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ON THE KAUFFMAN BRACKET SKEIN MODULE OF
SURGERY ON A TREFOIL

Doug Bullock

We estimate the rank of the Kauffman bracket skein mod-
ule of each manifold obtained from integral surgery on a tre-
foil knot. It is well known that all but two of these mani-
folds contain no incompressible surfaces. We find that the
two exceptions are exactly those whose skein module is not
finitely generated, thereby extending a pattern that holds for
all known compact orientable examples.

1. Introduction and basic definitions.

The Kauffman bracket skein module is an invariant of 3-manifolds, intro-
duced by Przytycki [5], which has only been computed for a small collection
of compact orientable examples: I-bundles over surfaces [2] [5], lens spaces
[3] [4], and the exteriors of (2, q)-torus knots [1]. Although it has not been
remarked upon in the previous literature, in all examples the module is
finitely generated if and only if the manifold contains no essential surface.
(We include reducing spheres and boundary reducing disks as essential sur-
faces.) The main result of this paper extends that pattern to include all
integral surgeries on a right hand trefoil knot.

The result is obtained in several propositions spread over the last two sec-
tions of the paper. In this section we will introduce the basic definitions and
some background material. In the next we will use Heegaard splittings to
present the modules of the surgered manifolds. In Section 3 we will reduce
these to finite presentations for all the manifolds without essential surfaces.
Finally, in Section 4 we map the module onto a simpler specialization which
turns out to be an algebra. For the two manifolds containing essential sur-
faces, it is easily seen to be infinite dimensional.

Let M be a 3-manifold. Its Kauffman bracket skein module is an algebraic
invariant, K(M), built from the set of all framed links in M . By a framed
link we mean an embedded collection of annuli considered up to isotopy in
M . The set of framed links is denoted LM and it includes the empty link ∅.

Let R denote the ring of Laurent polynomials Z[A,A−1] and R(LM) the
free R-module with basis LM . Let S(M) be the smallest submodule of
R(LM) containing all possible expressions of the form −A −A−1 ,
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Figure 1. Knots x, y and z in H.

or © + A2 + A−2. The first relation, called a skein relation, involves three
links embedded identically except as the diagrams indicate, with framing
annuli assumed to lie flat in the page. The second relation, called a framing
relation, tells how to remove a trivial component from a link. We define
K(M) to be the quotient R(LM)/S(M).

It will be necessary to understand the module for a genus two handlebody
H. Any link L in H can be represented by a diagram in a twice punctured
plane. The diagram determines a framing of the link, namely a set of annuli
lying flat in the plane and parallel to the diagram. We will draw diagrams
in the plane of the page using two dots to represent the punctures. For
example, Figure 1 shows three framed knots in H called x, y and z.

Links in H can be formally multiplied by stacking their diagrams. The
multiplication is not commutative; L1L2 means L1 lies beneath L2. Using
this multiplication, we describe the set BH of links in H whose diagrams
have no crossings and no trivial components as BH = {xiyjzk | (i, j, k) ∈
N ×N ×N}. Here N denotes non-negative integers, and x0 = y0 = z0 = ∅,
but it will be more convenient to use 1 for the empty link.

Given any link L in H we may eliminate a crossing from its diagram via
the relation = A + A−1 . This process can be repeated until
there are only diagrams with no crossings. Then the trivial components of
these are absorbed by the framing relations, expressing L as an R-linear
combination of links in BH . This process is called resolving L and it shows
that BH generates K(H). Przytycki [5] has shown that BH is a free basis
for K(H). The formal multiplication in H makes K(H) into a polynomial
algebra, R[x, y, z].

2. The setup.

The trefoil exterior, X, is obtained from H by attaching a 2-handle along the
curve α in Figure 2. Adding a 2-handle to H affects the module by adding
relations to the free presentation of K(H). Every link in X can be isotoped
into H and all skein and framing relations in X also hold in H. Hence, the
only relations induced by the 2-handle are caused by links that are isotopic
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Figure 2. Attaching curve α in ∂H.

Figure 3. β3.

in X but not in H. The difference comes from sliding a link across the 2-
handle. Therefore, writing sl(L) for any slide of L, the presentation of K(X)
has generators BH and relations {L − sl(L) | L ∈ LH} where L − sl(L) is
expanded in terms of BH . In [1] this is reduced to a free presentation with
basis BX = {xiyj | j ≤ 1}.

We will not include the proof here but there are a few internal details
which will be relevant later. There are several relations among the links
in BH that hold in K(X), two of which are particularly useful. Since x
and z are both meridians of the knot and their framings agree, we have
xmL = Lxm = zmL = Lzm for any L. Also, for any m ∈ N there is an
identity

A2xmy2 + xm+2y − xmy +A−2xm+2 − (A2 +A−2)xm = 0.(1)

This follows by resolving the relation (m, 2, 0)− f(m, 2, 0) = 0 found in [1].
(The notation there is (i, j, k) for xiyjzk.)

Although the algebra structure of K(H) does not survive in K(X) we will
continue to use the multiplicative notation. It simply means that the links
are stacked up in distinct horizontal slices of H. A nice consequence of this
notation is that distributivity makes sense.

One obtains X(r) from H by attaching a handle along α and another
along a disjoint curve βr. Figure 3 shows β3. Any other βr is obtained from
β3 by introducing r − 3 signed twists around the left hand hole. Figure 4
illustrates he behavior of several βr’s near the left hand hole.

We can present the module K(X(r)) using BX as generators and all L−
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Figure 4. Behavior of βr.

n

Figure 5. Jn.

sl(L) as relations. This time sl(L) is any slide of a link in X over the handle
attached to βr, and the relation is expanded in terms of BX . We do not
intend to give a complete description of this presentation. Rather, we will
expand a particular set of slides that suffice to eliminate all but a finite
number of generators.

Before moving into the details of that process let us make one last obser-
vation about the relations. The curve βr can be thought of as a framed link
in X. The framing is given by an annulus parallel to βr in ∂X. Any slide of
L over the 2-handle corresponds to a band sum of L and βr as framed links.
To do calculations this way we need a diagram of βr whose induced framing
agrees with the one just defined. Figures 3 and 4 describe a picture of βr
which, projected into the page, has the correct framing.

3. Finiteness results.

First we define some links that will occur in the relations. Figure 5 depicts a
family of links {Jn | n ∈ N}. The integer n next to an arc signifies n copies
of that component, all parallel in the page. Two other families, {Lr} and
{Mr}, are defined by example. In Figure 6 the pattern illustrated in L2, L1

and L0 continues for r ≤ 2, with Lr winding 2− r times around the dot. For
r ≥ 3 the pattern for L3, L4 and L5 continues. Figure 7 defines Mr for all r
except 2, 3 and 4. The diagrams are centered around the left hand hole of
H and the pattern is obvious. When r ≤ 1, Mr is a (3 − r,−1)-torus knot
with an extra −1 framing added. When r ≥ 5, Mr is a (r − 3, 1)-torus knot
with an extra +1 framing.

Next we develop a set of relations by sliding xnLr and xnMr over the
surgery curve βr. In what follows the xn factor will always appear around
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Figure 6. Lr.

M0 M1 M5 M6

Figure 7. Mr.

the right hand dot in the diagrams.

Lemma 1. For all r it is possible to slide xnLr over βr to get Jn.

Proof. Figure 8 describes a diagram of a band sum of βr with xnLr. The
shaded rectangle is the band, which determines a slide, and the shaded disk
is the region where the links depend on r. To fill in the shaded disk, refer
to Figure 4 for βr and Figure 6 for Lr. Within the shaded disk the twists
of Lr are the same as those of βr, so there is an isotopy that undoes all the
winding. The result is always Figure 8 with the disk filled in as if r = 3.
From there it is easy to see an isotopy to Jn.

Lemma 2. For r ≤ 1 or r ≥ 5 there is a slide of xnMr over βr yielding
β3 ∪ xn.

Proof. This is just a matter of choosing a slide so that the winding of Mr

undoes the winding of βr. The correct choices for r = 1 and r = 5 are shown
in Figure 9. The others are similar.

Now we have to expand these links in terms of BX . We will do this by
resolving all of them as links in H. If the resolution does not end up with
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n

Figure 8. Band sum of xnLr with βr.

r = 1 r = 5

Figure 9. Slides of M1 and M2.

any powers of y larger than one then we have the right answer in K(X). If
y2 occurs we will use Equation (1) to eliminate it. It will turn out that we
do not need the exact resolutions, only a few higher degree terms. To speed
calculations we let δ(m) denote any linear combination of terms with degree
less than or equal to m.

Lemma 3. If n ≥ 1 then Jn = A−2nxn+1+(A−2n+2−A2n+2)xn−1y+δ(n−1).

Proof. The relation = A−2 + (A − A−3) is easily derived from
the standard one. Using it, we can unlink one copy of x from Jn. The result
is a recursive formula, Jn = A−2xJn−1 + (1 − A4)Kn−1, where Kn−1 is the
link in Figure 10. The resolution of Kn−1 contains a term A2n−2xn−1y given
by smoothing every crossing as  . Let D be a diagram resulting
from any smoothing  in Kn−1, and let l be a horizontal line
through the dots in Figure 10. There is an isotopy of D so that it meets l in
no more than 2n− 2 points, insuring that D = δ(n− 1). Now the recursion
formula becomes Jn = A−2xJn−1 + (A2n−2 − A2n+2)xn−1y + δ(n − 1). The
result follows easily by induction, noting that J0 = x.

Lemma 4. For r ≥ 3 we have Lr = −Arxr−3y + δ(r − 3).

Proof. The framing relation implies that the kink in Lr can be replaced with
the coefficient −A3. Smoothing all the remaining crossings via  
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n− 1

Figure 10. Kn−1.

gives −Arxr−3y. By an intersection argument like the one above, the other
terms in the resolution contribute δ(r − 3).

Lemma 5. For r ≤ 2 we have Lr = Arx1−ry +Ar−2x3−r + δ(1− r).

Proof. First resolve the rightmost crossing in the diagram of Lr to get AL′+
A−1xL′′. Here L′′ is a knot that winds 2−r times about the left hand dot. A
simple intersection argument shows that L′′ resolves into Ar−1x2−r + δ(−r).
For L′ we use an argument similar to the proof of Lemma 4 to show L′ =
Ar−1x1−ry + δ(1 − r). Combining the resolutions of L′ and L′′ proves the
lemma.

Lemma 6. For r ≤ 1 we have Mr = −Ar−5x3−r + δ(1− r).

Proof. This an intersection argument identical to the one used to resolve L′′

above, except that there is a kink in the diagram contributing−A−3.

Lemma 7. For r ≥ 5 we have Mr = −Ar−1xr−3 + δ(r − 5).

Proof. This is the last proof with all the crossings reversed.

Lemma 8. In K(X) the link β3 ∪ xn resolves as

A−2n−3xn+3 + (A2n+3 +A−2n−1)xn+1y + δ(n+ 1).
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Proof. We begin with the partial resolution

β3 ∪Xn = n

= A−1 n +A n

= n +A−2 n

+ (A−A−3)

(
n

)
+A3yJn.

Write this as D1 +A−2D2 + (A−A−3)D3 +A3yJn. Since resolving D1 and
D2 would be overly cumbersome, we continue by sliding them over the curve
α (Figure 2). The slide of D1 is shown in Figure 11. We leave it to the
reader to check that the result is the link in Figure 12, after which the usual
intersection argument gives D1 = δ(n+1). A similar slide of D2 gives Figure
13, a link which resolves into A−2n−1xn+3 + A−2n+1xn+1y + δ(n + 1). Since
D3 is clearly just δ(n+ 1), we now have only yJn to resolve.

If n = 0 then yJn = xy, and combining with the above resolutions we
obtain β3 = A−3x3 + (A3 +A−1)xy + δ(1). If n ≥ 1 then Lemma 3 provides

A3yJn = A−2n+3xn+1y + (A−2n+5 −A2n+5)xn−1y2 + yδ(n− 1).(2)

Unfortunately, xn−1y2 is not in BX . Also, the expression yδ(n − 1) may
contain terms of the form xmy2 in which m ≤ n − 2. For these we invoke
Equation (1) in a slightly revised form:

xmy2 = −A−2xm+2y + δ(m+ 2).(3)

If m ≤ n−2 then Equation (3) becomes xmy2 = δ(n+1). Hence yδ(n−1) =
δ(n+ 1). For the xn−1y2 term we use Equation (3) to rewrite Equation (2)
as

A3yJn = A2n+3xn+1y + δ(n+ 1).
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n

Figure 11. Band sum of D1 with α.

n

Figure 12. Slide of D1 over α.

n

Figure 13. Slide of D2 over α.
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n

Figure 14. β4 ∪ xn.

This, together with the resolutions of D1, D2 and D3, gives the desired
result.

We will also need resolutions of the links β4∪xn and β2∪xn. The diagram
we have been using for β4 is the diagram in Figure 3 with an extra positive
twist around the left hand hole of H. However, both holes of H are meridians
of the trefoil, so there is an isotopy of X restricted to a neighborhood of ∂X
which moves the positive twist to the other hole. The result is shown in
Figure 14.

Lemma 9. In K(X) we have β4 ∪ xn = A2n+4xn+2y + δ(n+ 2).

Proof. The proof is by induction on n. First resolve Figure 14 with n = 0 to
get β4 = (A2 −A6)y2 + x2y + δ(2). Since y2 = −A−2x2y + δ(2) we have the
n = 0 case. For n ≥ 1, we use = A2 + (A−1 − A3) to unlink a
copy of x in Figure 14. The result is

β4 ∪ xn = A2x(β4 ∪ xn−1) + (A−1 −A3)(β3 ∪ xn−1).

Induction and Lemma 8 finish the proof.

Lemma 10. In K(X) we have β2 ∪ xn = A−2n−4xn+4 + δ(n+ 3).

Proof. We know that Figure 14 is β4 ∪ xn. From it we can obtain diagrams
of β3 ∪ xn and β2 ∪ xn by introducing (respectively) one and two negative
twists around the left hand dot. Near that dot the new diagram of β2 ∪ xn
will look like β1 in Figure 4. Resolving the innermost crossing in that figure
yields

β2 ∪ xn = A−1x(β3 ∪ xn)−A−2(β4 ∪ xn).

The result follows from Lemmas 8 and 9.

We are now ready to prove the finiteness theorems. All of them are ob-
tained with essentially the same induction argument, which we formalize in
the following lemma.
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Lemma 11. Let q ∈ R and N ∈ N. If, for all m ≥ N , there are relations
xm = δ(m − 1) and xmy = qxm+1 + δ(m) in K(X(r)), then the module is
finitely generated.

Proof. Clearly K(X(r)) is generated by all expressions of the form δ(n). By
inducting on n we can show that every δ(n) is equivalent to some δ(N).
If n ≤ N this is obvious. Choose n > N and assume it is true for all
δ(n − 1). Using the given relations we have xn = δ(n − 1) = δ(N) and
xn−1y = qxn + δ(n − 1) = δ(N). Hence every δ(n) = δ(N). Finally, every
δ(N) can be achieved using a finite set of generators.

Proposition 1. If r ≥ 7 then K(X(r)) is finitely generated.

Proof. For all n the relations xnMr = β3∪xn and xnLr = Jn hold inK(X(r)).
Following Lemmas 3, 4, 7 and 8 these resolve into −Ar−1xn+r−3 + δ(n+ r−
5) = A−2n−3xn+3 + δ(n + 2) and −Arxn+r−3y + δ(n + r − 3) = δ(n + 1).
Since r ≥ 7 each relation contains a distinct highest degree term with a unit
coefficient. Isolating the highest degree terms creates relations xn+r−3 =
δ(n + r − 4) and xn+r−3y = δ(n + r − 3). These satisfy the hypotheses of
Lemma 11 with q = 0 and N = r − 3.

Proposition 2. K(X(5)) is finitely generated.

Proof. For r = 5 the relations from the preceding proof specialize to−A4xn+2+
δ(n) = A−2n−3xn+3 +δ(n+2) and −A5xn+2y+δ(n+2) = δ(n+1). Isolating
the highest degree terms produces xn+3 = δ(n + 2) and xn+2y = δ(n + 2),
after which Lemma 11 applies with N = 3.

Proposition 3. K(X(4)) is finitely generated.

Proof. This time we use relations coming from a slide of an unknot times
xn and from the slide of xn+1 shown in Figure 15. These are β4 ∪ xn =
(−A2−A−2)xn and −A−3β3∪xn = xn+1. Lemmas 8 and 9 resolve these into
A2n+4xn+2y+ δ(n+ 2) = δ(n) and −A−2n−6xn+3 + δ(n+ 2) = xn+1. Solving
for highest degree terms gives the familiar relations xn+2y = δ(n + 2) and
xn+3 = δ(n+ 2).

Proposition 4. K(X(3)) is finitely generated.

Proof. Using the unknot slide and the usual slide of L3 we have β3 ∪ xn =
(−A2 − A−2)xn and xnL3 = Jn. We can rewrite these as xn+3 = δ(n + 2)
and xny = −A−2n−3xn+1 + δ(n). We now apply Lemma 11 with N = 3 and
q = −A−2n−3.
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n

Figure 15. Band sum of xn+1 with β4.

Proposition 5. K(X(2)) is finitely generated.

Proof. We construct relations from an unknot slide and by sliding M1 over β2.
We saw in Lemma 2 thatM1 slides over β1 to form β3. We can apply this trick
to the new diagram of β2 introduced in the proof of Lemma 10. Doing this we
find that M1 slides over β2 yielding β4. Therefore our relations are xnM1 =
β4 ∪ xn and β2 ∪ xn = (−A2 −A−2)xn. We can resolve these using Lemmas
6, 9 and 10, giving relations −A−4xn+2 + δ(n) = A2n+4xn+2y+ δ(n+ 2) and
A−2n−4xn+4 + δ(n+3) = δ(n). These are equivalent to xn+2y = δ(n+2) and
xn+4 = δ(n+ 3).

Proposition 6. If r ≤ −2 then K(X(r)) is finitely generated.

Proof. Here we resolve xnMr = β3 ∪ xn and xnLr = Jn using Lemmas
3, 5, 6 and 8. The resulting relations are −Ar−5xn+3−r + δ(n + 1 − r) =
A−2n−3xn+3 + δ(n+ 2) and Arxn+1−ry +Ar−2xn+3−r + δ(n+ 1− r) = δ(n+
1). Since r ≤ −2 these can be rewritten as xn+3−r = δ(n + 1 − r) and
xn+1−ry = −A−2xn+3−r + δ(n + 1 − r). For each n substitute the first
relation into the second to obtain new relations xn+3−r = δ(n + 1 − r) and
xn+1−ry = δ(n+ 1− r).
Proposition 7. K(X(−1)) is finitely generated.

Proof. In this case we use the above relations at r = −1. They are xn+4 =
−A−2n+3xn+3 +δ(n+2) and xn+2y = −A−2xn+4 +δ(n+2). Substituting the
first into the second gives xn+4 = δ(n+3) and xn+2y = A−2n+1xn+3+δ(n+2),
satisfying the hypotheses of Lemma 11 with N = 4 and q = A−2n+1.

Proposition 8. K(X(1)) is finitely generated.

Proof. We use the relations of Proposition 6 specialized at r = 1 and ex-
panded in more detail. They are −A−4xn+2 +δ(n) = A−2n−3xn+3 +(A2n+3 +
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A−2n−1)xn+1y + δ(n + 1) and Axny + A−1xn+2 + δ(n) = A−2nxn+1 + δ(n).
First we rewrite these as xn+3 = −A2n−1xn+2− (A4n+6 +A2)xn+1y+δ(n+1)
and xny = −A−2xn+2 +A−2n−1xn+1 + δ(n). Then, for each n, we substitute
the first relation evaluated at n into the second evaluated at n + 1. The
new relations can be written as xn+3 = δ(n + 2) and xn+1y = −(A−2n−7 +
A−6n−7)xn+2 + δ(n+ 1). Once again, Lemma 11 applies.

Since it is well known that only X(6) and X(0) admit essential surfaces,
Propositions 1–8 prove half of the main theorem.

Theorem 1. If X(r) does not contain an essential surface then K(X(r))
is finitely generated.

In the next section we will complete the picture by showing that K(X(0))
and K(X(6)) are not finitely generated.

4. Infiniteness results.

In this section we will work with a specialization of K(M) given by setting
A = 1 and mapping Z onto Z/2Z. The result is a Z/2Z-vector space, V (M),
which is finitely generated whenever K(M) is. Therefore, our goal will be
to show that V (X(0)) and V (X(6)) are infinite dimensional.

It turns out that V (M) is quite easy to study. This is because the skein and
framing relations are = + and © = 0. Hence, V (M) does not
see crossings or framings. One consequence is that V (M) is a commutative
algebra generated by the set of free homotopy classes of loops in M . The
multiplication is disjoint union and the unit is ∅. To avoid confusion we will
use the notation A(M) to refer to the algebra.

By specializing the proof in [1] we see that BX is a basis for V (X). We can
then present A(X(r)) as a quotient of A(X) by a finitely generated ideal.
For a given r fix slides of y and x over βr, denoting them f(y) and g(x)
respectively.

Lemma 12. A(X(r)) = A(X)/(y + f(y), g + g(x), βr).

Proof. We know that V (X(r)) = V (X)/W (r) where W (r) is the span of
all L + sl(L). Links can be homotoped through each other, so sl(L1L2)
is either sl(L1)L2 or sl(L2)L1, depending on which link meets the band.
This implies that W (r) is an ideal. Since βr = © + sl(©), it is clear that
(y+f(y), g+g(x), βr) ⊂W (r). Hence it suffices to show the reverse inclusion.
To this end let L be a link in X and sl(L) any band sum with βr.

We choose a resolution L =
∑
riLi in V (X) satisfying the following con-

ditions. First, every skein relation involved in the resolution must be chosen
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so that the original intersection of L and the band remains unchanged. Sec-
ond, although the framing relation in V (X) allows any trivial component to
be absorbed, we will not do so if that component meets the band. Finally,
either Li ∈ BX or Li = L′i∪© with L′i ∈ BX . Furthermore, the latter occurs
only when the band is attached to ©. Because the band is undisturbed by
this resolution we have L+ sl(L) =

∑
ri(Li + sl(Li)).

Now we look at the three possible behaviors of sl(Li). If the band meets a
trivial component then sl(Li) = xjykβr and Li = 0. If the band meets a copy
of x then, after homotopy, it is the same as the band creating g(x) or it is that
band with a half twist. If there is no twist then Li+sl(Li) = xjyk(x+g(x)).
If there is a twist it can be thought of as a single crossing. Resolving it gives
Li + sl(Li) = xjyk(x+ g(x)) +xjyk+1βr. An identical argument works when
the band meets a copy of y.

Lemma 13. Let I be the ideal of A(X) generated by x2 + y. As a vector
space, A(X)/I is infinite dimensional.

Proof. This vector space is presented with generators BX and any spanning
set of I as relations. Since every element of I is of the form (

∑
i x

i +∑
j x

jy)(x2 + y), the set {xi+2 + xiy | i ∈ N} ∪ {xj+2y + xjy2 | j ∈ N}
spans it. However, Equation (1) gives xj+2y+xjy2 = xj+2 +xjy, so we need
only {xi+2 + xiy | i ∈ N} as relations. There are exactly enough relations
here to eliminate every xiy from BX , leaving a vector space generated by
{xi | i ∈ N}.

Proposition 9. V (X(0)) is infinite dimensional.1

Proof. There is an obvious slide of x over β0 so that g(x) = β1. For f(y) we
use the slide shown in Figure 8, but with L3 instead of L0. It is a simple
matter to resolve these into y + f(y) = x4 + x2y, x + g(x) = x5 + x3y, and
β0 = x6 + x4y + x4 + x2y. Thus (y + f(y), x + g(x), β0) ⊂ I, which means
V (X(0)) contains the vector space underlying A(X)/I.

Proposition 10. V (X(6)) is infinite dimensional.2

Proof. As above, there is an obvious slide of x so the g(x) = β5, and we use
Figure 8 for f(y). This time the relations resolve as y − f(y) = x2 + x2y,
x+ g(x) = x3 + x3y, and β6 = x4 + x4y+ x2 + x2y. This time (y+ f(y), x+

1Since the surgery is along the boundary of a Seifert surface, H1(X(0)) is infinite. At
the time this article was first written, the author was unaware that Przytycki had shown
infinite H1(M) implies infinitely generated K(M).

2Here the surgery is along the cabling slope. Hence, X(0) = L(2, 1)#L(3, 1), a manifold
with finite homology groups.



SKEIN MODULE OF SURGERED TREFOIL 51

g(x), β6) lies in the ideal generated by 1 + y. However, as in the proof of
Lemma 13, A(X)/(1 + y) is infinite dimensional.

Propositions 9 and 10 prove the other half of the main theorem.

Theorem 2. If X(r) contains an essential surface then K(X(r)) is not
finitely generated.
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