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OPTIMAL REGULARITY OF HARMONIC MAPS FROM A
RIEMANNIAN MANIFOLD INTO A STATIC LORENTZIAN

MANIFOLD

Takeshi Isobe

In this paper, we give an optimal regularity result for some
class of weakly harmonic maps from a Riemannian manifold
M into a static Lorentzian manifold. Our main result is the
following: For such class of weakly harmonic map w, there
exists closed set Σ ⊂ M such that w is C∞ in M \ Σ and the
Hausdorff dimension of Σ is less than or equal to dimM − 3.

1. Introduction.

In this paper, we study regularity of harmonic maps from a Riemannian
manifold into a static Lorentzian manifold.

By definition, N is a static Lorentzian manifold if and only if the following
hold (see [10]):
(i) N is the form N = N0 ×R, where N0 is a Riemannian manifold with

a metric g0.
(ii) The metric g of N is given by

g

((
ξ
τ

)
,

(
ξ′

τ ′

))
= g0(ξ, ξ′)− β(x)ττ ′

for

(
ξ
τ

)
,

(
ξ′

τ ′

)
∈ T(x,t)N = TxN0×R, where β : N0 → R+ is a smooth

positive function.
In such a case, we write N = N0 ×β R.
In this paper we consider the case where N0 is compact. We may assume,

by Nash-Moser theorem, N0 is a submanifold of Rk for some k > 1. By the
compactness of N0, there exist constants βmin, βmax > 0 such that βmin ≤
β(x) ≤ βmax for all x ∈ N0.

Let M be a Riemannian manifold with non-empty boundary ∂M . For a
map w = (u, t) : M → N0 ×β R, we define the energy E(w) of w by:

E(w) = E(u, t) =
∫
M

|∇u|2dV −
∫
M

β(u)|∇t|2dV,
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where dV is a volume measure on M .
By definition, w = (u, t) ∈ H1(M ;N0)×H1(M ; R) is a (weakly) harmonic

map if the following holds:
Since N0 is compact, there exists a tubular neighborhood O of N0 in Rk

such that the nearest point projection Π : O → N0 is a smooth fibration.
For any φ ∈ C∞0 (M ; Rk) and ζ ∈ C∞0 (M ; R), there holds:

d

dε

∣∣∣∣
ε=0

E(Π ◦ (u+ εφ), t+ εζ) = 0.

This means that w = (u, t) is a stationary point with respect to the variation
of the target manifold.

The weakly harmonic map w = (u, t) satisfies the following equations in
the distributional sense (see [8]):

∆u+A(u)(∇u,∇u) + 1
2
∇β(u)|∇t|2 = 0 in M

div(β(u)∇t) = 0 in M
.(1.1)

Here, A is the 2nd fundamental form of the embedding N0 ↪→ Rk.
We consider Equation (1.1) with the prescribed boundary condition on

∂M :

(1.2) w = (u, t) = (ϕ, ι) on ∂M,

where (ϕ, ι) : ∂M → N ×β R is a given smooth map.
When the target manifold is a Riemannian, there are many regularity

theories. For example, Schoen-Uhlenbeck [13] studied the regularity of min-
imizing harmonic mappings. In [5], [6] and [7], Hélein studied the regularity
of weakly harmonic mappings when the dimension of the base manifold is
2. In [1], Bethuel studied the regularity of stationary harmonic mappings.
In general, weakly harmonic maps are very singular. In [11], Riviere con-
structed weakly harmonic mapping from Bm to Sn (m ≥ 3, n ≥ 2) whose
singular set is Bm. So there is no regularity theory for general weakly har-
monic maps.

On the other hand, if the target manifold is a Lorentzian manifold, in [4],
Greco constructed a smooth harmonic map when target is static Lorentzian
and domain manifold is two dimensional. In [8], the author proved that
any weakly harmonic map from 2-dimensional Riemannian manifold into
static Lorentzian manifold is smooth and regularity results for some classes
of harmonic maps when target is a static Lorentzian and the dimension of
domain manifold is greater than 2.
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More precisely, in [8], we considered the following class of solutions when
dimM ≥ 3:

For a given u ∈ H1
ϕ(M ;N0) (H1

ϕ(M ;N0) is the space of all H1(M ;N0)-
maps with boundary value ϕ on ∂M .), there exists a unique solution t = t(u)
for the 2nd equation of (1.1) with t = ι on ∂M .

Define the functional F : H1
ϕ(M ;N0)→ R by

F(u) =
∫
M

|∇u|2dV −
∫
M

β(u)|∇t(u)|2dV.

It is shown in [8] that F is bounded from below in H1
ϕ(M ;N0) and F at-

tains the infu∈H1
ϕ(M ;N0)F(u) for some u ∈ H1

ϕ(M ;N0) and (u, t(u)) solves
the Equations (1.1) and (1.2) in a weak sense. In this paper, we call such
solutions as minimal type.

The main result of [8] is the following:

Theorem 1.1 ([8]). Let (u, t) ∈ H1(M ;N0) × H1(M ; R) be a minimal
type solution. Then there exists a closed set Σ ⊂ M such that (u, t) is C∞

in M \ Σ. Moreover Hm−2(Σ) = 0, where Hm−2 is the (m− 2)-dimensional
Hausdorff measure and m = dimM .

Minimal type solutions correspond to minimizing harmonic maps when
target manifold is a Riemannian. (Note that there are no energy minimizing
harmonic mappings when target manifold is a Lorentzian since
inf E(u,t)∈H1

ϕ(M ;N0)×H1
ι (M ;R)(u, t) = −∞.)

In fact, when β ≡ const., (u, t) is a minimal type harmonic map if and only
if u ∈ H1

ϕ(M ;N0) is a Dirichlet energy minimizing map and t is a harmonic
function.

Also in such a case, by the regularity result of Schoen-Uhlenbeck [13],
Theorem 1.1 may be improved.

However, there is a strong difference between F-minimizing problem and
Dirichlet energy minimization problem as in the Riemannian case. That
is, the functional F is not a local functional. For example, F-minimizer in
H1
ϕ(M ;N0) does not have a local minimizing property. This non-localness

comes from the fact that t(u) is implicitly defined in M by u and ι as a
solution of the equation div(β(u)∇t(u)) = 0 with t(u) = ι on ∂M . So we
can not directly localize the problem. Since regularity problem is mainly
local in the domain, this causes problems. This is the troublesome point in
our problem.

However, in general case, as the above special case suggests, it is rea-
sonable to conjecture that the size of the singular set Σ in Theorem 1.1 is
dim Σ ≤ m− 3.
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In this paper we prove such conjecture is true. Our main result is the
following:

Theorem A. Let N = N0 ×β R be a static Lorentzian manifold. Let
(u, t) ∈ H1

ϕ(M ;N0) × H1
ι (M ; R) be a minimal type harmonic map. Then

there exists a closed set Σ ⊂ M such that (u, t) is C∞ in M \ Σ. Moreover
the Hausdorff dimension of Σ is less than or equal to m − 3 when m ≥ 3.
When m = 3, Σ is a discrete set and when m = 2, Σ is empty.

Remark 1.2. (a) The above singular set estimate is optimal. In fact,
u0 = x/|x| : B3 → S2 is a Dirichlet energy minimizing map (see [2]) and
w = (u0, t0), where t0 ≡ const. defines a minimal type harmonic map which
is singular at 0 ∈ B3. Here B3 =

{
x ∈ R3 : |x| ≤ 1

}
. The examples of

higher dimensional cases are constructed in the same way.
(b) Since t(u) satisfies the elliptic equation div(β(u)∇t(u)) = 0 with 0 <

βmin ≤ β(u(x)) ≤ βmax < +∞, t(u) is always Hölder continuous in M by De
Giorgi-Nash theorem [9].

(c) If dimM = 2, in [8], we proved that any weakly harmonic map in
H1(M ;N0)×H1(M ; R) is smooth in M .

The crucial step in the proof of Theorem A is a derivation of the mono-
tonicity inequality. Here new difficulties arise due to the fact that the func-
tional F is not a local functional as stated above. Thus it turns out that we
need to analyze the behavior of solutions of some elliptic equations under
the deformations of the domain manifold. These are carried out in §2.

Next step consists of compactness result for the families of scaled maps.
As stated above, there is non sense to consider “local minimizing” maps
in order to study regularity properties of (global) minimizing maps (since
global F-minimizer is not in general local F-minimizer), so we need to con-
sider compactness properties of scaled maps of global minimizers (which has,
in general, no minimizing properties) in order to study local properties of
(global) minimizing maps.

Finally, using Federer’s dimension reduction argument [3], [12], [13], we
obtain Theorem A. These are carried out in §3.

Acknowledgment. The author wishes to thank referee for his valuable
comments and suggestions on a first version of this paper.

2. Monotonicity inequality.

In this section, we derive the monotonicity inequality for F-minimizing map
u in H1

ϕ(M ;N0). For simplicity, we consider the case M = Ω is flat, that is,
M is the open bounded set Ω in Rm. The general case is more involved, but
essentially the same method is applicable with slight modifications.
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Our main result is the following:

Proposition 2.1. Let u ∈ H1
ϕ(Ω;N0) be a F-minimizing map. For a ∈ Ω

and 0 < R1 ≤ R2 < 1/2 dist(a, ∂Ω), there exist constants c, α > 0 (depending
only on β and m) such that the following holds:

R2−m
1

∫
BR1 (a)

|∇u|2dx+ 2
∫
R1≤|x−a|≤R2

|x− a|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx
≤ R2−m

2

∫
BR2 (a)

|∇u|2dx+ c(Rα
1 +Rα

2 ).

Here Bρ(a) =
{
x ∈ Rm : |x− a| < ρ

}
.

Proof. Fix φ ∈ C∞0 (Ω). For |ε| small, we set φε(x) = x + εφ(x). For small
|ε|, φε : Ω→ Ω defines a diffeomorphism.

Let u ∈ H1
ϕ(M ;N0) be a F-minimizer. We set uε = u ◦φ−1

ε . For small |ε|,
uε ∈ H1

ϕ(Ω;N0).
We study the dependence of F(uε) in ε.
By some calculation, we obtain:

∫
Ω

|∇uε|2dx
(2.1)

=
∫

Ω

|∇u|2dx+ ε

∫
Ω

|∇u|2 div φ dx− 2
∑

1≤i,j≤m
1≤l≤k

∫
Ω

∂ul

∂xi

∂ul

∂xj

∂φi
∂xj

dx

+O(ε2).

Next we study
∫

Ω β(uε)|∇t(uε)|2 dx.
Here some difficulties arise due to the non-localness of t(u) with respect

to u. That is, t(uε) is defined implicitly in Ω by uε and ι as a solution of the
equations div(β(uε)∇t(uε)) = 0 in Ω,

t(uε) = ι on ∂Ω.

So the equality t(uε) ◦ φε = t(u) does not hold in general. Thus we need the
analysis of the behavior of t(uε) ◦ φε with respect to ε.

We compute, by the change of variable x = φε(y),

∫
Ω

β(uε(x))|∇t(uε)(x)|2 dx
(2.2)



76 TAKESHI ISOBE

=
∫

Ω

β(u)|∇t(uε)(φε(y))|2(1 + ε div φ)dy +O(ε2)
∫

Ω

|∇t(uε)(φε(y))|2dy.

We set t̂ε := t(uε) ◦ φε.
Since

∇t(uε)(φε(y)) = J−1(φε(y))∇t̂ε(y),

where ∇t(uε) =
(
∂t(uε)

∂x1
, . . . , ∂t(uε)

∂xm

)t
, ∇t̂ε(y) =

(
∂t̂ε
∂y1
, . . . , ∂t̂ε

∂ym

)t
and J(φε) =

jacobian of φε, and

J−1(φε(y)) =
(
δij − ε∂φj

∂yi
+O(ε2)

)
ij

,

we obtain
(2.3)

|∇t(uε)(φε(y))|2 = |∇t̂ε(y)|2 − 2ε
∑

1≤i,j≤m

∂t̂ε
∂yi

∂t̂ε
∂yj

∂φj
∂yi

+O(ε2)R1(∇t̂ε, φ).

Here R1(∇t̂ε, φ) is a quadratic form in ∇t̂ε.
Combining (2.2) and (2.3), we obtain:∫
Ω

β(uε)|∇t(uε)|2 dx

=
∫

Ω

β(u)

∣∣∣∇t̂ε∣∣∣2 − 2ε
∑

1≤i,j≤m

∂t̂ε
∂yi

∂t̂ε
∂yj

∂φj
∂yi

 (1 + ε div φ) dy

+O(ε2)R2(∇t̂ε, φ)

=
∫

Ω

β(u)|∇t̂ε|2dy + ε

∫
Ω

β(u)
∣∣∣∇t̂ε∣∣∣2 div φ− 2β(u)

∑
1≤i,j≤m

∂t̂ε
∂yi

∂t̂ε
∂yj

∂φj
∂yi

dy



+O(ε2)R3

(
∇t̂ε, φ

)
.

(2.4)

Here R2(∇t̂ε, φ) and R3(∇t̂ε, φ) are quadratic functionals in ∇t̂ε.
Since t(uε) is a critical point of the functional t 7→ ∫

Ω β(uε)|∇t|2 dx, by
(2.4), t̂ε satisfies the following for any Φ ∈ C∞0 (Ω; R):∫

Ω

β(u)∇t̂ε · ∇Φ dy + ε

(∫
Ω

β(u)∇t̂ε · ∇Φ div φ dy

−
∫

Ω

β(u)
∑

1≤i,j≤m

∂Φ
∂yi

∂t̂ε
∂yj

∂φi
∂yj

dy −
∫

Ω

β(u)
∑

1≤i,j≤m

∂t̂ε
∂yi

∂Φ
∂yj

∂φi
∂yj

dy


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+O(ε2)R′3
(
∇Φ,∇t̂ε, φ

)
.

(2.5)

Here R′3(∇Φ,∇t̂ε, φ) is a linear form in ∇Φ and ∇t̂ε.
By density, (2.5) holds for any Φ ∈ H1

0 (Ω; R). We take Φ = t̂ε − t(u) ∈
H1

0 (Ω; R). Then we have∫
Ω

∇t̂ε · ∇(t̂ε − t(u)) dy + ε

(∫
Ω

β(u)∇t̂ε · ∇(t̂ε − t(u)) div φ dy

−
∫

Ω

β(u)
∑

1≤i,j≤m

∂

∂yj
(t̂ε − t(u))

∂t̂ε
∂yj

∂φi
∂yj

dy

−
∫

Ω

β(u)
∑

1≤i,j≤m

∂t̂ε
∂yj

∂

∂yi
(t̂ε − t(u))

∂φi
∂yj

dy


+O(ε2)R′3(∇(t̂ε − t(u)),∇t̂ε, φ) = 0.

(2.6)

On the other hand, since div(β(u)∇t(u)) = 0, we have:

(2.7)
∫

Ω

β(u)∇t(u) · ∇(t̂ε − t(u)) dy = 0.

Subtracting (2.7) form (2.6), we obtain:

(2.8)
∫

Ω

|∇t̂ε −∇t(u)|2 dy ≤ C1(|ε|+ ε2)‖∇t̂ε‖L2(Ω)‖∇t̂ε −∇t(u)‖L2(Ω),

where c1 > 0 is a constant which may depend on φ but does not depend on
ε.

We claim that t̂ε is bounded in H1.
To prove this, first observe that by (2.4) there exists c2 > 0 independent

of ε with |ε| small such that∫
Ω

|∇t̂ε|2 dy ≤ c2

∫
Ω

|∇t(uε)|2 dy.

Let h be the harmonic extension of ι to Ω, i.e.,
∆h = 0 in Ω,

h = ι on ∂Ω.

Then by the minimizing property of t(uε), we obtain∫
Ω

β(uε)|∇t(uε)|2 dy ≤
∫

Ω

β(uε)|∇h|2 dy ≤ βmax

∫
Ω

|∇h|2 dy.
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Therefore we have∫
Ω

|∇t(uε)|2 dy ≤ βmax

βmin

∫
Ω

|∇h|2 dy = independent of ε.

This completes the proof of the claim.
Combining this claim with (2.8), we get

(2.9)
∫

Ω

|∇t̂ε −∇t(u)|2 dy ≤ c3ε
2,

where c3 is a constant independent of ε.
We set t̂ε = t(u) + αε. Then

(2.10) αε
∣∣
∂Ω

= 0

and

(2.11)
∫

Ω

|∇αε|2 dy = O(ε2).

By (2.4), we obtain∫
Ω

β(uε)|∇t(uε)|2 dx

=
∫

Ω

β(u)|∇t(u) +∇αε|2 dy + ε

(∫
Ω

β(u)|∇t(u) +∇αε|2 div φ dy

− 2
∫

Ω

β(u)
∑

1≤i,j≤m

(
∂t(u)
∂yi

+
∂αε
∂yi

)(
∂t(u)
∂yj

+
∂αε
∂yj

)
∂φj
∂yi

dy

)
+O(ε2)

=
∫

Ω

β(u)|∇t(u)|2 dy + 2
∫

Ω

β(u)∇t(u) · ∇αε dy +
∫

Ω

β(u)|∇αε|2 dy

+ ε

(∫
Ω

β(u)|∇t(u)|2 div φ dy + 2
∫

Ω

β(u)∇t(u) · ∇αε div φ dy

+
∫

Ω

β(u)|∇αε|2 div φ dy

− 2
∑

1≤i,j≤m

{∫
Ω

β(u)
∂t(u)
∂yi

∂t(u)
∂yj

∂φi
∂yj

dy +
∫

Ω

β(u)
∂αε
∂yi

∂t(u)
∂yj

∂φi
∂yj

dy

+
∫

Ω

β(u)
∂t(u)
∂yi

∂αε
∂yi

∂φj
∂yi

dy +
∫

Ω

β(u)
∂αε
∂yi

∂αε
∂yj

∂φi
∂yj

dy

})
+O(ε2).

(2.12)

Here,
∫

Ω β(u)∇t(u) · ∇αε dy = 0 by div(β(u)∇t(u)) = 0 and (2.10).
Thus, by (2.11) and (2.12) we obtain∫

Ω

β(uε)|∇t(uε)|2 dx
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=
∫

Ω

β(u)|∇t(u)|2 dy + ε

(∫
Ω

β(u)|∇t(u)|2 div φ dy

− 2
∫

Ω

β(u)
∑

1≤i,j≤m

∂t(u)
∂yi

∂t(u)
∂yj

∂φj
∂yi

dy

)
+O(ε2).(2.13)

Combining (2.1) and (2.13) we get

F(uε) =
∫

Ω

|∇u|2 dx−
∫

Ω

β(u)|∇t(u)|2 dx+ ε

(∫
Ω

|∇u|2 div φ dx

− 2
∑

1≤ij≤m
1≤l≤k

∫
Ω

∂ul

∂xi

∂ul

∂xj

∂φj
∂xi

dx−
∫

Ω

β(u)|∇t(u)|2 div φ dx

+ 2
∑

1≤i,j≤m

∫
Ω

β(u)
∂t(u)
∂xi

∂t(u)
∂xj

∂φj
∂xi

dx

)
+O(ε2)

= F(u) + ε

(∫
Ω

|∇u|2 div φ dx− 2
∑

1≤i,j≤m
1≤l≤k

∫
Ω

∂ul

∂xi

∂ul

∂xj

∂φj
∂xi

dx

−
∫

Ω

β(u)|∇t(u)|2 div φ dx

+ 2
∑

1≤i,j≤m

∫
Ω

β(u)
∂t(u)
∂xi

∂t(u)
∂xj

∂φj
∂xi

dx

)
+O(ε2).

(2.14)

Since uε ∈ H1
ϕ(Ω;N0), by the minimality of u we have F(u) ≤ F(uε) for

small |ε|.
Therefore by (2.14) we obtain∫

Ω

|∇u|2 div φ dx− 2
∑

1≤i,j≤m
1≤l≤k

∫
Ω

∂ul

∂xi

∂ul

∂xj

∂φi
∂xj

dx

−
∫

Ω

β(u)|∇t(u)|2 div φ dx+ 2
∑

1≤i,j≤m

∫
Ω

β(u)
∂t(u)
∂xi

∂t(u)
∂xj

∂φj
∂xi

dx = 0

for all φ ∈ C∞0 (Ω; Rn).
Here we take, in particular, φ(x) = ζ

(
r/ρ

)
(x − a), where ζ ∈ C∞(R) is

such that ζ(r) ≡ 1 for r ≤ 1/2, ζ(r) ≡ 0 for r ≥ 1, ζ ′ ≤ 0 and ρ > 0 satisfies
Bρ(a) ⊂⊂ Ω.

Then by some computations, we obtain

− ρ
∫

Ω

|∇u|2 d
dρ

{
φ

(
r

ρ

)}
dx+ (m− 2)

∫
Ω

|∇u|2φ
(
r

ρ

)
dx
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+ 2ρ
∫

Ω

∣∣∣∣∂u∂r
∣∣∣∣2 d

dρ

{
φ

(
r

ρ

)}
dx+ ρ

∫
Ω

β(u)|∇t(u)|2 d
dρ

{
φ

(
r

ρ

)}
dx

− (m− 2)
∫

Ω

β(u)|∇t(u)|2φ
(
r

ρ

)
dx

− 2ρ
∫

Ω

β(u)
∣∣∣∣∂t(u)
∂r

∣∣∣∣2 d

dρ

{
φ

(
r

ρ

)}
dx = 0.

(2.15)

Letting φ approach to the characteristic function of (−∞, 1], we obtain

− ρ d
dρ

∫
Bρ(a)

|∇u|2 dx+ (m− 2)
∫
Bρ(a)

|∇u|2 dx

+ 2ρ
d

dρ

∫
Bρ(a)

∣∣∣∣∂u∂r
∣∣∣∣2 dx+ ρ

d

dρ

∫
Bρ(a)

β(u)|∇t(u)|2 dx

− (m− 2)
∫
Bρ(a)

β(u)|∇t(u)|2 dx− 2ρ
d

dρ

∫
Ω

β(u)
∣∣∣∣∂t(u)
∂r

∣∣∣∣2 dx = 0.

(2.16)

(2.16) is equivalent to the following:

d

dρ

{
ρ2−m

∫
Bρ(a)

|∇u|2 dx− ρ2−m
∫
Bρ(a)

β(u)|∇t(u)|2 dx
}

= 2ρ2−m
∫
∂Bρ(a)

∣∣∣∣∂u∂r
∣∣∣∣2 dx− 2ρ2−m

∫
∂Bρ(a)

β(u)
∣∣∣∣∂t(u)
∂r

∣∣∣∣2 dx.

(2.17)

Integrating (2.17) from R1 to R2 we obtain

R2−m
2

∫
BR2 (a)

|∇u|2 dx−R2−m
1

∫
BR1 (a)

|∇u|2 dx

−R2−m
2

∫
BR2 (a)

β(u)|∇t(u)|2 dx+R2−m
1

∫
BR1 (a)

β(u)|∇t(u)|2 dx

= 2
∫
R1≤|x−a|≤R2

|x− a|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx

− 2
∫
R1≤|x−a|≤R2

β(u)|x− a|2−m
∣∣∣∣∂t(u)
∂r

∣∣∣∣2 dx.

(2.18)

Since t(u) is a solution of the equation div(β(u)∇t(u)) = 0 in Ω and 0 <
βmin ≤ β(u) ≤ βmax < +∞, by De Giorgi-Nash theorem and p. 59, Lemma
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4.3 in [9], there exist constants α > 0 and c > 0 depending only on βmax,
βmin and m such that the following hold for 0 < r < dist(a, ∂Ω):

r2−m
∫
Br(a)

|∇t(u)|2 dx ≤ crα,(2.19) ∫
Br(a)

|x− a|2−m|∇t(u)|2 dx ≤ crα.(2.20)

Combining (2.18), (2.19) and (2.20), there exists constants α > 0 and c > 0
depending only on β and m such that

R2−m
1

∫
BR1 (a)

|∇u|2 dx+ 2
∫
R1≤|x−a|≤R2

|x− a|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx

≤ R2−m
2

∫
BR2 (a)

|∇u|2 dx+ c(Rα
1 +Rα

2 ).

This completes the proof of Proposition 2.1.

3. Proof of Theorem A.

In this section, we prove our main theorem A. We recall the following two
facts from [8].

Lemma 3.1 ([8, Lemma 3.4]). Let u ∈ H1
ϕ(M ;N0) be a F-minimizer. Let

Br(a) be a ball such that Br(a) ⊂⊂ Ω and let v ∈ H1(Br(a);N0) with v = u
on ∂Br(a). Then there exists η ∈ H1

ϕ(M ;N0) (depending on u, v, a and r)
such that the following holds:∫

Br(a)

|∇u|2 dx−
∫
Br(a)

β(u)|∇t(u)|2 dx

≤
∫
Br(a)

|∇v|2 dx+ βmax

∫
Br(a)

|∇t(η)|2 dx.

The following small energy regularity theorem is proved in [8]:

Lemma 3.2 ([8, Lemma 3.10]). There exist R0 >, ε̄ > 0, γ > 0 and c > 0
such that if a F-minimizing map u ∈ H1

ϕ(M ;N0) satisfies
R2−m ∫

B2R(a) |∇u|2 dx < ε̄ for some R < min
{
R0,

1
2

dist(a, ∂Ω)
}

, then u is
γ-Hölder continuous in BR(a) and the following holds for any x, y ∈ BR(a):

|u(x)− u(y)| ≤ c|x− y|γ .

We begin the following:
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Proposition 3.3. Let u ∈ H1
ϕ(M ;N0) be a F-minimizing map. For a given

B > 0, there exists ε0 >, c > 0, δ > 0 and ρ0 > 0 such that if ρ < ρ0, Bρ(b) ⊂
⊂ Ω (b ∈ Ω), ρ2−n ∫

Bρ(b) |∇u|2 dx ≤ B and ρ−n
∫
Bρ(b) |u − (u)ρ,b|2 dx ≤ ε0

((u)ρ,b = 1/|Bρ(b)|
∫
Bρ(b) u dx), then u is δ-Hölder continuous in B ρ

2
(b) and

|u(x)− u(y)| ≤ c|x− y|δ holds for any x, y ∈ Bρ/2(b).

Proof. By Fubini’s theorem there exists σ ∈ [3/4ρ, ρ] such that

∫
∂Bσ(b)

|u− (u)ρ,b|2 ds ≤ 8
ρ

∫
Bρ(b)

|u− (u)ρ,b|2 dx ≤ 8ε0ρm−1

(3.1)

∫
∂Bσ(b)

|∇u|2 ds ≤ 8
ρ

∫
Bρ(b)

|∇u|2 dx ≤ 8Bρm−3.(3.2)

By (3.1) and (3.2) we have

σ4−2n

(∫
∂Bσ(b)

|u− (u)ρ,b|2 ds
)(∫

∂Bσ(b)

|∇u|2 ds
)

≤ 64Bε0ρ2n−4σ4−2n ≤ 245
3
Bε0.(3.3)

Here we take ε0 > 0 such that 254/3Bε0 < δ
′2εq, where ε > 0 is a constant

to be determined later and δ′ > 0, q > 0 are constants appearing in the
following extension lemma due to Schoen -Uhlenbeck (Lemma 4.3 in [13]):

Lemma 3.4 ([13, Lemma 4.3]). There exist δ′ > 0 and q > 0 such that if
ε ∈ (0, 1) and u ∈ H1(∂Bσ(b);N0) satisfies

σ4−2m

(∫
∂Bσ(b)

|∇Tu|2 ds
)(∫

∂Bσ(b)

|u− ξ|2 ds
)
≤ δ′2εq

for some ξ ∈ Rk, then there exists ū ∈ H1(Bσ(b);N0) such that ū = u on
∂Bσ(b) and the following holds:

∫
Bσ(b)

|∇ū|2 dx ≤ c
(
εσ

∫
∂Bσ(b)

|∇Tu|2 ds+ ε−qσ−1

∫
∂Bσ(b)

|u− ξ|2 ds
)
.

By this lemma, there exists ū ∈ H1(Bσ(b);N0) such that ū = u on ∂Bσ(b)
and, by (3.1), (3.2),∫

Bσ(b)

|∇ū|2 dx ≤ c(8εσρm−3B + 8ε−qσ−1ε0ρ
m−1)
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≤ c
(

8Bερm−2 +
32
3
ε0ε
−qρm−2

)
≤ c

(
8Bε+

32
3
ε0ε
−q
)
ρm−2.(3.4)

On the other hand, by Lemma 3.1, there exists η ∈ H1
ϕ(Ω;N0) (depending

on σ, b, u) such that

∫
Bσ(b)

|∇u|2 dx ≤
∫
Bσ(b)

|∇ū|2 dx+ βmax

(∫
Bσ(b)

|∇t(u)|2 + |∇t(η)|2 dx
)
.

(3.5)

Combining (3.4) with (3.5) we obtain∫
Bσ(b)

|∇u|2 dx ≤ c
(

8Bε+
32
3
ε0ε
−q
)
ρm−2

+ βmax

(∫
Bσ(b)

|∇t(u)|2 + |∇t(η)|2 dx
)
.(3.6)

By De Giorgi-Nash theorem, there exist c > 0, α > 0 (as in (2.19)) depending
only on β such that

(3.7) σ2−m
∫
Bσ(b)

|∇t(u)|2 dx ≤ cσα, σ2−m
∫
Bσ(b)

|∇t(η)|2 dx ≤ cσα.

Combining (3.6) and (3.7) we obtain

(3.8)
∫
Bσ(b)

|∇u|2 dx ≤ c
(

8Bε+
32
3
ε0ε
−q + ρα0

)
ρm−2.

First we take ε > such that c · 8Bε < ε̄/3. Then choose ε0 > 0 such that
c · 32/3ε0ε−q < ε̄/3 (we may assume 254/3Bε0 < δ

′2εq also holds). Finally
choose ρ0 > 0 such that c · ρα0 < ε̄/3. Then for ρ < ρ0, we have, by (3.8),

ρ2−m
∫
Bσ(b)

|∇u|2 dx ≤ ε̄.

Thus by Lemma 3.2, u is Hölder continuous in Bρ/2(b) and |u(x) − u(y)| ≤
c|x− y|δ holds for some c > 0 and δ > 0.

For a ∈ Ω and λ > 0, define the scaled map uλ,a := u(λx+ a).
Our next subject is to study the behavior of uλ,a for F-minimizer u as λ ↓

0. For later purpose (see the proof of Corollary 3.6), we consider somewhat
more general case.
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Let a ∈ Ω and R < 1/2 dist(a, ∂Ω). Let u be a F-minimizing map in
H1
ϕ(M ;N0). For 0 < λi ≤ 1, ai ∈ BR(a) with λi ↓ 0 and ai → a, we consider

the sequence {uλi,ai}.
Lemma 3.5. Let u, λi and ai be as above. Then there exists a subsequence
of {uλi,ai} (which we also write {uλi,ai}) such that for any r > 0 the following
hold:
(a) uλi,ai → u∞ (for some u∞ ∈ H1

loc(R
m;N0)) locally uniformly in Br(0)\

Σ∞, where Σ∞ ⊂ Br(0) is a closed subset with Hm−2(Σ∞) = 0. More-
over u∞ is continuous in Br(0) \ Σ∞.

(b) uλi,ai → u∞ strongly in H1(Br(0)).
(c) In particular if ai ≡ a, then ∂u∞

∂r
= 0.

Proof. (a) We fix r > 0. For i large we have Brλi(ai) ⊂ Ω. We may assume
without loss of generality that this hold for all i.

By Proposition 2.1, there exists c > 0 independent of i such that∫
Br(0)

|∇uλi,ai |2 dx = λ2−m
i

∫
Brλi (ai)

|∇u|2 dx < c.

Therefore there exists a subsequence of {uλi,ai} (we also denote it as {uλi,ai})
such that

uλi,ai ⇀ u∞ weakly in H1(Br(0)),

uλi,ai → u∞ strongly in L2(Br(0)).

For b ∈ Br(0) and ρ < dist(b, ∂Br(0)) small we assume

(3.10) ρ−m
∫
Bρ(b)

|u∞ − (u∞)ρ,b|2 dx < ε0,

where ε0 > 0 is as in Proposition 3.3 for B = c.
Since uλi,ai → u∞ in L2(Br(0)), for i large enough we have

(3.11) ρ−m
∫
Bρ(b)

|uλi,ai − (u∞)ρ,b|2 dx < ε0.

By the change of variable, we obtain from (3.11)

(3.12) (λiρ)−m
∫
Bλiρ(ai+λib)

|u− (u∞)ρ,b|2 dx < ε0.

On the other hand, for i large enough,

ρ2−m
∫
Bρ(b)

|∇uλi,ai |2 dx = (λiρ)2−m
∫
Bλiρ(ai+λib)

|∇u|2 dx ≤ c.
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By Proposition 3.3, u is δ-Hölder continuous in Bλiρ/2(ai + λib) and |u(x)−
u(y)| ≤ c|x − y|δ for x, y ∈ Bλiρ/2(ai + λib). By rescaling, uλi,ai is δ-Hölder
continuous in Bρ/2(b) and |uλi,ai(x) − uλi,ai | ≤ cλδi |x − y|δ ≤ c|x − y|δ for
x, y ∈ Bρ/2(b). Thus {uλi,ai} is equi-continuous and equi-bounded in Bρ(b)
and by Arzela-Ascoli’s theorem, for some subsequence (we also denote it
{uλi,ai}) such that

uλi,ai → u∞ uniformly in B ρ
2
(b).

By Poincaré inequality, if ρ2−m ∫
Bρ(b) |∇u∞|2 dx is small enough, then (3.10)

holds. So by the standard covering argument, there exists closed subset Σ∞
with Hm−2(Σ∞) = 0 such that

uλi,ai → u∞ locally uniformly in Br(0) \ Σ∞.

Since r > 0 is arbitrary, by diagonal sequence argument, we obtain (a).
(b) We fix r > 0 as in (a). We prove uλi,ai → u∞ strongly in H1(Br(0)).
Let Σ∞ be as in part (a). Since Hm−2(Σ∞ ∩ Br(0)) = 0, for any ε > 0,

there exists balls {Bri(xi)} such that
∑
i r
m−2
i < ε, Σ∞∩Br(0) ⊂ ⋃iBri(xi),

xi ∈ Br(0).
By Proposition 2.1, there exists c > 0 independent of k and i such that

r2−m
i

∫
Bri (xi)

|∇uλk,ak |2 dx = (λkri)2−m
∫
Bλkri (ak+λkxi)

|∇u|2 dx ≤ c.

Therefore we have

(3.13)
∑
i

∫
Bri (xi)

|∇uλk,ak |2 dx ≤ c
∑
i

rm−2
i < cε

for all large k.
On the other hand, by the first equation of (1.1), we obtain

∆uλk,ak +A(uλk,ak)(∇uλk,ak ,∇uλk,ak)
+

1
2
∇β(uλk,ak)|∇t(u)λk,ak |2 = 0 in Br(0).

Here t(u)λk,ak(x) = t(u)(λkx+ ak).
Thus we have

∆(uλk,ak − uλj ,aj )
= −A(uλk,ak)(∇uλk,ak ,∇uλk,ak) +A(uλj ,aj )(∇uλj ,aj ,∇uλj ,aj )

− 1
2
∇β(uλk,ak)|∇t(u)λk,ak |2 +

1
2
∇β(uλj ,aj )|∇t(u)λj ,aj |2.

(3.14)
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Take ϕ ∈ C∞0 (Br(0)\⋃iBri(xi)) arbitrary. Multiplying ϕ(uλk,ak −uλj ,aj ) by
(3.14) and integrating over Br(0), we obtain∫

Br(0)

ϕ|∇uλk,ak −∇uλj ,aj |2 dx

≤ c
∫
Br(0)

|ϕ| (|∇uλk,ak |2 + |∇uλj ,aj |2
) |uλk,ak − uλj ,aj | dx

+ c

∫
Br(0)

|ϕ| (|∇t(u)λk,ak |2 + |∇t(u)λj ,aj |2
) |uλk,ak − uλj ,aj | dx

+ c

∫
Br(0)

|∇ϕ||∇uλk,ak −∇uλj ,aj ||uλk,ak − uλj ,aj | dx.
(3.15)

Here, by Proposition 2.1 and De Giorgi-Nash theorem, there exists c > 0
independent of k such that∫

Br(0)

|∇uλk,ak |2 dx = λ2−m
k

∫
Brλk (ak)

|∇u|2 dx ≤ c(3.16)

∫
Br(0)

|∇t(u)λk,ak |2 dx = λ2−m
k

∫
Brλk (ak)

|∇t(u)|2 dx ≤ c.
(3.17)

Combining (3.13), (3.15), (3.16) and (3.17), and since ϕ ∈ C∞0 (Br(0) \⋃
iBri(xi)) is arbitrary, we obtain, for some subsequence of {uλi,ai} (we also

denote it by {uλi,ai})
uλi,ai → u∞ strongly in H1(Br(0)).

Since r > 0 is arbitrary, by diagonal sequence argument, we obtain the result.
(c) By Proposition 2.1, we have, for j ≤ i

λ2−m
i

∫
Bλi (a)

|∇u|2 dx+ 2
∫
λi≤|x−a|≤λj

|x− a|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx

≤ λ2−m
j

∫
Bλj (a)

|∇u|2 dx+ c(λαi + λαj ).

(3.18)

By Proposition 2.1, there exists limit limr↓0 r2−m ∫
Br(a) |∇u|2 dx = L. Letting

i→∞ in (3.18), we obtain

L+ 2
∫
|x−a|≤λj

|x− a|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx ≤ λ2−m
j

∫
Bλj (a)

|∇u|2 dx+ cλαj .

(3.19)
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By rescaling, we obtain

L+ 2
∫
|x|≤1

|x|2−m
∣∣∣∣∂uλj ,a∂r

∣∣∣∣2 dx ≤ λ2−m
j

∫
Bλj (a)

|∇u|2 dx+ cλαj .

(3.20)

Since uλj ,a → u∞ strongly in H1
loc(R

m;N0), taking a limit j →∞ in (3.20),
we obtain ∫

|x|≤1

|x|2−m
∣∣∣∣∂u∞∂r

∣∣∣∣2 dx = 0.

Therefore ∂u∞
∂r

= 0.

Corollary 3.6.
(i) The conclusions of Lemma 3.5 hold for maps in

TM=
{
v : there exist λi ↓ 0, ai→ a such that uλi,ai→ v in H1

loc(R
m)
}
.

Here a ∈ Ω and u is a F-minimizing map in H1
ϕ(Ω;N0).

(ii) Define TMl (l ≥ 0) inductively as follows: TM0 = TM, TMl = {v :
there exist u ∈ TMl−1, λi ↓ 0 and ai → a ∈ Rm such that uλi,ai → v
in H1

loc(R
m)} for l ≥ 1. Then the conclusions of Lemma 3.5 hold for

maps in TMl for l ≥ 0.

Proof. (i) First we show the monotonicity property for the maps in TM. Let
v ∈ TM, b ∈ Rm and 0 < R1 < R2. Then there exist sequences {λi}, λi ↓ 0
and {ai}, ai → a such that uλi,ai → v in H1

loc(R
m). By Proposition 2.1, we

have

(λiR1)2−m
∫
BλiR1 (ai+λib)

|∇u|2 dx

+
∫
λiR1≤|x−ai−λib|≤λiR2

|x− ai − λib|2−m
∣∣∣∣∂u∂r

∣∣∣∣2 dx
≤ (λiR2)2−m

∫
BλiR2 (ai+λib)

|∇u|2 dx+ c((λiR1)α + (λiR2)α).

From this, we obtain:

R2−m
1

∫
BR1 (b)

|∇uλi,ai |2 dx+ 2
∫
R1≤|x−b|≤R2

|x− b|2−m
∣∣∣∣∂uλi,ai∂r

∣∣∣∣2 dx
≤ R2−m

2

∫
BR2 (b)

|∇uλi,ai |2 dx+ c((λiR1)α + (λiR2)α).
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Letting i→∞, we obtain the following monotonicity inequality:

R2−m
1

∫
BR1 (b)

|∇v|2 dx+ 2
∫
R1≤|x−b|≤R2

|x− b|2−m
∣∣∣∣∂v∂r

∣∣∣∣2 dx
≤ R2−m

2

∫
BR2 (b)

|∇v|2 dx.

Next observe that for v ∈ TM, λ > 0 and b ∈ B1(0) we have vλ,b ∈ TM
since (uλi,ai)λ,b = uλiλ,λib+ai . (Note that even in the case ai ≡ a, λib+ ai =
λib + a 6= a. For this reason, we have considered the case ai → a and not
the case ai ≡ a.)

We first prove the assertion (a) for the map v ∈ TM. Fix r > 0. Let
v ∈ TM as above, {λ′i}, λ′i ↓ 0 and a′i → a′. Consider the rescaled maps
vλ′

i
,a′
i
.

By the monotonicity inequality for the maps in TM proved above, there
exists subsequence of {vλ′

i
,a′
i
} (we also denote it by {vλ′

i
,a′
i
}) such that vλ′

i
,a′
i
⇀

v∞ weakly in H1(Br(0)) and vλ′
i
,a′
i
→ v∞ strongly in L2(Br(0)).

Let ζ ∈ Br(0) and ρ < dist(ζ, ∂Br(0)); small be such that ρ−m
∫
Bρ(ζ) |v∞−

(v∞)ρ,ζ |2 dx < ε0. Then, as in the proof of Lemma 3.5 (a), there exists i0
such that for i ≥ i0, we have

ρ−m
∫
Bρ(ζ)

|vλ′
i
,a′
i
− (v∞)ρ,ζ |2 < ε0.

Since uλk,ak → v in H1
loc(R

m), there exists k(i) such that for k ≥ k(i)

ρ−m
∫
Bρ(ζ)

|(uλk,ak)λ′i,a′i − (v∞)ρ,ζ |2 dx < ε0.

Since (uλk,ak)λ′i,a′i = uλkλ′i,λka′i+ak , we get

(λkλ′iρ)−m
∫
Bλkλ′iρ

(λka′i+ak+λkλ′iζ)
|u− (v∞)ρ,ζ |2 dx < ε0

for such i and k.
Then by the same argument in the proof of Lemma 3.5 (a), u is Hölder

continuous in Bλkλ′iρ/2(λka′i + ak + λkλ
′
iζ), and there exists constant c > 0

such that |(uλk,ak)λ′i,a′i(x) − (uλk,ak)λ′i,a′i(y)| ≤ c|x − y|δ for x, y ∈ Bρ/2(ζ).
From this, {(uλk,ak)λ′i,a′i}k≥k(i) is equi-continuous and, by Arzela-Ascoli, there
exists a subsequence (we also denote it by the same sequence) such that
(uλk,ak)λ′i,a′i → vi uniformly in Bρ/2(ζ) for some vi as k →∞. But uλk,ak → v
in H1

loc(R
m), so we have vi ≡ vλ′

i
,a′
i
. By the uniform convergence, vλ′

i
,a′
i

also
satisfies |vλ′

i
,a′
i
(x)− vλ′

i
,a′
i
(y)| ≤ c|x− y|δ for x, y ∈ Bρ/2(ζ) and i ≥ i0. Again
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by Arzela-Ascoli, we have vλ′
i
,a′
i
→ v∞ uniformly in Bρ/2(ζ). From this and

the same argument in the proof of Lemma 3.5 (a) shows that the conclusion
of Lemma 3.5 (a) also holds for maps in TM.

Next we verify Lemma 3.5 (b) for maps in TM. For this, first observe
that the map v ∈ TM is a harmonic map into N0, that is, it satisfies the
equation ∆v + A(v)(∇v,∇v) = 0. To see this, we only note that the left
hand side of (3.17) goes to zero as k → ∞ by De Giorgi-Nash theorem.
Then, by the result (a), the same argument in the proof of Lemma 3.5 (b)
shows that the conclusion (b) of Lemma 3.5 also holds for maps in TM.

The proof of Lemma 3.5 (c) for maps in TM follows the same argument in
the proof of Lemma 3.5 (c), since we already have monotonicity inequality,
(a) and (b).

(ii) The proof of assertion (ii) follows from the same argument in (i) using
the induction on l.

Remark 3.7. (a) As was stated in the introduction, F-minimizing map
in H1

ϕ(M ;N0) does not have local minimizing property. So there is no
sense to consider local minimizing maps to study regularity properties of
F-minimizing maps and, of course, scaled maps uλ,a for F-minimizing map
u does not have any local minimizing property. Therefore in the above
proposition and corollary, we only considered the compactness properties of
scaled maps (not local minimizing maps as in many other problems). This
is the troublesome point in our problem.

(b) The limiting map v ∈ TM, which we call tangent map at a in the
case ai ≡ a, is indeed a harmonic map into N0. This follows from the same
reason as in Corollary 3.6 (i), proof of part (b).

We are now ready to prove our main theorem Theorem A. As in many
other regularity problems, we prove it by Federer’s dimension reduction
method [3], [12], [13].

Completion of the proof of Theorem A. We define the measure ϕs for
s ∈ R as follows:

ϕs(E) = inf

{∑
i

rsi : E ⊂
∞⋃
i=1

Bri(xi)

}
.

We prove the following

Lemma 3.8. Let u be F-minimizing map or u ∈ TMl, l ≥ 0. Let λi ↓ 0
and a ∈ B1(0). Assume uλi,a ⇀ u∞ weakly in H1(B1;N0). Let Σi and Σ∞
be singular sets of uλi,a and u∞, respectively. Then we have

ϕs(Σ∞ ∩B1/2(0)) ≥ lim sup
i→∞

ϕs(Σi ∩B1/2(0)).
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Proof. Let ε > 0 be given. Let {Bri(xi)} be a sequence of balls such that
Σ∞ ∩B1/2(0) ⊂ ⋃∞i=1Bri(xi) and

∞∑
i=1

rsi ≤ ϕs(Σ∞ ∩B1/2(0)) + ε.

By Lemma 3.5 and Corollary 3.6, for large i, uλi,a is continuous on B1/2(0)\⋃∞
i=1Bri(xi). Therefore we have

Σi ∩B1/2(0) ⊂
∞⋃
i=1

Bri(xi).

So

ϕs(Σi ∩B1/2(0)) ≤
∞∑
i=1

rsi ≤ ϕs(Σ∞ ∩B1/2(0)) + ε.

Since ε > 0 is arbitrary, we obtain the result.

We continue the proof of Theorem A. Let Σ be a singular set of u. By
Theorem 1.1, we know Hm−2(Σ) = 0.

Let 0 ≤ s < m − 2 be a real number such that ϕs(Σ) > 0. If there is no
such s, then we complete the proof, since in this case Σ = ∅.

By the density theorem about the measure ϕs, see [12], we have
lim supλ↓0 λ−sϕs(Σ ∩ Bλ/2(x)) > 0 for ϕs-a.e. x ∈ Σ. So there exist a0 ∈ Σ
and λi ↓ 0 such that

lim
i→∞

λ−si ϕs(Σ ∩Bλi/2(a0)) > 0.

We consider the rescaled maps uλi,a0 .
By Lemma 3.5, there exists a subsequence (we also denote it by {uλi,a0})

such that
uλi,a0 → u0 strongly in H1

loc(R
m;N0)

for some u0 ∈ H1
loc(R;N0) with ∂u0

∂r
= 0.

We set Σa0
i = the singular set of uλi,a0 . Then ϕs(Σa0

i ∩ B1/2(0)) =
λ−si ϕs(Σ ∩Bλi/2(a0)) and limi→∞ ϕs(Σa0

i ∩B1/2(0)) > 0.
By Lemma 3.8, we have ϕs(Σ0 ∩ B1/2(0)) > 0, where Σ0 is the singular

set of u0. Since ∂u0
∂r

= 0, Σ0 is a cone, i.e., λΣ = Σ for all λ > 0.
There are two possibilities:

(i) s = 0
(ii) s > 0.

If the case (i) occurs, we complete the proof. So we consider the case (ii).
We take a new coordinate so that the radial coordinate r is x1-direction.
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There exists a1 ∈ Σ0 ∩ ∂B1(0) such that

lim sup
λ↓0

λ−sϕs(Σ0 ∩Bλ(a1)) > 0.

Then by the same argument as before (using Corollary 3.6), there exists a
sequence {λi}, λi ↓ 0 such that

lim
i→∞

λ−si ϕs(Σ0 ∩Bλi(a1)) > 0

and for some subsequence of {u0λi,x1} (we also write it as {uλi,a1}) we have
u0λi,a1 → u1 strongly in H1

loc(R
m;N0), where u1 ∈ TM1 and ∂u1

∂r1
= 0. (Here

r1 is the radial with respect to the new coordinate.)
Let Σ1 be a singular set of u1. Then by Lemma 3.8, ϕs(Σ1 ∩ B1(0)) > 0.

Since ∂u0
∂x1

= 0, we also have ∂u1
∂x1

= 0.
If s − 1 ≤ 0, we stop. Otherwise (this is the case s > 1), since ϕs(Σ1 ∩

B1(0) \ R × {0}) = ϕs(Σ1 ∩ B1(0)) > 0, there exists a2 ∈ Σ2 ∩ ∂Bm−1
1 (0),

where Bm−1
1 (0) is the unit ball in Rm−1 = {(0, x2, . . . , xm)}, such that

lim sup
λ↓0

λ−sϕs(Σ1 ∩Bλ(a2)) > 0

and there exists u2 ∈ TM2 such that ∂u2
∂x1

= ∂u2
∂x2

= ∂u2
∂r

= 0 (for some suitable
choice of coordinate).

We continue this procedure n-times. Then we have ul ∈ H1
loc(R

m;N0) ∩
TMl (1 ≤ l ≤ n) with ∂ul

∂xi
= ∂ul

∂r
= 0 for i = 1, . . . , l (for suitable choice of

coordinate). We can repeat the argument until we have s− n ≤ 0.
In order to obtain constructed un, it is necessary s − n + 1 > 0. Since

s < m− 2, we obtain m− 1 > n, i.e., n ≤ m− 2.
If n = m−2, then Σn = singular set of un ⊃ Rm−2 = {(x1, . . . , xm−2, 0, 0)}.

This is a contradiction since Hm−2(Σn) = 0. Therefore we have n ≤ m − 3
and s ≤ n ≤ m − 3. Since s is an any number satisfying s < dim Σ, we
obtain dim Σ ≤ m− 3.

Finally, we consider the case m = 3. We assume that there exists a
limit point x0 ∈ Br(x0) ⊂⊂ Ω of Σ, that is, there exist distinct points
xi ∈ Σ∩Br(x0) such that xi → x0 as i→∞. Put λi = |xi−x0| and consider
the sequence {uλi,x0}. We remark that singular set of uλi,x0 ∩ ∂B1(0) 6= ∅.
By Lemma 3.5, we may assume uλi,x0 → u∞ strongly in H1

loc(R
m;N0) for

some u∞ ∈ TM. We may also assume that xi − x0/|xi − x0| → ζ ∈ ∂B1(0).
Since xi is a singularity of u, by Lemma 3.2, we have

1
λir

∫
Bλir(xi)

|∇u|2 dx ≥ ε̄
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and, by rescaling

1
r

∫
Br

(
xi−x0
|xi−x0|

) |∇uλi,x0 |2 dx ≥ ε̄ > 0

for all small r > 0.
Letting i→∞, we obtain

1
r

∫
Br(ζ)

|∇u∞|2 dx ≥ ε̄

for all small r > 0.
Therefore ζ is a singularity of u∞. Since Σ∞ (= singular set of u∞) is

a cone, we have H1(Σ∞) > 0. This is a contradiction since H1(Σ∞) = 0.
Therefore Σ is a discrete set in the case m = 3.
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