKτ(z) 6= OKτ(z′). Hence, (4) implies (2).

Next, we will reformulate Condition (SC) in terms of the moment map
and the representation of K on C[V ]. ηα will denote the representation of
K corresponding to an integral coadjoint orbit OKα ⊂ k∗.

Theorem 3.2. (K,HV ) satisfies Condition (SC) if and only if the spectrum
of the representation of K on C[V ] is

{ηα | α is an integral point in τ(V ) ⊂ k∗} .



GELFAND PAIRS AND GEOMETRY 15

Proof. First consider an integral non-generic coadjoint orbit OG(α,z◦,0). The
corresponding representation ρ(α,z◦) of G is the identity on Z(HV ) ⊂ G and
factors through the group K n V . This may be described via the Mackey
machine as follows. (See [24] for details on this.) Let χz◦ be the unitary
character on HV defined by

χz◦(z, t) := ei(z◦,z) where as before (·, ·) := Re〈·, ·〉.(3.12)

The stabilizer of χz◦ in K is

Kz◦ = {k ∈ K | χz◦ ◦ k = χz◦} = {k ∈ K | kz◦ = z◦} .(3.13)

Let kz◦ be the Lie algebra of Kz◦ and α◦ := α|kz◦ ∈ k
∗
z◦ . Integrality of OG(α,z◦,0)

is equivalent to the integrality of α◦ for the group Kz◦ . Let γα be the unitary
representation of Kz◦ which corresponds to the coadjoint orbit OKz◦α◦ . The
representation ρ(α,z◦) of G given by OG(α,z◦,0) is

ρ(α,z◦) = IndKnHVKz◦nHV (γα ⊗ χz◦)(3.14)

and hence

ρ(α,z◦)|K = IndKKz◦ (γα).(3.15)

Thus 1K occurs in ρ(α,z◦)|K if and only if γα occurs in 1K |Kz◦ = 1Kz◦ . This
can happen only when γα = 1Kz◦ . Since 1Kz◦ corresponds to the coadjoint
orbit {0} in k∗z◦ , we see that 1K occurs in ρ(α,z◦)|K if and only if α◦ = 0.

Equation 3.10 shows that OG(α,z◦,0) meets k⊥ when α = z× z◦ for some z ∈
V . For A ∈ kz◦ = {A ∈ k | Az◦ = 0}, one has (z × z◦) (A) = (z◦ × z) (A) =
ω(z,Az◦) = 0. Thus if OG(α,z◦,0) is an integral orbit that meets k⊥, then 1K
occurs in ρ(α,z◦)|K . On the other hand, consider the linear map

β : V → (k/kz◦)
∗
, β(z) := (iz)× z◦.(3.16)

One sees easily that Ker(β) = {z | (z,Az◦) = 0 for all A ∈ k} = (kz◦)⊥.
Hence, dim(Ker(β)) = dim(V ) − dim(kz◦) and dim(β(V )) = dim(kz◦) =
dim(Kz◦) = dim (K/Kz◦) = dim

(
(k/kz◦)

∗). That is, β is onto and hence if
α|kz◦ = 0, one must have that α = z× z◦ for some z ∈ V . Thus if 1K occurs

in ρ(α,z◦)|K , then OG(α,z◦,0) meets k⊥. In other words, we have shown that for
non-generic integral coadjoint orbits Oξ ⊂ g∗, ρξ occurs in IndGK(1K) if and
only if Oξ meets k⊥.

Next consider the generic orbits OG(α,0,λ). Such an orbit is integral if and
only if OKα is integral in k∗. Write ηα for the corresponding representation
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of K acting in say Hα. Let πλ ∈ ĤV acting in say Fλ have central character
πλ(0, t) = eiλt. It is well known that πλ is determined up to unitary equiv-
alence by its central character. Since K preserves OHVν(0,λ)

, πλ ◦ k is unitarily
equivalent to πλ for each k ∈ K. That is, the stabilizer of πλ is all of K. Let
Wλ(k) intertwine πλ and πλ ◦ k,

πλ(kz, t) = Wλ(k)πλ(z, t)Wλ(k)−1.(3.17)

We will see below that we can choose a Wλ(k) for each k ∈ K in such a way
that Wλ is a unitary representation of K on Fλ. The representation ρ(α,λ)

of G corresponding to OG(α,0,λ) can be realized in Hα ⊗Fλ as

ρ(α,λ)(k, z, t) = ηα(k)⊗ [πλ(z, t) ◦Wλ(k)] .(3.18)

(See [24] for details.) In particular, ρ(α,λ)(k) = ηα(k)⊗Wλ(k). We conclude
that 1K occurs in ρ(α,λ)|K if and only if ηα = η−α occurs in Wλ.

Suppose that λ > 0. As explained in [2], we can realize πλ in a Fock space
Fλ consisting of entire functions V → C that are square integrable with re-
spect to the measure

(
λ
2π

)n
e−

λ
2 |z|2dzdz̄ on V . Wλ is given by (Wλ(k)f) (z) =

f(k−1z). The holomorphic polynomials C[V ] are dense in Fλ and Wλ(K)
preserves C[V ]. Thus 1K occurs in ρ(α,λ)|K if and only if η−α occurs in C[V ].
On the other hand, OG(α,0,λ) meets k⊥ when −2λα ∈ τ(V ). Equivalently, in
view of Equation 3.1, we must have −α ∈ τ(V ). Thus Condition (SC) holds
for the integral orbits OG(α,0,λ) with λ > 0 if and only if for all integral α ∈ k∗,
ηα occurs in C[V ] exactly when α belongs to the image of τ .

Next suppose that λ < 0. In this case, πλ = π|λ| can be realized in F|λ|.
The intertwining representation becomes Wλ = W|λ|, so that ρ(α,λ)(k) =
ηα(k) ⊗W|λ|(k). Thus, 1K occurs in ρ(α,λ) if and only if ηα occurs in W|λ|.
Equivalently, ηα must occur in C[V ]. On the other hand, OG(α,0,λ) will meet k⊥

when −2λα = 2|λ|α belongs to τ(V ). As for the case λ > 0, Condition (SC)
holds for the integral orbits OG(α,0,λ) with λ < 0 if and only if the spectrum
of C[V ] is given by the integral points α ∈ τ(V ).

Example 3.1. The prototypical Gelfand pair is of course (U(n), Hn). We will
show that Conditions (OC) and (SC) hold for this example. Identifying u(n)∗

with u(n) via the U(n)-invariant negative definite bilinear form 〈A|B〉 :=
tr(AB) (see Section 2.3), Equation 3.5 shows that τ : V → u(n) is given
by τ(z) = izz∗. This is a skew-Hermitian matrix with eigenvalues i|z|2 of
multiplicity 1 and 0 of multiplicity n− 1. Thus, if τ(z) is conjugate to τ(z′)
via a unitary matrix then |z| = |z′| and hence, z and z′ belong to a common
U(n)-orbit. This shows that Condition (OC) holds for (U(n), Hn).
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The standard maximal torus T in U(n) consists of the diagonal matrices

kθ :=

e
iθ1

. . .
eiθn

(3.19)

with Lie algebra t = {Aθ} where

Aθ :=

 iθ1

. . .
iθn

 .(3.20)

The multiplicity free decomposition of C[Cn] is just

C[Cn] =
∞∑
m=0

Pm(3.21)

where Pm is the space of homogeneous polynomials of degree m. Writing
pJ(z) := zj11 · · · zjnn , one has kθ ·pJ = e−iJ·θpJ . Thus, pm(z) := p(m,0,··· ,0)(z) =
zm1 is a highest weight vector in Pm with highest weight −imε1 where
εj(Aθ) := θj. Our computation of τ : Cn → u(n)∗ shows that τ(U(n)z)
meets t∗ = {〈Aθ|·〉} ⊂ u(n)∗ in the Weyl orbit{−|z|2ε1, . . . ,−|z|2εn} .(3.22)

We see that the integral orbits in τ(V ) are exactly those through αm := −mε1
for m = 0, 1, . . . as desired.

4. The spectrum of IndGK(1K).

The following theorem shows that a weakened version of Condition (SC) is
always true.

Proposition 4.1. If ρξ belongs to the spectrum ĜK of IndGK(1K) then OGξ ∩
k⊥ 6= φ. Equivalently, if ηα occurs in the representation of K on C[V ] then
OKα ⊂ τ(V ).

Proof. The argument given in the proof of Theorem 3.2 shows that
ĜK ⊂

{
ρξ | ξ ∈ k⊥ is integral

}
if and only if

SpecK(C[V ]) ⊂ {ηα | α is an integral point in τ(V ) ⊂ k∗} .

Thus, the two assertions in Proposition 4.1 are equivalent.
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Suppose that ηα occurs in the space of homogeneous polynomials Pm of
degree m in C[V ]. Let OU(V )

m ⊂ u(V )∗ be the coadjoint orbit corresponding
to the representation (η̃m say) of U(V ) on Pm. (In terms of the notation used
in Example 3.1, OU(V )

m = U(V ) ·αm.) Since ηα occurs in η̃m|K it follows from
a result of Heckman [12] that OKα ⊂ π

(
OU(V )
m

)
where π : u(V )∗ → k∗ denotes

the restriction map. Example 3.1 shows that OU(V )
m is in the image of the

moment map τU(V ) : V → u(V )∗. These observations prove Proposition 4.1
since τK : V → k∗ is related to τU(V ) : V → u(V )∗ by τK = π ◦ τU(V ).

Proposition 4.1 is also proved in [22], but from an “un-reformulated”
perspective - i.e. without using the moment map.

Example 4.1. We can have ĜK  
{
ρξ | ξ ∈ k⊥ is integral

}
. That is, one can

have OGξ ∩ k⊥ 6= φ for some integral orbit OGξ , even though ρξ is not in the
spectrum of IndGK(1K). Consider the action of K := T (the unit circle in
C) on V := C2 given by k · (z1, z2) := (k2z1, k

3z2). For p(j,`)(z) := zj1z
`
2 one

has k · p(j,`) = k−(2j+3`)p(j,`). The Lie algebra of K is t = iR. The character
k 7→ km for m ∈ Z corresponds to the one-point coadjoint orbit Om :=
{ia 7→ ma}. Thus, the coadjoint orbits that correspond to representations
of K occurring in C[V ] are{O−(2j+3`) | j, ` ≥ 0

}
= {O0,O−2,O−3, . . . } .(4.1)

On the other hand, τ : V → k∗ is given by

τ(z)(ia) = −a(2|z1|2 + 3|z2|2)(4.2)

and the integral orbits in the image of τ are {O0,O−1,O−2, . . . }. In par-
ticular, O−1 = τ

(
K · ( 1√

2
, 0)
)

is in the image of τ but the corresponding
representation of K does not appear in C[V ].

Note that C[V ] is not K-multiplicity free, so (K,HV ) is not a Gelfand
pair. Moreover, Condition (OC) fails here since, for example, O−1 is also
the image of K · (0, 1√

3
). It is harder to find examples of Gelfand pairs where

Condition (SC) fails. One such example is 7.2 presented below.

5. Geometric criteria.

In this section, we will prove Theorem 1.3. This will also establish Theo-
rem 1.2 since the two results are equivalent in view of Theorem 3.1. Our
proof uses some results from [15] and [18] concerning the derived action of
the Lie algebra of K on the space C[V ]. We begin by relating this action to
the moment map.
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Let PD(V ) be the algebra of differential operators with (holomorphic)
polynomial coefficients on V . We have PD(V ) ↪→ End (C[V ]), that is
each D ∈ PD(V ) acts on C[V ]. Kc acts on PD(V ) by conjugation inside
End (C[V ]),

((g ·D) (p)) (z) = (D(p ◦ g))
(
g−1z

)
, D ∈ PD(V ), g ∈ Kc, p ∈ C[V ].

(5.1)

The derived action of kc on C[V ] is given by

(X · p) (z) :=
d

ds

∣∣∣∣
0

p (exp(−sX)z) .(5.2)

The map dι : kc → PD(V ) given by (dι)(X)p := X · p extends to a Kc-
equivariant algebra map

dι : U(kc)→ PD(V )(5.3)

where U(kc) = U(k) ⊗ C is the complexified enveloping algebra of k and Kc

acts on U(kc) via Ad. Restricting to Kc-invariant elements yields a map

dι : ZU(kc)→ PD(V )Kc ,(5.4)

where ZU(kc) denotes the center of U(kc).

Proposition 5.1. There are vector space isomorphisms λ : I[k∗] → ZU(kc)
and Γ : C[VR]K → PD(V )Kc for which the diagram

I[k∗] τ∗−−−→ C[VR]Kyλ yΓ

ZU(kc)
dι−−−→ PD(V )Kc

(5.5)

commutes.

Proof. Suppose that B = {e1, . . . , en} is an 〈·, ·〉-orthonormal basis for V
and let (z1, . . . , zn) denote coordinates with respect to B. We use this to
identify V with Cn and K with a subgroup of the n by n unitary matrices
U(n). k becomes a subalgebra of the skew Hermitian matrices u(n). For
A = [aj,`] ∈ k, one computes

(A · p)(z) =
d

ds

∣∣∣∣
0

p(z − sAz +O(s2)) = −
∑
j,`

aj,`z`
∂p

∂zj
.(5.6)
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That is, dι can be written in coordinates as

dι(A) = −
∑
j,`

aj,`z`
∂

∂zj
for A ∈ k ⊂ U(kc).(5.7)

We will relate dι to τ ∗.
For v ∈ V , let εv := 〈·, v〉 ∈ V ∗ ⊂ C[V ]. Thus also εv = 〈·, v〉 = 〈v, ·〉 ∈

(V )∗ ⊂ C[V ]. Note that {εv | v ∈ V } and {εv | v ∈ V } generate the algebras
C[V ] and C[V ] respectively. The algebra isomorphism C[V ]⊗C[V ] ∼= C[VR]
given by (p ⊗ q) ↔ (z 7→ p(z)q(z)) is K-equivariant where K acts on each
of C[VR], C[V ] and C[V ] by the formula (k · f)(z) := f(k−1z). Note that
k · εv = εkv and k · εv = εkv.

Define an algebra map

M : C[V ]→ PD(V )(5.8)

by polynomial multiplication, M(p)q := pq. We have

(k ·M(p))q(z) = M(p)(q ◦ k)(k−1z) = p(k−1z)q(z) = (M(k · p)q)(z).
Thus, M is K-equivariant. For v ∈ V , let ∂v ∈ PD(V ) be

(∂vp) (z) :=
d

ds

∣∣∣∣
0

p(z + sv).(5.9)

Since the ∂v’s commute in PD(V ), we obtain an algebra map

∆ : C
[
V
]
→ PD(V )(5.10)

given by ∆(εv) = ∂v on the generators. This is also K-equivariant. Indeed,

∆(k · εv)(p)(z) = ∆(εkv)p(z) =
d

ds

∣∣∣∣
0

p(z + skv)

=
d

ds

∣∣∣∣
0

(p ◦ k)(k−1z + sv)

= ∂v(p ◦ k)(k−1z)

= (k · ∂v)(p)(z) = (k ·∆(ev))(p)(z).

Let Γ : C[VR]→ PD(V ) be given by

Γ : C[VR] ∼= C[V ]⊗ C
[
V
]
−−−→
M⊗∆

PD(V ).(5.11)

Γ is a vector space isomorphism and is K-equivariant since both M and ∆
are K-equivariant. It is not, however, an algebra map because M(C[V ])
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and ∆(C[V ]) do not commute in PD(V ). Writing εj and εj for εej and εej ,
Equation 3.7 becomes

τ ∗(ψA) = i
∑
j,`

aj,`ε` ⊗ εj.(5.12)

As εj(z) = zj and ε`(z) = z` this yields

Γ (τ ∗(ψA)) = i
∑
j,`

aj,`z`
∂

∂zj
.(5.13)

The map

λ : k∗∗ → U(kc), ψA 7→ −iA(5.14)

extends to a variant of the usual symmetrization map [13]

λ : C[k∗]→ U(kc)(5.15)

characterized by λ(ψmA ) = (−i)mAm. This is a K-equivariant vector space
isomorphism but not an algebra map.

The maps introduced above fit together to form the diagram:

C[k∗] τ∗−−−→ C[VR]yλ yΓ

U(kc)
dι−−−→ PD(V )

.(5.16)

The diagram commutes in view of Equations 5.7 and 5.13. The horizon-
tal maps are algebra maps and the vertical maps are vector space isomor-
phisms but not algebra maps. All maps are K-equivariant. Restricting
to K-invariants yields the commutative diagram (5.5) in the statement of
Proposition 5.1.

As noted in the above proof, λ and Γ are not algebra maps. However, one
does have, for example, that for p, q ∈ C[VR]K ,

Γ(p)Γ(q) = Γ(pq) + ∆(p, q)

where ∆(p, q) is an operator of lower total degree than Γ(pq). We use this
fact together with Proposition 5.1 to prove the following lemma.

Lemma 5.2. C[VR]K is a finitely generated module over τ ∗(I[k∗]) if and only
if PD(V )Kc is finitely generated as a module over dι(ZU(kc)).
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Proof. Suppose that p1, p2, . . . , pr ∈ C[VR]K generate C[VR]K as a τ ∗(I[k∗])-
module and let Dj := Γ(pj). We can assume that p1 = 1, so the scalar
operators in PD(V )Kc are multiples of D1 = I. Assume inductively that
elements in PD(V )Kc with degree less that m can be written in the form
A1D1+· · ·+ArDr for some A1, . . . , Ar ∈ dι(ZU(kc)). Let D ∈ PD(V )Kc have
degree m and write Γ−1(D) = a1p1+· · ·+arpr for some a1, . . . , ar ∈ τ ∗(I[k∗]).
Thus

D = Γ(a1p1) + Γ(a2p2) + · · ·+ Γ(arpr)

= A1D1 +A2D2 + · · ·+ArDr + ∆

where Aj := Γ(aj) ∈ dι(ZU(kc)) and deg(∆) < m. By the inductive hy-
pothesis, we can write ∆ = B1D1 +B2D2 + · · ·BrDr for some B1, . . . , Br ∈
dι(ZU(kc)). Thus

D = C1D1 + C2D2 + · · ·+ CrDr

where Cj := Aj +Bj ∈ dι(ZU(kc)). This shows that D1, D2, . . . , Dr generate
PD(V )Kc as a dι(ZU(kc))-module.

Next suppose that D1, D2, . . . , Dr generate PD(V )Kc as a module over
dι(ZU(kc)) and let pj := Γ−1(Dj). We can assume that D1 is the identity
operator. The constants in C[VR]K are thus multiples of p1 = 1. Assume
inductively that if deg(Γ(q)) < m then q ∈ C[VR]K can be written as q =
a1p1 +a2p2 + · · · arpr for some a1, . . . , ar ∈ τ ∗(I[k∗]). Let p ∈ C[VR]K be such
that deg(Γ(p)) = m and write Γ(p) = A1D1 + A2D2 + · · ·+ ArDr for some
A1, . . . , Ar ∈ dι(ZU(kc)). Thus, Γ(p) = Γ(a1p1 + a2p2 + · · · arpr) + ∆ where
aj = Γ−1(Aj) ∈ τ ∗(I[k∗]) and deg(∆) < m. By the inductive hypothesis,
∆ = Γ(b1p1 + b2p2 + · · · brpr) for some b1, . . . , br ∈ τ ∗(I[k∗]). Thus, p =
c1p1 + c2p2 + · · · + crpr where cj := aj + bj ∈ τ ∗(I[k∗]). This shows that
p1, p2, . . . , pr generate C[VR]K as a τ ∗(I[k∗])-module.

The proof of Theorem 1.3 will be carried out in two stages, represented
by Propositions 5.3 and 5.4 below. These assert that the multiplicity free
condition and injectivity of the moment map on K-orbits are each equivalent
to the same algebraic condition concerning the ring extension τ ∗(I[k∗]) ⊂
C[VR]K . We write Frac(R) for the fraction field of an integral domain R.

Proposition 5.3. The action of K on V is multiplicity free if and only if
Frac(C[VR]K) is a finite extension of the field Frac(τ ∗(I[k∗])).

Proposition 5.4. τ is one-to-one on K-orbits if and only if Frac(C[VR]K)
is a finite extension of the field Frac(τ ∗(I[k∗])).
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Proof of Proposition 5.3. Suppose that the action of K on V is multiplic-
ity free. Thus PD(V )Kc is abelian by (7) in Theorem 1.1. It follows from
the Main Theorem part (a) in [18, p. 254] that PD(V )Kc is finitely gener-
ated as a module over dι(ZU(kc)) and hence C[VR]K is a finitely generated
τ ∗(I[k∗])-module by Lemma 5.2. Thus Frac(C[VR]K) is a finite extension of
Frac(τ ∗(I[k∗])).

Let Z := Z(PD(V )Kc) denote the center of PD(V )Kc and let A :=
Γ−1(Z). It follows from Diagram 5.5 that A ⊇ τ ∗(I[k∗]). Theorems 9.4
and 9.5 in [18] show that one always has:
(1) A is a subring of C[VR]K .
(2) PD(V )Kc is a free Z-module.
(3) C[VR]K is a free A-module.

Suppose that Frac(C[VR]K) is a finite extension of Frac(τ ∗(I[k∗])). Thus,
Frac(C[VR]K) is also a finite extension of Frac(A). Let N := [Frac(C[VR]K) :
Frac(A)] < ∞. It follows that an A-module base for C[VR]K can contain
no more than N elements. Indeed, one sees easily that if p1, p2, . . . , pM ∈
C[VR]K and M > N then one can find a1, a2, . . . , aM ∈ A not all zero with
a1p1 + a2p2 + · · · + aMpM = 0. Thus, C[VR]K is finitely generated as an
A-module. As in Lemma 5.2, it follows using Diagram (5.5) and induction
that PD(V )Kc is a finitely generated free Z-module.

Let D1, D2, . . . , D` be a Z-module base for PD(V )Kc . Then, a typical
element D ∈ PD(V )Kc can be written as D = A1D1 + · · ·A`D` = D1A1 +
· · ·D`A` for some A1, . . . , A` ∈ Z.

Let Jσ be theK-isotypic component in C[V ] for σ ∈ K̂. Choose a maximal
torus in K and let Hσ be the subspace of highest weight vectors in Jσ. Note
that dim(Hσ) is the multiplicity of σ in C[V ]. The proof of Proposition 7.1
in [15] shows that PD(V )Kc acts irreducibly on Hσ. Thus for p ∈ Hσ, p 6= 0,
we have Hσ = PD(V )Kcp.

Let D = D1A1 + · · · + D`A` ∈ PD(V )Kc as above. Since Aj commutes
with the action of PD(V )Kc , it acts on Hσ by some scalar, λj say. Thus,
Dp = λ1D1p + · · · + λ`D`p. We conclude that Hσ ⊂ Span {D1p, . . . , D`p}.
In particular, dim(Hσ) ≤ `. This shows that the multiplicity of any repre-
sentation σ ∈ K̂ in C[V ] is uniformly bounded by `. Lemma 2.1 now implies
that the action of K on V is multiplicity free.

Proof of Proposition 5.4. Assume that Frac(C[VR]K) is a finite extension of
Frac(τ ∗(I[k∗])) and let γ1, . . . , γ` be algebra generators for C[VR]K . Thus
each γj is algebraic over Frac(τ ∗(I[k∗])). Suppose that

a0,j + a1,jγj + a2,jγ
2
j + · · ·+ adj ,jγ

dj
j = 0(5.17)

where ai,j = τ ∗(ci,j) and ci,j ∈ I[k∗].
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Let v◦ ∈ V and v ∈ τ−1(τ(Kv◦)). Evaluating Equation 5.17 at v shows
that γj(v) is a root of the polynomial

c0,j(τ(v◦)) + c1,j(τ(v◦))X + · · ·+ cdj ,j(τ(v◦))Xdj .(5.18)

Thus γ := γ1 × γ2 × · · · × γ` : V → C` assumes at most M := d1d2 · · · d`
distinct values on τ−1(τ(Kv◦)). Since the level sets of γ are the K-orbits
in V (by Proposition 2.3), we conclude that τ−1(τ(Kv◦)) is finite union of
K-orbits. One the other hand, Theorem 4.6 in [21] asserts that τ−1(τ(Kv◦))
is always a connected subset of V . Hence τ−1(τ(Kv◦)) = Kv◦, so τ is one-
to-one on K-orbits.

Conversely, suppose that τ is one-to-one on K-orbits. Let q1, q2, . . . , qr be
R-valued algebra generators for τ ∗(I[k∗]) and let

Lv,j := {w ∈ V | q`(w) = q`(v) for ` = 1, . . . , j}(5.19)

for v ∈ V and j = 1, . . . , r. Note that Lv,r = τ−1(τ(Kv)) = Kv since τ is
one-to-one on K-orbits.

Suppose that qj+1 depends algebraically on q1, . . . , qj. That is, suppose
that ∑

c`(q1, . . . , qj)q`j+1 = 0(5.20)

for some polynomials c`(q1, . . . , qj) in q1, . . . , qj. Evaluating at w ∈ Lv,j,
shows that qj+1(w) is a root of

∑
c`(q1(v), . . . , qj(v))X`. Thus, qj+1 as-

sumes only a finite number of values on Lv,j. Hence qj+1 is constant on the
connected components of Lv,j. After perhaps rearranging the qj’s we see
that one can find some index m ≤ r for which q1, . . . , qm are algebraically
independent (over R) and qm+1, . . . , qr are constant on the connected com-
ponents of the level sets Lv,m. In particular, the connected component of v
in Lv,m coincides with the connected component of v in Lv,r, which is Kv
by hypothesis.

Consider the derivative D(q1 × · · · × qm) of q1 × · · · × qm : V → Rm. Let

m′ := max {rank(D(q1 × · · · × qm)(v)) | v ∈ V } .(5.21)

We will see below that in fact m′ = m. Let v◦ ∈ V be a generic point. That
is, rank(D(q1 × · · · × qm)(v◦)) = m′ and m′ is the codimension of the level
set Lv◦,m, which coincides with Kv◦ in a neighborhood of v◦. By reordering
q1, . . . , qm, we can assume that rank(D(q1 × · · · × qm′)(v◦)) = m′ and hence
that D(q1×· · ·×qm′) has rank m′ at all points in some open neighborhood U
of v◦. Thus, the K-orbits meeting U form a foliation of U with codimension
m′.
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Let A denote the orthogonal complement (with respect to (·, ·)) in VR of
the tangent space to Kv◦ at v◦. A is an affine subspace of VR. Choose
(real) coordinates on VR so that A =

{
(x, a◦) | x ∈ Rm

′}
and v◦ = (0, a◦).

By shrinking U , we can assume that A is a cross section to the K-orbits
through U . (That is, Kv ∩A 6= ∅ for all v ∈ U .)

Let q̃j denote the polynomial function on Rm
′
defined by q̃j(x) := qj(x, a◦).

It follows that q̃1, . . . , q̃m′ are algebraically independent over R. Indeed,
if we had some polynomial relation p(q̃1, . . . , q̃m′) = 0 then p(q1, . . . , qm′)
would vanish on A. Since the K-orbit through any point in U meets A,
p(q1, . . . , qm′) vanishes on U by K-invariance. Since p(q1, . . . , qm′) is a poly-
nomial function on VR, it follows that p(q1, . . . , qm′) is identically zero on VR.
This contradicts the algebraic independence of q1, . . . , qm′ .

Finally, consider the field inclusion R(q̃1, . . . , q̃m′) ↪→ R(x1, . . . , xm′). Since
both fields have transcendence degree m′ over R, R(x1, . . . , xm′) is an alge-
braic extension of R(q̃1, . . . , q̃m′). Let p ∈ C[VR]K be R-valued and define
p̃ ∈ R(x1, . . . , xm′) by p(x) := p(x, a◦). p̃ is algebraic over R(q̃1, . . . , q̃m′)
and reasoning as above shows that p is algebraic over R(q1, . . . , qm′). Thus
Frac(C[VR]K) is an algebraic extension of Frac(τ ∗(I[k∗])). Equivalently,
Frac(C[VR]K) is a finite extension of Frac(τ ∗(I[k∗])) (since C[VR]K is finitely
generated as an algebra over C).

Remark 5.1. Note that since q1, . . . , qm belong to C[VR]K , they are alge-
braic over R(q1, . . . , qm′). Since q1, . . . , qm are also algebraically independent,
we see that m′ = m in the proof of Proposition 5.4. Similar reasoning with
the invariants C[VR]K shows that, in general, the transcendence degree of
Frac(C[VR]K) over C is exactly the minimal codimension of K-orbits in VR.
τ is one-to-one on K-orbits precisely when this minimal codimension agrees
with the transcendence degree of Frac(τ ∗(I[k∗])) over C.

Theorems 1.2 and 1.3 follow immediately from Propositions 5.3 and 5.4.
Moreover, the arguments in this section establish the equivalence of the
following conditions:
(1) (K,HV ) is a Gelfand pair.
(2) Frac(C[VR]K) is a finite extension of Frac(τ ∗(I[k∗])).
(3) Frac(C[VR]K) is algebraic over Frac(τ ∗(I[k∗])).
(4) C[VR]K is finitely generated as a module over τ ∗(I[k∗]).
(5) PD(V )Kc is finitely generated as a module over dι(ZU(kc)).
(6) τ is finite-to-one on K-orbits.
(7) For every ξ ∈ k⊥, OGξ ∩ k⊥ is a finite union of K-orbits.

This list, together with Condition (OC) and injectivity of τ on K-orbits,
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supplements the list given in Theorem 1.1. Conditions (2) and (3) are equiv-
alent because the rings involved are finitely generated. The equivalence of
(4) and (5) is given in Lemma 5.2. (4) implies (2) by standard results in
algebra but it is not obvious that (2) implies (4) since it is not a priori clear
that C[VR]K is integral over τ ∗(I[k∗]). However, (2) implies that the action
of K on V is multiplicity free and hence (5) follows from the Main Theo-
rem part (a) in [18, p.254]. Thus we also have that C[VR]K is integral over
τ ∗(I[k∗]). In view of the connectivity result, Theorem 4.6 in [21], Condition
(6) is equivalent to τ being one-to-one on K-orbits. Conditions (6) and (7)
are equivalent as in Theorem 3.1.

Lemma 2.1 shows that three possible situations can arise when we decom-
pose C[V ] under the action of K:
(1) C[V ] is K-multiplicity free.
(2) Some σ ∈ K̂ occurs in C[V ] with infinite multiplicity.
(3) Every σ ∈ K̂ occurs in C[V ] with finite multiplicity but these multi-

plicities are unbounded.
Theorem 1.3 shows how orbit geometry distinguishes case (1) from the re-
maining cases. On the other hand, the moment map is necessarily one-to-one
on K-orbits whenever it is finite-to-one. Thus, when the action of K on V
fails to be multiplicity free, τ−1(OKα ) must contain infinitely many K-orbits
for some α ∈ k∗. Example 4.1 fits into situation (3) and illustrates this
phenomenon. It is interesting that the Orbit Method can nonetheless dis-
tinguish between cases (2) and (3). We thank Friedrich Knop for showing
us the proof of the following result.

Theorem 5.5. The following conditions are equivalent:
(1) Some σ ∈ K̂ occurs in C[V ] with infinite multiplicity.
(2) Every σ ∈ K̂ occurs in C[V ] with infinite multiplicity.
(3) There are non-constant holomorphic K-invariant polynomials on V .
(4) τ−1({0}) 6= {0}.

Proof. (3) implies (2), since if W ⊂ C[V ] is a K-irreducible subspace and p is
a non-constant holomorphicK-invariant polynomial then the representations
of K on the subspaces {p`W | ` ∈ Z+} are equivalent to the representation
of K on W . To see that (1) implies (3), suppose that C[V ]K = C and let
Jσ ⊂ C[V ] be the isotypic component for σ ∈ K̂. The “Zusatz” on page 95
of [19] asserts that Jσ is finitely generated as a module over C[V ]K . Thus,
dim(Jσ) <∞ and σ occurs in C[V ] with finite multiplicity. Finally, (3) and
(4) are equivalent since τ−1({0})/K can be identified with the categorical
quotient V//Kc = Spec(C[V ]K). See, for example, Theorem 8.3 in [27]
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concerning this identification. It follows that C[V ]K = C if and only if {0}
is the only K-orbit in V which maps to {0} ⊂ k∗ under τ .

6. Capelli actions.

This section concerns a special class of multiplicity free actions, introduced
by Howe and Umeda in [15].

Definition 6.1. We say that the action of K on V is a Capelli action if
the map τ∗ : I[k∗]→ C[VR]K is surjective.

In view of Proposition 5.3, a Capelli action is multiplicity free since in
this case Frac(τ ∗(I[k∗])) = Frac(C[VR]K). Alternatively, Diagram (5.5) shows
that for Capelli actions, dι(ZU(kc)) = PD(V )Kc . Hence PD(V )Kc is abelian
and Theorem 1.1 shows that the action of K on V is multiplicity free. In
[15], Howe and Umeda refer to the question “Is the mapping given by (5.4)
surjective?” as the abstract Capelli problem for the complexified action of
Kc on V . We see that a Capelli action is one for which the abstract Capelli
problem has an affirmative answer.

The subgroups K ⊂ U(V ) which act irreducibly on V and yield Gelfand
pairs have been classified up to conjugacy in U(V ). The complexification Kc

of such a group is a connected reductive algebraic group whose representation
on C[V ] is multiplicity free. Such representations were classified by Kac in
[16] and his list appears in [2, 3]. In [15], Howe and Umeda examined each
case on the list and determined whether or not the abstract Capelli problem
has an affirmative answer. The compact forms of these actions are:

U(n) acting on Cn

U(n) acting on S2(Cn) for n ≥ 2
U(n) acting on Λ2(Cn) for n ≥ 2
T× SO(n,R) acting on Cn for n ≥ 3
U(n)× U(m) acting on Cn ⊗ Cm
T× Sp(n) acting on C2n

U(2)× Sp(n) acting on C2 ⊗ C2n

U(n)× Sp(4) acting on Cn ⊗ C8 for n ≥ 4
T× Spin(7) acting on C8

T× Spin(10) acting on C16

T×G2 acting on C7.

The algebraic conditions in Section 5 place constraints on the extent to
which a multiplicity free action can fail to be Capelli. Thus, although τ ∗

can fail to be surjective for a multiplicity free action, we must always have
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that Frac(C[VR]K) is a finite extension of Frac(τ ∗(I[k∗])), C[VR]K is finitely
generated as a module over τ ∗(I[k∗]) and PD(V )Kc is finitely generated as a
module over dι(ZU(kc)).

In [15], the problem of describing the elements of ZU(kc) which map
to certain canonical generators for PD(V )Kc is referred to as the concrete
Capelli problem for a Capelli action. As explained in [3], whenever (K,HV )
is a Gelfand pair the algebra C[VR]K will be a polynomial algebra

C[VR]K = C[γ1, . . . , γd](6.1)

where the fundamental invariants γj correspond to the K-irreducible com-
ponents of C[V ] with primitive highest weight vectors. Thus, the con-
crete Capelli problem is equivalent to finding polynomials pj ∈ I[k∗] with
τ ∗(pj) = γj.

7. Examples.

In this section, we will discuss three important Capelli actions. These are
K = U(n) × U(m) acting on V = Cn ⊗ Cm, and K = U(n) acting on
V = S2(Cn) and V = Λ2(Cn). We will see that Condition (SC) holds for
Cn ⊗ Cm and Λ2(Cn) but not for S2(Cn).

As in Example 3.1, we will always identify u(n)∗ with u(n) by using the
Killing form 〈A|B〉 = tr(AB) on u(n). The functional corresponding to an
element Aθ in the Lie algebra tn for the standard maximal torus (see Equa-
tion 3.20) is Aθ′ 7→ 〈Aθ|Aθ′〉 = −θ · θ′. The Ad(U(n))-invariant polynomials
on u(n) are (see [8])

I[u(n)] = C[c1, c2, . . . , cn](7.1)

where the Chern polynomials cj are defined by

det(In +
λ

i
A) = 1 +

n∑
j=0

cj(A)λj.(7.2)

Note that cj is real valued and homogeneous of degree j.

Example 7.1. Suppose that n ≥ m and consider the (Capelli) action of
K = U(n)×U(m) on V = Cn ⊗Cm. We identify V with the space Mn,m of
n by m complex matrices with Hermitian inner product

〈T1, T2〉 = tr(T1T
∗
2 )(7.3)

for T1, T2 ∈Mn,m. The action of K on V becomes

(k1, k2) · T = k1Tk
t
2 for k1 ∈ U(n), k2 ∈ U(m) and T ∈Mn,m.(7.4)



GELFAND PAIRS AND GEOMETRY 29

Using Equations 7.3 and 7.4 one derives the formula

τ(T ) = i
(
TT ∗, T tT t

∗)(7.5)

for the moment map τ : V → u(n)⊕ u(m).
The decomposition of C[V ] under the action of K is classical and given

by

C[V ] =
∑
D

σD ⊗ σD(7.6)

where σD is the representation given by a Young’s diagram D and the sum
is over all Young’s diagrams with at most m rows. (See for example [14].)
The irreducible σD ⊗ σD in C[V ] has highest weight vector wj11 w

j2
2 . . . wjmm

where j` is the number of columns in D having length ` and

w`(T ) :=

∣∣∣∣∣∣∣
t11 · · · t1`
...

...
t`1 · · · t``

∣∣∣∣∣∣∣ for ` = 1, . . . ,m.(7.7)

The primitive highest weight vectors are w1, . . . , wm and the associated fun-
damental invariants are

γ`(T ) =
∑

|I|=`=|J|
|det(TIJ)|2(7.8)

where the sum is over all ` by ` subdeterminants of T . We have

C[VR]K = C[γ1, . . . , γm].(7.9)

The Ad(K)-invariant polynomials on k = u(n)⊕ u(m) are

I[k] = I[u(n)]⊗ I[u(m)] = C[c1, . . . , cn, c
′
1, . . . , c

′
m](7.10)

where the cj’s and c′j’s are the Chern polynomials on the u(n) and u(m)
factors respectively. The classical Capelli identities correspond (via Diagram
5.5) to the following result.

Lemma 7.1. τ ∗ : I[u(n)⊕ u(m)]→ C[VR]K is given by

τ ∗(c`) = γ` = τ ∗(c′`) for ` = 1, . . . ,m

τ ∗(c`) = 0 for ` = m+ 1, . . . , n.
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It is not difficult to verify these identities by applying τ ∗(c`), τ ∗(c′`) and
γ` to elements T ∈ V of the form

T =

[
D

0

]
where D =


d1

d2

. . .
dm

 is diagonal.(7.11)

In fact, it suffices to check the identities for elements T of the above form
since the polynomials involved are K-invariant and every K orbit in V con-
tains such a point. We outline a proof of this fact.

Let T ∈ V be given and assume for simplicity that T has rank m.3 The
moment map for the left action of U(n) on V is τu(n)(T ) = iTT ∗. The
spectral theorem shows that for some k1 ∈ U(n) one has

τu(n)(k1T ) = k1τu(n)(T )k∗1 = i


a1

a2

. . .
an

(7.12)

diagonal. Since T has rank m we can choose k1 so that a1, . . . am are positive
real numbers and am+1 = · · · = an = 0. Thus, k1T has the form

k1T =

[
A

0

]
(7.13)

where A is an m×m matrix with pair wise orthogonal rows and whose j’th
row has norm dj = √aj. Multiplying each row of A by the reciprocal of its
norm yields a matrix k2 ∈ U(m). One checks easily that

k1Tk
−1
2 =


d1

. . .
dm

©

 .(7.14)

Applying τ given by Equation 7.5 to a point T ∈ V of the form 7.11 yields

τ

([
D

0

])
= i



|d1|2

. . . ©
|dm|2

© ©

 ,
 |d1|2

. . .
|dm|2


 .(7.15)

3One can remove this hypothesis without too much difficulty but in any case this is the
situation generically.
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Since every K-orbit in V contains such a point T ,

τ(V ) ∩ t =

i
([

A 0
0 0

]
, A

) ∣∣∣∣∣∣∣ A =

a1

. . .
am

 , a1, . . . , am ≥ 0


(7.16)

where t = tn ⊕ tm. The Weyl group acts by permutations on a1, . . . , am.
Thus, each Weyl orbit through an integral point in τ(V )∩ t contains exactly
one point of the form

i

([
A 0
0 0

]
, A

)
(7.17)

with a1 ≥ a2 ≥ · · · ≥ am ≥ 0 all integers. The associated representation of
K is σD⊗σD where D is the Young’s diagram with rows of length a1, . . . , am.
The complex conjugate σD of σD appears because the pairing 〈·|·〉 used to
identify t∗ with t introduces a factor of i2 = −1. This shows that Condition
(SC) holds for this example.

Example 7.2. The space S2(Cn) of symmetric 2-tensors on Cn can be realized
as the n by n symmetric matrices, V := {T ∈Mn,n | T t = T} with Hermitian
inner product

〈T1, T2〉 = tr(T1T
∗
2 ) for T1, T2 ∈ V .(7.18)

K = U(n) acts unitarily on (V, 〈·, ·〉) via

k · T := kTkt.(7.19)

Using Equations 7.19 and 7.18, one computes the moment map for this action
as

τ : V → u(n), τ(T ) = 2iTT ∗.(7.20)

Since the action of U(n) on V is multiplicity free, we know that Condition
(OC) holds. The main issue here is to demonstrate that Condition (SC) is
violated for this example. The decomposition of C[V ] under the action of
U(n) can be written as

C[V ] =
∑

D with at most n rows
all of even length

σD.(7.21)

A highest weight vector for σD in C[V ] is hD := wj11 w
j2
2 . . . wjnn where w`

is given by Equation 7.7 and j` is one half the number of columns in D of
length `. (See [14].)
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It is of course standard that one can diagonalize a symmetric bilinear
form. Here we require the stronger fact that this can be done unitarily.

Proposition 7.2. For any n × n symmetric matrix T with entries in C,
there is a unitary matrix k with kTkt diagonal. Equivalently, if B is a
symmetric bilinear form on a complex Hermitian vector space then there is
an orthonormal basis with respect to which B is diagonal.

We believe that this result must be known but were unable to locate a
reference. In any case, the proof involves a straightforward modification of
the standard proof for diagonalization of symmetric bilinear forms and will
be omitted.

Proposition 7.2 shows that each U(n)-orbit in V contains a point of the
form

T =

d1

. . .
dn

(7.22)

and one has

τ(T ) = 2Aθ := 2i

θ1

. . .
θn

(7.23)

where θj := |dj|2. Conjugating by permutation matrices, we see that each
Ad∗(U(n))-orbit in τ(V ) meets t∗ ∼= t in the Weyl orbit through a point of
the form Aθ with θ1 ≥ θ2 · · · ≥ θn. Note that Ker(T → U(V )) = {±I} and
hence

(7.24) Ker
(
t −−→

exp
T → U(V )

)
= {Aθ | 2θ1, . . . , 2θn ∈ Z} ∪

{
Aθ | 2θ1, . . . , 2θn ∈ Z+

1
2

}
.

The integral points in t∗ ∼= t have the form Aθ where −θ · θ′ ∈ Z for all θ′

with θ′1, . . . , θ
′
n ∈ Z and all θ′ with θ′1, . . . , θ

′
n ∈ Z+ 1

2
. Equivalently, Aθ is an

integral point if and only if θ1, . . . , θn ∈ Z and θ1 + · · · + θn is even. Equa-
tion 7.23 shows that the integral orbits in τ(T ) are precisely those which
pass through points Aθ with θ1 ≥ θ2 ≥ · · · ≥ θn ≥ 0 all integers satisfying
θ1 + · · · + θn ∈ 2Z. The corresponding representation of U(n) is the conju-
gate of the representation given by a Young’s diagram with rows of length
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(θ1, θ2, . . . , θn). That is, the representations that appear in τ(V ) are pa-
rameterized by the Young’s diagrams with even size (total number of cells).
Equation 7.21 shows that of these, only the ones with each of θ1, θ2, . . . , θn
even occur in C[V ]. Thus there are infinitely many integral orbits in τ(V )
that correspond to representations of U(n) that don’t appear in C[V ]. In par-
ticular, this example shows that we can have ĜK  

{
ρξ | ξ ∈ k⊥ is integral

}
even when (K,HV ) is a Gelfand pair. (See Proposition 4.1 and Example
4.1.)

The fundamental invariants in C[VR]U(n) are γ1, . . . , γn given by Equation
7.8 where the notation is as in Example 7.1. By computing τ ∗(c`)(T ) and
γ`(T ) for a diagonal matrix T ∈ V , one shows that

τ ∗ : I[u(n)]→ C[V ]U(n) is given by τ ∗(c`) = 2`γ`.(7.25)

It is more difficult to describe τ ∗ in the skew-symmetric case which follows.

Example 7.3. The space Λ2(Cn) of skew-symmetric 2-tensors on Cn can be
realized as the n by n skew-symmetric matrices, V := {T ∈Mn,n | T t = −T}
with Hermitian inner product

〈T1, T2〉 = tr(T1T
∗
2 ) for T1, T2 ∈ V .(7.26)

K = U(n) acts unitarily on (V, 〈·, ·〉) via

k · T := kTkt.(7.27)

As in Example 7.2 the moment map for this action is

τ : V → u(n), τ(T ) = 2iTT ∗.(7.28)

Condition (OC) holds since the action of U(n) on V is multiplicity free.
We will show that Condition (SC) holds for this example. In view of the
similarity between Examples 7.2 and 7.3, this fact is somewhat curious. The
decomposition of C[V ] under the action of U(n) is given by

C[V ] =
∑

D with at most n rows and
all columns of even length

σD.(7.29)

A highest weight vector for σD in C[V ] is hD := νj11 ν
j2
2 . . . νjmm where m :=

bn
2
c, ν`(T ) is the Pfaffian of the skew-symmetric matrix given by the first `

rows and columns of T ∈ V and j` is the number of columns of length ` in
D. (See [14].)

In order to find a cross section for the U(n)-orbits in V , we require a skew-
symmetric analog of Proposition 7.2. Again, the result below is standard
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if one replaces the word “unitary” by “invertible” and removes the word
“orthonormal”. The proof will be omitted.

Proposition 7.3 For any n× n skew-symmetric matrix T with entries in
C, there is a unitary matrix k with

kTkt =


d1J

d2J
. . .

dmJ

 or


d1J

d2J
. . .

dmJ
0

(7.30)

for n = 2m even or n = 2m + 1 odd respectively where J :=

[
0 1
−1 0

]
.

Equivalently, if B is a skew-symmetric bilinear form on a Hermitian vector
space, then there is an orthonormal basis

B =

{
{u1, v1, . . . , um, vm} for n = 2m
{u1, v1, . . . , um, vm, w} for n = 2m+ 1

(7.31)

with B(uj, vj) = dj = −B(vj, uj) and B(α, β) = 0 for other pairs of basis
vectors from B.

For our purposes here it makes no difference whether n is even or odd.
Suppose n = 2m to simplify notation. Proposition 7.3 shows that each
U(n)-orbit in V contains a skew-symmetric matrix T of the form

T =


d1J

d2J
. . .

dmJ

 .(7.32)

One has

τ(T ) = 2i



|d1|2
|d1|2

|d2|2
|d2|2

. . .
|dm|2

|dm|2


(7.33)



GELFAND PAIRS AND GEOMETRY 35

and one can suppose that |d1|2 ≥ |d2|2 ≥ · · · ≥ |dm|2 ≥ 0. In this case we
have

Ker
(
t −−→

exp
T → U(V )

)
=

{
{Aθ | θ1, . . . , θn ∈ Z} for n > 2
{Aθ | θ1 + θ2 ∈ Z} for n = 2.

(7.34)

Thus the integral points Aθ in t∗ ∼= t have θ1, . . . , θn all integers. Also we
must have θ1 = θ2 when n = 2. We see that each integral orbit in the image
of the moment map passes through a point Aθ ∈ t with θ1 = θ2 ≥ θ3 = θ4 ≥
· · · ≥ θn−1 = θn ≥ 0 all integers. The corresponding representation of U(n)
is conjugate to σD where D is a Young’s diagram where pairs of successive
rows have the same length. Equivalently, all columns of D have even length.
These are the representations appearing in Equation 7.29 so Condition (SC)
holds here.
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