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NON-SPLITTING INCLUSIONS OF FACTORS OF TYPE III0

Hideki Kosaki and Takashi Sano

By generalizing constructions in Kosaki (1994) and Kosaki
and Longo, we will construct an AFD type III0 factor with un-
countably many non-conjugate subfactors such that (i) each
subfactor has the same flow of weights as the ambient factor,
and (ii) the principal and the dual principal graphs are of a
specific form. We will deal with two cases: (a) the graphs are
described by the Dynkin diagram A4m−3, and (b) the graphs
are the ones given by a pair of a group and its subgroup (see
Kosaki and Yamagami) which are simultaneous semi-direct
products. Subfactors are distinguished by looking at the dual
action on the type II graphs. It is also possible to distinguish
subfactors by investigating automorphisms appearing in the
irreducible decomposition of the relevant sector (or bimod-
ule).

1. Introduction.

Classification of subfactors in the Powers factor of type IIIλ (0 < λ < 1) with
small indices is known to be closely related to that for the AFD II1-factor
R0 and analysis on (trace-scaling) automorphisms for related inclusions of
II∞-factors (see [32, 46] for the classification when Index < 4). For the
latter, the Loi invariant ([32, 33]) plays an important role (see [46], and
also [3, 21, 23, 29, 57] for related results). Since subfactors in R0 are quite
rigid objects and there is only small amount of freedom left for the Loi
invariant, the Powers factor does not generally admit so many subfactors
(with small indices).

On the other hand, an (AFD) type III0 factor admits many subfactors
(with the same flow of weights ([4]) as the ambient factor) due to the fact
that the flow space is huge. In fact, in [28], the existence of an AFD type
III0 factor with uncountably many non-conjugate subfactors (with the same
flow of weights) with the principal graph A5 (∼= S3/S2) was shown. The
purpose of the present article is to generalize this result into two directions
as was mentioned in the abstract.

In §3, by generalizing constructions in [28, 30], we will construct an AFD
type III0 factor with the same properties, but with the principal graph
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A4m−3 (m = 2, 3, · · · ) instead. A (unique) pair of AFD II1-factors with
the principal graph D2m and the symmetry switching the last two vertices
in the graph ([22]) will play important roles. Our construction also uses a
two-to-one ergodic extension (T̃ , X̃) of (T,X). Our inclusion M ⊇ N (of
AFD type III0 factors with the graph A4m−3) has the same flow of weights,
and it is given by (T,X) (together with a ceiling functon). As in [28] the
extention (T̃ , X̃) used during our construction can be recovered from the in-
clusion data of M ⊇ N (as a part of the type II principal graph together with
the dual action). Therefore, by starting from (T,X) with uncountably many
non-conjugate two-to-one ergodic extensions (see [47, p. 262], for example),
we will obtain an AFD type III0 factor with the required property.

In §4, we will show that the subfactors in §3 can be also distinguished
based on the sector technique (for example [14, 34, 36]). A unique (non-
trivial) automorphism among descendent sectors ([14]) in question is shown
to be a period 2 extended modular automorphism ([4]). The corresponding
(±1-valued) cocycle contains information on the extention (T̃ , X̃). This
result requires the characterization of non-strongly outer automorphisms in
[3, 29] and a certain duality between the (Connes-Takesaki) module ([4])
and the modular invariant in the sense of [24, 55]. The latter duality result
will be proved in Appendix A.

In §5, A5(∼= S3/S2) will be generalized to a general group-subgroup pair
G ⊇ H. We need an action (for an inclusion of II1-factors) with non-trivial
Loi invariant so that it is natural to start from a pair of simultaneous semi-
direct products G = G0oµK ⊇ H = H0oµK. The pair of AFD II1-factors
arising from G0 ⊇ H0 admits the obvious K-action. Not only the graphs of
the inclusion (see [1, 31]) but also the Loi invariant of this K-action can be
described in terms of various irreducible representations. The description of
the Loi invariant will be given in Appendix B. Based on this K-action and
a #K-to-one ergodic extension (whose cocycle takes values in K), we will
construct a pair M ⊇ N of AFD type III0 factors whose type II towers are
described by G0 ⊇ H0. The dual action on these towers are determined by
the K-valued cocycle and the Loi invariant of the K-action. Therefore, by
making use of basic properties in [30] of the minimal conditional expectation
([12, 13, 35, 37]), one can compute the (type III) towers of M ⊇ N in
principle.

However, in §6, we will directly show that M ⊇ N in §5 is of the form
P oγ G ⊇ P oγ H by making use of certain coactions and their crossed
products (see [38] for example).

In §7, we will deal with the special case Sn = AnoµZ2 ⊇ Sn−1 =
An−1oµZ2 (the symmetric and alternating groups). Here, everything is very
explicitly calculated from the branching rule for Young diagrams. Conse-
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quently we will once again obtain an AFD type III0 factor with uncountably
many non-conjugate subfactors with the graphs determined by Sn ⊇ Sn−1.

Our basic reference for the modular theory is [52] while standard facts on
the index theory can be found in the original article [19] and [7, 26, 35, 41],
[42]. Some facts necessary here from recent articles are summarized in §2
for the convenience of the reader and partly to fix our notations.

The authors are grateful to the referee for many useful comments which
have made the article more readable.

2. Preliminaries.

Let M ⊇ N be a factor-subfactor pair (of type III in most cases) with a
conditional expectation E. Throughout the article we assume that Ind E <
∞ ([26, 35]) and E is a minimal conditional expectation ([12, 13, 35]).
From the Jones tower N ⊆ M ⊆ M1 ⊆ M2 ⊆ · · · we get the increasing
sequences {Mk ∩N ′}k, {Mk ∩M ′}k of finite dimensional algebras and hence
two graphs as in the II1 case ([7, 19]). We will call them the (type III)
principal and dual principal graphs.
2.1. Let θ (∈ Aut(M,N)) be an automorphism leaving N globally in-
variant. By the uniqueness of a minimal expectation we have E ◦ θ = θ ◦E,
and θ is canonically extended to an automorphism of the basic extension Mk

(in such a way that the relevant Jones projections are fixed). The effect of
the (extended) θ on the towers {Mk ∩ N ′}k, {Mk ∩M ′}k is called the Loi
invariant ([32, 33]) and plays an important role in study on automorphisms
for M ⊇ N ([3, 21, 23, 29, 46, 57]).
2.2. Let ψ be a faithful state in N+

∗ , and we set

M̃ = M oσψ◦E R ⊇ Ñ = N oσψ R.

They are von Neumann algebras of type II∞, and the above construction does
not depend upon the choice of a state (thanks to Connes’ Radon-Nikodym
theorem). The crossed product of M1 (the basic extension) relative to the
modular automorphism group attached to ψ◦E◦E1 (where E1 : M1 −→M is
the dual expectation, [26]) can be identified with the basic extension M̃1 of
M̃ ⊇ Ñ by the characterization of the basic extension (Proposition 1.2, [42],
or see §2 of [30] for details). Furthermore, the Jones projection for M ⊇ N
and that for M̃ ⊇ Ñ are the same. Iterating this procedure, we know that
the Jones tower Ñ ⊆ M̃ ⊆ M̃1 ⊆ M̃2 ⊆ · · · (called the type II tower) can be
obtained as the crossed product of the tower N ⊆ M ⊆ M1 ⊆ M2 ⊆ · · · by
the relevant modular automorphism group. The dual action {θt}t∈R acts on
the type II tower, and as was shown in Corollary 6, [30] we have

Mk ∩N ′ = {M̃k ∩ Ñ ′}θ.(1)
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2.3. Let us further assume that the von Neumann algebras M̃ ⊇ Ñ of
type II∞ have the identical center (∼= L∞(Ω, dν)). This means that M ⊇ N
is of the form M = A ⊇ B = N in the sense of [27]. Let∫ ⊕

Ω

Ñωdν(ω),
∫ ⊕

Ω

M̃ωdν(ω),
∫ ⊕

Ω

(M̃k)ωdν(ω)

be the central decomposition. It is straight-forward to see that the k-th
basic extension of M̃ω ⊇ Ñω is (M̃k)ω (Once again [42] can be used.) From
{(M̃k)ω ∩ Ñ ′ω}k, {(M̃k)ω ∩ M̃ ′

ω}k we also get graphs (which do not depend
upon ω since the centrally ergodic dual action is around). These graphs are
referred to as the type II principal and type II dual principal praphs (of
M ⊇ N) respectively.
2.4. Let α be an action of a (discrete for example) group G for M ⊇ N
and assume that it is canonically extended to an action of the basic extension
Mk as in 2.1. The action α is called strongly outer ([3, 29], or properly outer
[46]) when, for each g 6= e and j, we have: If x ∈Mj satisfies yx = xαg(y)
for y ∈ N , then x = 0.
(i) Such an action is completely classified by its Loi invariant ([46], when
M ⊇ N is strongly amenable and G is amenable) in the type II1 case.

Let End(M) be the unital normal *-endomorphisms of M , and we set
Sect(M) = End(M)/ Int(M), the sectors, as in [36] (and the properly in-
finiteness of M is assumed). For σ ∈ End(M), the conjugate sector is de-
fined by [σ] = [σ̄] (σ̄ = σ−1 ◦ γ, where γ is the canonical endomorphism
attached to M ⊇ σ(M), [34]), and this notion is essential in the sector
theory ([14, 15, 16, 36, 37]). (For simplicity the class [σ] will be denoted
by σ in what follows.) The statistical dimension dσ means the square root
of the minimal index of M ⊇ σ(M). When M ∩ σ(M)′ = C1, σ is called
irreducible. Otherwise, (but dσ <∞) the irreducible decomposition can be
performed (see [36]).
(ii) When N = ρ(M) (ρ ∈ End(M)), the strong outerness is characterized
as follows ([3, 29]): α is strongly outer if and only if none of αg(g 6= e)
appears in the sectors (ρρ̄)n (n = 0, 1, · · · ) as an irreducible component.
2.5. An N -M bimodule (or correspondence) Y = NYM means a Hilbert
space equipped with commuting normal representations of N and the op-
posite algebra of M ([43, 51]). Sectors are closely related to bimodules
([36]), and in fact one has to deal with bimodules in the II1 case. Here,
contragredient bimodules (Ȳ (= M(Ȳ)N) is the conjugate Hilbert space of
Y; m · ξ̄ · n = n∗ · ξ ·m∗) should be considered instead of conjugate sectors,
and the ordinary composition of sectors (as endomorphisms) is replaced by
the notion of the relative tensor product ([51]). Let us briefly recall Oc-
neanu’s description on graphs ([39, 40], see also [58]). Let X be the (basic)
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N -M bimodule NL
2(M)M , and consider the following sequences (that are

obtained by the induction-restriction procedure (see [39, 40])):

NL
2(N)N ,X ,X ⊗M X̄ ,X ⊗M X̄ ⊗N X , · · ·

ML
2(M)M , X̄ , X̄ ⊗N X , X̄ ⊗N X ⊗M X̄ , · · ·

The principal and dual principal graphs describe the irreducible decompo-
sition of the above sequences. The sectors (ρρ̄)k (k = 0, 1, · · · ) actually
correspond to the M -M bimodules appearing (alternatively) in the second
sequence, and hence the irreducible sectors in

⊔
k(ρρ̄)k correspond to the

irreducible M -M bimodules (or the “even vertices” in the dual principal
graph) in [39, 40]. Let Y be an N -M bimodule. Since the (left) N -action
of Y is sitting in the commutant of the right M -action, Y gives us an in-
clusion of factors whose minimal index is called the dimension of Y. Fi-
nally we point out that an automorphism gives rise to an M -M bimodule
with dimension one, or equivalently, a sector with statistical dimension one
(and vice versa). Namely, α ∈ Aut(M) defines the M -M bimodule Hα by
Hα = L2(M); m1 · ξ ·m2 = α(m1)JMm∗2JMξ. Notice that an inner pertur-
bation of α does not change the unitary equivalence class of Hα.

3. Inclusions with the graph A4m−3.

In this section, by generalizing the methods in [28, 30], we will construct
an AFD type III0 factor with many subfactors with the principal graph
A4m−3 (m = 2, 3, · · · ).

Let A ⊇ B be a (unique) inclusion of AFD type II1 factors with the
principal graphD2m (see [39, 40, 44, 45]). Let π be a period 2 automorphism
in Aut(A,B) with non-trivial Loi invariant (see 2.1), that is, (the extended)
π switches the last two vertices of the graph D2m ([22]). (See Figure 1
below.)

Let M0oθ0Z be a discrete decomposition of an AFD type III0 factor.
Hence, M0 is an AFD II∞ von Neumann algebra with a trace trM0 and
trM0 ◦ θ0 = trM0(e−f ·) with a positive element f in the center Z(M0). Let
Z(M0) = L∞(X,µ) and we assume that θ0|Z(M0) is induced by a (non-
singular ergodic) transformation T on X. (Therefore, f is a measurable
function on (X,µ) and the flow of weights of M0oθ0Z is obtained from the
ceiling function f together with the base transformation (T,X).)
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Figure 1.

Let

M0 =
∫ ⊕
X

M0(ω)dµ(ω), trM0 =
∫ ⊕
X

trωdµ(ω)

be the central decomposition together with the disintegration of the trace
trM0 . Assume that the automorphism θ0 corresponds to a field {θ0(ω)}ω∈X
of isomorphisms (θ0(ω) : M0(ω) → M0(Tω)). The assumption trM0 ◦ θ0 =
trM0(e−f ·) means

trTω(θ0(ω)·)dµ(Tω)
dµ(ω)

= e−f(ω)trω(·)(2)

by the standard argument.
Let us choose and fix a two-to-one ergodic extension (T̃ , X̃) of (T,X):

X̃ = X × Z2 (with the obvious product measure),

T̃ n(ω, i) = (T nω, i+ ϕω,n),

where ϕ : (ω, n) ∈ X × Z → ϕω,n ∈ Z2 is a cocycle (see [59], especially
Corollary 3.8).

By using the above cocycle ϕ together with (A ⊇ B, π), we now construct
an automorphism on

A⊗M0 =
∫ ⊕
X

A⊗M0(ω)dµ(ω).

Define the automorphism θ by

θ(x)(ω) = (πϕT−1ω,1 ⊗ θ0(T−1ω))(x(T−1ω))



NON-SPLITTING INCLUSIONS 101

for x ∈ A ⊗M0. We obviously have θ ∈ Aut(A ⊗M0, B ⊗M0). Let trA be
the unique II1 trace on A. Because of trA ◦π = trA, one easily gets

(trA⊗ tr) ◦ θ = (trA⊗ tr)(e−f ·)
by using (2). We now set

M = (A⊗M0)oθZ ⊇ N = (B ⊗M0)oθZ.

Let EB be the unique normal conditional expectation from A onto B. The
tensor product EB ⊗ IdM0 : A⊗M0 → B ⊗M0 commutes with θ because of
π ◦EB = EB ◦ π. Thus, EB ⊗ IdM0 lifts to a normal conditional expectation
E : M → N and

Ind E = Ind (EB ⊗ IdM0) (see 2.1 of [30])

= [A : B] = 4cos2(π/(4m− 2)).

Notice that

Z(A⊗M0) = Z(M0) = L∞(X),

θ|Z(A⊗M0) = θ0|Z(M0).

Therefore, the flow of weights of M is the same as that of M0oθ0Z . The
same is obviously true for N .

In what follows we will assume that f = α01, α0 > 0, that is, the flow of
weights of M0oθ0Z has the constant ceiling function α0. As in 2.2, we set

M̃ = Moσψ◦ER ⊇ Ñ = NoσψR.

It is well-known ([48], see also the proof of Lemma 5) that

Z(M̃) = L∞(X × [0, α0)),

M̃ =
∫ ⊕
X×[0,α0)

M̃ω,tdµ(ω)dt,

M̃ω,t = (A⊗M0)(ω) = A⊗M0(ω).

Of course the similar properties are valid for N , and in particular M̃ ⊇ Ñ
have the identical center (= L∞(X×[0, α0))). The dual action {θt}t∈R for M̃
(and also for Ñ) is described by θ in the well-known fashion. (In the “vertical
direction” θt looks like a translation, and the “base automorphism” is θ.)

Let
B ⊆ A ⊆ A1 ⊆ A2 ⊆ A3 ⊆ · · ·

be the Jones tower with the Jones projections e0 = eB ∈ A1, ei ∈ Ai+1.
The automorphism π is uniquely extended to that of Ai (still denoted by
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π) subject to the condition π(ej) = ej, j ≥ 0. Thanks to the compatibility
between the basic construction and taking a crossed product (by a Z-action)
as in 2.2, we know:
(i) The k-th extension of M ⊇ N is

Mk = (Ak ⊗M0)oθZ.

where θ is defined as before (by using the extended π).
(ii) The k-th extension M̃k of M̃ ⊇ Ñ is the crossed product of Mk relative

to the modular automorphism group (the dual action is described as
above) and:

Z(M̃k) = L∞(X × [0, α0)) with (M̃k)ω,t = Ak ⊗M0(ω).

Thus, in our case the type II tower Ñ ⊆ M̃ ⊆ M̃1 ⊆ · · · gives rise to the
following field (over X × [0, α0)):

(M̃k)ω,t ∩ (Ñ)′ω,t = (Ak ⊗M0(ω)) ∩ (B ⊗M0(ω))′ = Ak ∩B′
M̃k ∩ Ñ ′ = (Ak ∩B′)⊗ L∞(X × [0, α0)).

In particular, the type II principal graph is D2m.
By using the Jones projections ej(= πθ(ej ⊗ idM0), where πθ denotes the

standard imbedding of Aj+1 ⊗M0 into the crossed product · · · recall (i))
∈Mj+1, we have

(1− e0 ∨ e1 ∨ · · · ∨ e2m−4)((A2m−3 ⊗M0) ∩ (B ⊗M0)′) = L∞(X × {0, 1}),

(1− e0 ∨ e1 ∨ · · · ∨ e2m−4)(M̃2m−3 ∩ Ñ ′) = L∞(X × [0, α0)× {0, 1}).

In fact, A2m−3∩B′ is the direct sum of several matrix algebras and two copies
of C (corresponding to the last two vertices of D2m), and the projection
1− e0 ∨ e1 ∨ · · · ∨ e2m−4 kills all the matrix algebras. Recall the description
of θt in terms of the “base automorphism” θ (containing ϕT−1ω,1) before.
Whenever the extension T̃ switches the two sheets (i.e., ϕT−1ω,1 = 1 6= 0),
πϕT−1ω,1 switches the last two vertices of D2m and hence θ (considered on
(1 − e0 ∨ e1 ∨ · · · ∨ e2m−4)((A2m−3 ⊗M0) ∩ (B ⊗M0)′) = L∞(X × {0, 1}))
switches the two sheets. This means that, on the above abelian algebra
L∞(X × [0, α0)× {0, 1}), the dual action {θt} looks like:
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Figure 2.

Theorem 1. The inclusion M ⊇ N of AFD type III0 factors constructed
in this section satisfies: (i) M and N have the same flow of weights (the flow
built under the constant ceiling function α0 together with the base transfor-
mation (X,T )), (ii) the principal graph of M ⊇ N is A4m−3, (iii) the type
II principal graph of M ⊇ N is D2m, and (iv) a given two-to-one ergodic
extension (X̃, T̃ ) can be recovered from ((1− e0 ∨ e1 ∨ · · · ∨ e2m−4)(M̃2m−3 ∩
Ñ ′), {θt}t∈R).

Proof. Figure 2 represents the flow built under the constant ceiling function
α0 with the base transformation (T̃ , X̃) so we have (iv). It remains to show
(ii). To this end, it suffices to show that (1−e0∨e1 · · ·∨e2m−4)(M2m−3∩N ′) is
one dimensional. However, it is included in {(1−e0∨e1 · · ·∨e2m−4)(M̃2m−3∩
Ñ ′)}θ because of θt(ej) = ej (see the proof of Corollary 7, [30]) and (1). This
space of fixed points is one dimensional because of the ergodicity of (T̃ , X̃)
(recall (iv), i.e., Figure 2).

The last statement (iv) means that the given two-to-one ergodic extension
can be captured by inclusion data of M ⊇ N . As in [28], by using an ergodic
transformation with uncountably many two-to-one ergodic extensions, we
conclude:

Corollary 2. There exists an AFD type III0 factor M with uncountably
many non-conjugate subfactors N such that (i) M and N have the same flow
of weights, and (ii) the principal graph of M ⊇ N is A4m−3.
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4. Extended modular automorphisms appearing in sectors.

In this section we will show that the two-to-one ergodic extension (that
appeared in the type II tower) in §3 can be also captured by the sector
tecnique (2.4 and 2.5).

We begin by expressing the inclusion M ⊇ N (in §3) in a slightly different
way. The original construction used the triple (A ⊇ B, π). One can replace
this by

A⊗M2(C) ⊇ B ⊗M2(C), π ⊗Ad

(
0 1
1 0

)
.

In fact, the action is strongly outer (seen easily from 2.4.(ii), actually Corol-
lary 8, [29]) and the tensoring does not change the Loi invariant (2.4.(i)).
Therefore,

M = (A⊗M2(C)⊗M0)oθZ ⊇ N = (B ⊗M2(C)⊗M0) oθZ,

where M0 is as in §3 and θ is defined as before by using(
π ⊗Ad

(
0 1
1 0

))ϕT−1ω,1

∈ Aut(A⊗M2(C)).

Let D(⊆M2(C)) be the abelian algebra of diagonal matrices. Since θ leaves
A⊗D ⊗M0 (and B ⊗D ⊗M0) invariant, we can set

P = (A⊗D ⊗M0)oθZ ⊇ Q = (B ⊗D ⊗M0)oθZ.

Notice that

Z(A⊗D ⊗M0) = Z(B ⊗D ⊗M0)

= Z(D)⊗Z(M0)

= L∞(X × Z2).

Since Ad
(

0 1
1 0

)
exchanges the two sheets, P and Q have the same flow of

weights, and this is given by the constant ceiling function α0 together with
the base transformation (X̃, T̃ ). The inclusion P̃ ⊇ Q̃ (defined as before)
of II∞ von Neumann algebras gives rise to the constant field (D2m) over
X̃ × [0, α0) of principal graphs, and the dual action {θt} is described by the
“base automorphism” θ. Therefore, we easily conclude:

Lemma 3. The principal graph of P ⊇ Q is D2m.
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Notice that we have:
M ⊇ N

∪ ∪
P ⊇ Q

.

Set

U = IdA⊗
(

0 1
1 0

)
⊗ IdM0 .

This is a self-adjoint unitary in B ⊗ M2(C) ⊗ M0 (⊆ A ⊗ M2(C) ⊗ M0)
and normalizes A ⊗M2(C) ⊗M0 and B ⊗M2(C) ⊗M0. We also observe
θ(U) = U . Therefore, πθ(U) ∈ N (⊆ M) normalizes P and Q. Hence, the
automorphism

α = Ad πθ(U)

satisfies α ∈ Aut(P,Q) and α2 = 1. Since Ad U acts non-trivially on Z(A⊗
D ⊗M0) = Z(B ⊗D ⊗M0), α ∈ Aut(P ) and α|Q ∈ Aut(Q) are outer. The
indices of M ⊇ P and N ⊇ Q being obviously 2, we conclude that

M = P oα Z2 ⊇ N = Qoα Z2.

Since M ⊇ N are AFD type III0 factors with the same flow of weights,
they are isomorphic by the Krieger theorem. Hence, there exists a (unital
normal *-) endomorphism ρ of M satisfying N = ρ(M).

Lemma 4. The dual automorphism α̂ (of period 2) ∈ Aut(M,N) appears
in
⊔
k(ρρ̄)k.

Proof. We assume that α̂ does not appear, i.e., α̂ is strongly outer for the
inclusion M ⊇ N (2.4.(ii)). We look at the tower of M oα̂ Z2 ⊇ N oα̂ Z2.
Let N ⊆ M ⊆ M1 ⊆ M2 · · · be the Jones tower as usual. Then the k-th
extension of M oα̂ Z2 ⊇ N oα̂ Z2 is Mk oα̂ Z2, and it is easy to see

(Mk oα̂ Z2) ∩ (N oα̂ Z2)′ = (Mk ∩N ′)α̂
by the strong outerness (see [3]). The principal graph of M ⊇ N is A4m−3

(Theorem 1, (ii)), and α̂ acts trivially on the tower {Mk ∩ N ′}k (which is
generated by the Jones projections). Hence

(Mk oα̂ Z2) ∩ (N oα̂ Z2)′ = Mk ∩N ′,

and we conclude that the principal graph of M oα̂ Z2 ⊇ N oα̂ Z2 is A4m−3.
On the other hand, the Takesaki duality implies

M oα̂ Z2 ⊇ N oα̂ Z2
∼= P ⊇ Q.
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Hence, Lemma 3 shows that the principal graph of M oα̂ Z2 ⊇ N oα̂ Z2 is
D2m, a contradiction.

Since M ⊇ ρ(M) = N has the principal graph A4m−3, a unique (non-
trivial) automorphism (i.e., a sector with statistical dimension 1) appears in
the irreducible decomposition of (ρρ̄)2m−2. (See 3.2 of [14] for details.) Since
α̂ is an outer automorphism (i.e., α̂ 6= id as a sector), thanks to Lemma 4
this must be the above unique automorphism appearing in (ρρ̄)2m−2.

We have already seen that the flow of weights is given by the constant
ceiling function α0 together with the base transformation (X̃, T̃ ).

Lemma 5. The period 2 automorphism α has a non-trivial module, and

(mod α)(ω, i, t) = (ω, i+ 1, t).

Proof. Let ψ be the dual weight of trA⊗ trM2(C)⊗ trM0 on M . Then ψ′ = ψ|P
is the dual weight of trB ⊗ trM2(C)⊗ trM0 , and we set P̃ = Poσψ′R (⊆ M̃ =
MoσψR). Since ψ′ ◦ α = ψ′, the canonical extension α̃ ∈ Aut(P̃ ) ([8, 9]) is
charaterized by α̃(πσ=σψ(p)) = πσ(α(p)), p ∈ P, and α̃(λ(t)) = λ(t). Notice
that σψt (πθ(U)) = πθ(U). Thus, πσ(πθ(U)) satisfies

λ(t)πσ(πθ(U))λ(t)∗ = πσ(πθ(U)),

πσ(πθ(U)) = πθ(U)⊗ IdL2(R).

The first equality guarantees that α̃ = Ad πσ(πθ(U)). The algebra M̃ is
isomorphic to

{(A⊗M2(C)⊗M0)⊗ λ(R)′′}oθ̃ Z
∼= {A⊗M2(C)⊗M0 ⊗ L∞(R)}o ˜̃

θ
Z

(via the Fourier transform), where ˜̃
θ is defined by(

˜̃
θ(x)

)
(ω, t) =

((
π ⊗Ad

(
0 1
1 0

))ϕT−1ω,1

⊗ θ0(T−1ω)

)
(x(T−1ω, t− α0)),

x(ω, t) ∈ A⊗M2(C)⊗M0(ω) (see [48] for details). Under these isomorphisms,
πσ(πθ(U)) is mapped to

π ˜̃
θ

(
IdA⊗

(
0 1
1 0

)
⊗ IdM0 ⊗ IdL2(R)

)
.

Since the automorphism induced by this unitary exchanges the two sheets of
Z(A⊗D⊗M0⊗L∞(R)) = L∞(X×Z2×R), the result is now obvious.
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Recall that the flow of weights of P is a two-to-one extension of that of M ,
and hence it is given by a cocycle (X × [0, α0)×R → S2

∼= Z2). Lemma 5
and Lemma A.2 (also the paragraph after the lemma) in Appendix A imply:

Theorem 6. A unique (non-trivial) automorphism appearing in the ir-
reducible decomposition of (ρρ̄)2m−2 is a period 2 extended modular auto-
morphism of M. Futhermore, the cocycle (∈ Z1

θ(R,U(Z(M̃)))) defining this
automorphism is exactly the one arising from the two-to-one extention struc-
ture of the flow of weights of P .

It is actually possible to prove this result directly from Theorem 1. How-
ever, our approach here seems to reveal more structure of the inclusion
M ⊇ N constructed in §3. When M0 is a factor, our construction gives
rise to a unique non-splitting inclusion of AFD type IIIλ factors with 0 <
λ = e−α0 < 1 ([32, 46]). Also the automorphism in the above theorem is a
period 2 modular automorphism (see [16], especially Remark 3.8).

5. Inclusions constructed from group-subgroup pairs.

Group-subgroup pairs give us an abundance of inclusions of AFD II1 factors.
Furthermore, it is easy to construct automorphisms for these inclusions with
non-trivial Loi invariant, and one can explicitly calculate the Loi invariant
by looking at irreducible representations of the finite groups in question.
Based on these inclusions of II1-factors, we will construct many non-splitting
inclusions of AFD type III0 factors.

Let G0 be a finite group with a subgroup H0 such that {h ∈ H0 : ghg−1 ∈
H0 for each g ∈ G0} = {e} (see Proposition 3.1, [31]). Let µ be an action of
a finite group K on G0 leaving H0 globally invariant. We thus have the pair
of the simultaneous semi-direct products

G = G0oµK ⊇ H = H0oµK.

Let R0 be the AFD II1-factor and α : G → Aut(R0) be a (unique) outer
action ([18]). We thus get the inclusion of AFD II1-factors

R0oαG0 ⊇ R0oαH0.

These factors are included in R0oαG, and Ad λk (k ∈ K) normalizes
R0oαG0 and R0oαH0. Hence we can set

βk = Ad λk|R0oαG0
∈ Aut(R0oαG0, R0oαH0), k ∈ K.

The action β (of K) obviously satisfies

βk(πα(x)) = πα(αk(x)), x ∈ R0,(3)
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βk(λg0) = λkg0k−1 = λµk(g0), g0 ∈ G0.(4)

We can construct inclusions of AFD type III0 factors by making use of the
triple (R0 oα G0, R0 oαH0, β) and by modifying the construction presented
in §3. However, it will be more convenient (for later purposes) to replace
the above triple by the following (equivalent · · · by the duality) triple:(

A = R0 oα G0 oβ K oβ̂ K, B = R0 oα H0 oβ K oβ̂ K, π = ˆ̂
β

)
.

Here, β̂ is the dual coaction of β and ˆ̂
β is the dual action of β̂ (see [38]

for details). In this section the reader might as well regard (A,B, π) as
(R0oαG0, R0oαH0, β).

As in §3, let M0oθ0Z be a discrete decomposition of an AFD type III0 fac-
tor whose flow of weights is given by the constant ceiling function
α0 (trM0 ◦θ0 = e−α0 trM0) and the base transformation (and we will keep
the same notation as in §3). Let ϕ : (ω, n) ∈ X×Z→ ϕω,n ∈ K be a cocycle
(i.e., ϕω,n+m = ϕTnω,mϕω,n, the right side being the product in K) such that
the following extension (T̃ , X̃) of (T,X) is ergodic (this is a normal extension
in the sense of Zimmer, [59]):

X̃ = X ×K (with the obvious product measure),
T̃ n(ω, k) = (T nω, kϕ−1

ω,n).

Define the automorphism θ ∈ Aut(A⊗M0) by

θn(x)(ω) = (πϕT−nω,n ⊗ θ0(T−nω))(x(T−nω))

(for x(ω) ∈ A⊗M0(ω)). We have θ ∈ Aut(A⊗M0, B⊗M0), and we can set

M = (A⊗M0)oθZ ⊇ N = (B ⊗M0)oθZ .

As in §3, a normal conditional expectation from M onto N is constructed,
and its index is #G0/#H0. We can also easily see that M and N have the
same flow of weights and that it is given by the constant ceiling function α0

and the base transformation (T,X). The type II principal and dual principal
graphs are seen from

M̃k ∩ Ñ ′ = (Ak ∩B′)⊗ L∞(X × [0, α0))

M̃k ∩ M̃ ′ = (Ak ∩A′)⊗ L∞(X × [0, α0)),

and the graphs are described based on the Mackey machine ([1, 31], see
also the third paragraph in Appendix B) applied to G0 ⊇ H0. The dual
action {θt} can be computed in the same way as in §3 by using the “base
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automorphism” θ (defined by making use of the K-valued cocycle ϕ and
βk (k ∈ K)). Hence, the dual action on the above towers is completely
described once we know the action of βk on {Ak ∩ B′}, {Ak ∩ A′} (i.e.,
the Loi invariant). The description of the Loi invariant will be obtained in
Appendix B (Lemma B.1).

6. Crossed product representation.

We would like to compute the principal and the dual principal graphs for the
inclusion M ⊇ N constructed in the previous section. Since Mk∩N ′,Mk∩M ′

can be computed as the fixed point algebras under the dual action (recall
(1)), it suffices to know the Loi invariant of β (as was explained at the last
part of §5). However, in this section, we will directly show that M ⊇ N is
of the form P oγ G ⊇ P oγ H (so that the graphs can be computed by the
algorithm in [31] applied to G ⊇ H).

Let us recall that

A = R0 oα G0 oβ K oβ̂ K ⊇ B = R0 oα H0 oβ K oβ̂ K,π = ˆ̂
β.

In what follows, the left regular representation of K appearing in the
definition of R0 oα G0 oβ K will be denoted by λ′k. The coaction is the
homomorphism

β̂ :
∑
k∈K

πβ(xk)λ′k ∈ R0 oα G0 oβ K

−→
∑
k∈K

πβ(xk)λ′k ⊗ λ′k ∈ (R0 oα G0 oβ K)⊗ λ′(K)′′

and

R0 oα G0 oβ K oβ̂ K =
〈
β̂(R0 oα G0 oβ K), 1⊗ l∞(K)

〉′′
,

where each f ∈ l∞(K) is identified with the multiplication operator mf on

l2(K) (see [38] for details). The bidual action π = ˆ̂
β is

πk
(
β̂(x)

)
= β̂(x), x ∈ R0 oα G0 oβ K,

πk(1⊗mf ) = 1⊗mf(·k), f ∈ l∞(K).

We now consider the two-step inclusions

R0 oα G0 oβ K oβ̂ K ⊇ R0 oα H0 oβ K oβ̂ K ⊇ R0 oβ̂ K.

Notice that the smallest algebra is actually

〈
β̂(πβ(πα(R0))) = πβ(πα(R0))⊗ 1, 1⊗ l∞(K)

〉′′
= πβ(πα(R0))⊗ l∞(K).

(5)
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By using λg ∈ R0 oα G0 (g ∈ G0) and λ′k ∈ R0 oα G0 oβ K (k ∈ K), we set

Λgk = β̂(πβ(λg)λ′k).

Since β̂ and πβ are homomorphisms, (4) shows that

gk ∈ G = G0oµK 7→ Λgk ∈ R0oαG0oβKoβ̂K

is a unitary representation (and Λhk ∈ R0oαH0oβKoβ̂K when g = h and
hk ∈ H = H0oµK). We also note:

(i) Λgkβ̂(πβ(πα(x)))Λ∗gk = β̂(πβ(λg)λ′kπβ(πα(x))λ′k
∗
πβ(λg)∗)

= β̂(πβ(λg)πβ(βk(πα(x)))πβ(λg)∗)

= β̂(πβ(λg)πβ(πα(αk(x)))πβ(λg)∗) (by (3))

= β̂(πβ(αg(πα(αk(x)))))

= β̂(πβ(πα(αgk(x)))), x ∈ R0,

(ii) Λgk = πβ(λg)λ′k⊗λ′k implies Λgk(1⊗mf )Λ∗gk = 1⊗mf(k−1·), f ∈ l∞(K).

Therefore, the unitary Λgk normalizes the subalgebra R0oβ̂K. We now set

Λ̃gk = πθ(Λgk ⊗ 1M0) ∈ ((R0oαG0oβKoβ̂K)⊗M0)oθZ = M.

Let ` denote the shift in M corresponding to the generator of Z. We then
have `Λ̃gk`

∗ = Λ̃gk since θ was defined by using π = ˆ̂
β and ˆ̂

β acts trivially
to Λgk = β̂(πβ(λg)λ′k). Hence, we have:

(iii) Λ̃gk`Λ̃∗gk = `.

From (i), (ii), (iii) we conclude that the unitary Λ̃gk normalizes the subalge-
bra

P = ((R0oβ̂K)⊗M0)oθZ (⊆ N ⊆M).

Lemma 7. The subalgebra P is a factor of type III0 whose flow of weights is
given by the constant ceiling function α0 and the base transformation (T̃ , X̃).

Proof. The center of R0oβ̂K is l∞(K) (by (5)) and hence Z((R0oβ̂K)⊗M0)
is l∞(K)⊗Z(M0) = L∞(X̃). For mf ⊗ F ∈ l∞(K)⊗ L∞(X), we compute

(θ(mf ⊗ F ))(ω) = (πϕT−1ω,1
⊗ θ0(T−1ω))((mf ⊗ F )(T−1ω))

= (πϕT−1ω,1
)(F (T−1ω)mf )

= F (T−1ω)mf(·ϕT−1ω,1),

and the base transformation is (T̃ , X̃).
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Theorem 8. The map γ : gk ∈ G = G0oµK 7→ γgk = Ad Λ̃gk|P ∈ Aut(P )
is an outer action, and we have

M = PoγG ⊇ N = PoγH.

Proof. To show the outerness of Ad Λ̃gk|P (gk 6= e) by Kallman’s criterion
([20]), let us assume that x =

∑
n xn`

n ∈ P = ((R0oβ̂K)⊗M0)×θZ satisfies
yx = xΛ̃gkyΛ̃∗gk for each y ∈ P . When y ∈ M0, we have yx = xy from the
definition of Λ̃gk and yxn = xnθ

n(y) for each n. Thus, xn = 0 (n 6= 0) by
the central freeness of θn and x = x0 belongs to (R0oβ̂K)⊗Z(M0). Hence,
x is considered as an R0-valued function on K × X (recall (5)). When
y ∈ R0 (⊆ R0 oβ̂ K), (i) implies yx(k′, ω) = x(k′, ω)αgk(y) for each k′ ∈ K
and a.e. ω ∈ X. Since α is an outer action of G, we conclude x(k′, ω) = 0 (for
each k′ and a.e. ω) and x = 0 as desired.

The index between M and P is obviously #G0 ×#K = #G, and hence
we conclude M = PoγG. Repeating the same argument for H = H0oµK,
we also get N = PoγH.

We have already known how γgk = Ad Λ̃gk|P acts on Z(R0oβ̂K) = l∞(K)
((5) and (ii) before Lemma 7). When g 6= e and k = e, γg on R0oβ̂K ∼=
R0⊗ l∞(K) ((5)) looks like αg⊗ Id ((i) before Lemma 7) and αg is of course
outer. Hence, an analogous argument to the proof of Lemma 5 implies the
following:

Proposition 9. The invariants (in the sense of [24, 55]) of the G-action
γ on P is given by (i) (mod γgk)(ω, h, t) = (ω, kh, t) for (ω, h, t) ∈ X̃ ×
[0, α0) = X × K × [0, α0) (see Lemma 7), (ii) Ker (mod γ) = G0, and
(iii) N(γ) = 1.

Notice that the flow (the dual action) and mod γgk commute since they
correspond to the right and left multiplications in the group K.

Remark. The invariant N(·) being trivial, all of M,N and P admit
a common Cartan subalgebra ([51]). Hence, in particular, the inclusion
M ⊇ N can be described by making use of an ergodic (discrete measured)
relation-subrelation pair (see for example [54]). Such inclusions were studied
in [6, 10, 11, 53].
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7. The symmetric and alternating groups.

In this section, we will restrict ourselves to the special case (n ≥ 3):

G = Sn ⊃ H = Sn−1

∪ ∪
G0 = An ⊃ H0 = An−1

.

Here, Sn−1 (and similarly for the alternating groups) is considered as a
subgroup inSn consisting of all permutations fixing n. NoticeSn = AnoµZ2

and Sn−1 = An−1oµZ2 with Z2 = {e, (1, 2)} and µ(1,2)(g) = (1, 2)g(1, 2).
Everything (in §5,6) will be explicitly calculated by using Young diagrams.

Let M ⊇ N be the factor-subfactor pair constructed before. (Thanks to
Theorem 8, the principal and the dual principal graphs can be computed
from Sn/Sn−1, see Example 3.3, [31].) The type II graphs are given from
An/An−1. Generally, the dual action on them can be computed from the
cocycle determining the extension structure and the Loi invariant of the K-
action β (see the last part of §5). In our case, since K = Z2 and (T̃ , X̃)
is a two-to-one ergodic extension, the description becomes particularly easy.
(When T̃ switces the two sheets, i.e., the cocycle takes the value 1 6= 0 ,
on (Ak ∩ B′)⊗ L∞(X) the move determined by the Loi invariant appears.)
Hence, what we have to clarify is the induction-restriction procedure for
An/An−1 and the Loi invariant of the Z2-action on the graphs (Appendix
B).

It is well-known that the irreducible representations Ŝn are parameter-
ized by Young diagrams of weight n. The following facts are standard ([17]):
(i) The irreducible representation corresponding to a non-selfconjugate Young
diagram and its conjugate provide us the same (up to unitary equivalence)
irreducible representation of An (when restricted to the subgroup An). Fur-
thermore, for such an irreducible representation π of An, we have π((1, 2) ·
(1, 2)) ∼= π.
(ii) The representation corresponding to a selfconjugate Young diagram
splits into two mutually inequivalent irreducible representations (of the same
dimensions) when restricted to the subgroup An. Furthermore, µ(1,2) =
Ad (1, 2) on An exchanges these two representations.
(iii) By looking at a half of non-selfconjugate Young diagrams and selfcon-
jugate Young diagrams (each of them provides us two representations as in
(ii)), one obtains a complete set of the irreducible representations of An. The
induction-restriction procedure for An/An−1 is naturally inherited from that
for Sn/Sn−1.

When n = 3, A3 = Z3 and A2 = {e}. Therefore, we will assume
n ≥ 4 in what follows. The homogeneous space An/An−1 is identified with
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{1, 2, · · · , n}:

An/An−1 =
⊔n

i=1
{σAn−1 : σ ∈ An with σ(n) = i}.

As the left action of An−1 moves the first n − 1 points (and fixes the last
point), we have the two orbits O0,O1 : g0 = e, g1 = (1, 2)(n − 1, n) · · · for
the notations here and below, see Appendix B. Hence, H0 = An−1 and
H1 = An−2(= {σ ∈ An : σ(n) = n, σ(n − 1) = n − 1}). Notice that
k = (1, 2) ∈ K = Z2 satisfies kg1k

−1 = g1. Thus, n(i, k) = i (i.e., k does not
shuffle the orbits), and h(i, k) = e. Consequently, the Loi invariant of βk for
the irreducible B −B bimodules (Ân−1

⊔
Ân−2) is just

π 7→ π(k−1 · k)
(
π ∈ Ân−1

⊔
Ân−2

)
.

When n = 5, by collecting a “half” of Young diagrams and splitting each
self-conjugate diagram into two pieces ((ii), (iii)), we obtain the following
graphs of A = R0 oα A5 ⊇ B = R0 oα A4 (Appendix B and p. 473, [31]):
The principal graph

Figure 3.

The dual principal graph

Figure 4.
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Here, arrows indicate the Loi invariant, and they appear in such a way that
each arrow connects the two irreducible representations described in (ii).
Computations for other n’s are left to the reader. When n = 4, the two
graphs coincide and we get:

Figure 5.

Since the Loi invariant is always non-trivial (due to the presence of selfcon-
jugate Young diagrams), the original two-to-one extension is obtained from
the inclusion data of M ⊇ N . Hence, once again by using an ergodic trans-
formation with uncountably many two-to-one ergodic extensions we have the
following generalization of Corollary 7, [28]:

Theorem 10. There exists an AFD type III0 factor M with uncountably
many non-conjugate subfactors N such that (i) M and N have the same
flow of weights, (ii) the principal and the dual principal graphs for M ⊇ N
are the ones determined by Sn/Sn−1, and (iii) the type II principal and the
dual principal graphs for M ⊇ N are the ones determined by An/An−1.

As was shown in [31], the irreducible sectors in
⊔
k(ρρ̄)k (i.e., M −M

bimodules) are parameterized by Ĝ when M ⊇ N(= ρ(M)) arises from
G ⊇ H (see also 2.5 and Appendix B), and the statistical dimension is
actually the degree of the corresponding irreducible representation (p. 669,
[31]).

Remark. Figure 5 (the Coxeter-Dynkin diagram E
(1)
6 ) appears in [2]

(among many others). Its dual graph in the sense of [2] is the one for S4/S3

(i.e., the Coxeter-Dynkin diagram E
(1)
7 ) and possesses the obvious symme-

try. In terms of bimodules (2.5) arising from the pair C = R0 oαS4 ⊇ D =
R0 oα S3, the last vertex in E

(1)
7 comes from the signature representation

ε ∈ Ŝ4 and represents a non-trivial one dimensional C-C bimodule H = Hαε
(i.e., automorphism αε). The above mentioned symmetry expresses the ef-
fect of taking the relative tensor product with H (or equivalently, taking the
composition with the automorphism αε in the sector picture). By Proposi-
tion 4, Corollary 6 in [29] and the trick in Lemma 3.3, [15], after an inner
perturbation (see the last part of 2.5) we may and do assume αε ∈ Aut(C,D)
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and α2
ε = Id. The construction in p. 663, [31] actually shows that we can

choose
αε :

∑
g∈S4

pgλg ∈ C 7→
∑
g∈S4

sgn(g) pgλg ∈ C,

and the fixed point algebras Cαε , Dαε are A,B respectively. In the orbifold
construction ([5]), a Z3-symmetry typically appears instead.

Finally we point out a phenomenon similar to Theorem 6 for M ⊇ N
in the above theorem. Let αε be the automorphism determined by the one
dimensional M -M bimodule corresponding to the signature representation
ε(∈ Ŝn). Once again αε is described as above (but with the crossed product
in Theorem 8) and a direct calculation shows

Mαε = ((R0oαAnoβ̂Z2)⊗M0)oθZ.

Since Z(R0oαAnoβ̂Z2) ∼= l∞(Z2), the flow of weights of Mαε (or equiva-
lently, that of MoαεZ2) is given by the constant ceiling function α0 and the
base transformation (T̃ , X̃) by the identical arguments as in the proof of
Lemma 7. The flow of weights of MoαεZ2 being a two-to-one extension of
that of M , αε must be an extended modular automorphism (see [25, 50]).

Appendix A. Duality between the module and modular invariant.

The module and the modular invariant (among others) appear as invariants
for the classification of actions on AFD type III factors ([24, 55]). They are
believed to be the “dual invariant” to the each other. In this appendix, we
will show that this is indeed the case for a Z2-action. Computations here are
implicit in [25, 50], and the authors feel that duality results in more general
setting deserve investigation.

Let M = NoθR be the continuous decomposition of a type III factor M
(τ ◦ θt = e−tτ, t ∈ R). For a given cocycle C = {ct}t∈R ∈ Z1

θ(R,U(Z(N))),
the extended modular automorphism σC = σψ

C
(ψ = τ̂ , the dual weight)

∈ Aut(M) is defined by

σC(πθ(n)) = πθ(n), n ∈ N,
σC(λ(t)) = πθ(ct)λ(t), t ∈ R

(see [4] for details). Let M̃ = MoσR be the crossed product relative to the
modular automorphism group {σs = σψs }s∈R so that M̃ is generated by the
following three kinds of operators:

πσ(πθ(n)), πσ(λ(t)), λ′(s); n ∈ N, t ∈ R, s ∈ R.
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The dual action of {θt}t∈R is {σs}s∈R (because of ψ = τ̂) so that M̃ is
isomorphic to N ⊗ B(L2(R)) thanks to the Takesaki duality. Under this
isomorphism the above three generators become

(πσ(πθ(n))ξ)(r) = θ−r(n)ξ(r),

(πσ(λ(t))ξ)(r) = ξ(r − t),
(λ′(s)ξ)(r) = e−isrξ(r).

(ξ ∈ L2(N)⊗ L2(R) ∼= L2(R;L2(N)), r ∈ R.) We set

(VCξ)(r) = c∗−rξ(r).

Obviously VC is a unitary in N ⊗B(L2(R))(= (N ′ ⊗C1)′).

Lemma A.1. The canonical extension σ̃C ∈ Aut(M̃ ∼= N ⊗ B(L2(R))) in
the sense of [8, 9] is Ad VC.

Proof. Because of ψ ◦ σC = ψ, the canonical extension σ̃C is characterized by
the properties σ̃C(πσ(πθ(n))) = πσ(πθ(n)), σ̃C(πσ(λ(t))) = πσ(πθ(ct))πσ(λ(t)),
and σ̃C(λ′(s)) = λ′(s). The first and third equalities follow from the obvious
commutativity of VC with πσ(πθ(n)) and λ′(s). On the other hand, since

(VCπσ(λ(t))VC
∗ξ)(r) = c∗−r(V

∗
Cξ)(r − t)

= c∗−rc−r+tξ(r − t)
= θ−r(ct)ξ(r − t)
= (πσ(πθ(ct))πσ(λ(t))ξ)(r),

we have the second equation.

In what follows, we will assume that σC has period 2 so that c2
t = 1 and

V = VC is a self-adjoint unitary. We have

M̃oσ̃CZ2 =

{(
X Y

V Y V ∗ V XV ∗

)
: X,Y ∈ N ⊗B(L2(R))

}
.

Notice M̃ oσ̃C Z2 = (M oσC Z2)̃, the crossed product of M oσC Z2 relative to
the modular automorphism group {σχt }. Here, χ is the weight on M oσC Z2

naturally attached to ψ = τ̂ on M . The dual automorphism ˆ̃σC (of period
2) is easily seen to be ˜̂σC, and it is given by

Ad

(
1 0
0 −1

)
.
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The dual action {θ′t} of {σχt } is known to be σ̂t ⊗ IdM2(C). It is straight-
forward to check

Z(M̃oσ̃CZ2) =

{(
X V Y
Y V ∗ X

)
: X,Y ∈ Z(N ⊗B(L2(R)))

}
,

which is isomorphic to Z(N)⊕Z(N) via(
X V Y
Y V ∗ X

)
↔ 2−1(X + Y )⊕ 2−1(X − Y ).

Notice(
1 0
0 −1

)(
X V Y
Y V ∗ X

)(
1 0
0 −1

)
=

(
X −V Y
−Y V ∗ X

)
,

(
σ̂t ⊗ IdM2(C)

)( X V Y
Y V ∗ X

)
=

(
σ̂t(X) σ̂t(V Y )
σ̂t(Y V ∗) σ̂t(X)

)

=

(
σ̂t(X) V V ∗σ̂t(V Y )

σ̂t(Y V ∗)V V ∗ σ̂t(X)

)
.

They correspond to the following elements (in Z(N)⊕Z(N)) respectively:

2−1(X − Y ) ⊕ 2−1(X + Y ),

2−1(σ̂t(X) + V ∗σ̂t(V Y )) ⊕ 2−1(σ̂t(X)− V ∗σ̂t(V Y )).

Therefore, on Z(N)⊕Z(N) we have

ˆ̃σC(X ⊕ Y ) = Y ⊕X
θ′t(X ⊕ Y ) = 2−1{σ̂t(X + Y ) + V ∗σ̂t(V )σ̂t(X − Y )}

⊕2−1{σ̂t(X + Y )− V ∗σ̂t(V )σ̂t(X − Y )}.
We now assume that (Z(N), θt), the flow of weights of M, is given by an
ergodic flow (X,Ft):

Z(N) ∼= L∞(X) and (θt(f))(ω) = f(Ftω).

The calculations so far show Z(M̃oσ̃CZ2
∼= (MoσCZ2)̃) ∼= L∞(X × {0, 1})

and ˜̂σC = ˆ̃σC|Z(M̃oσ̃CZ2) (the module of σ̂C) is induced by the following map:

(x, i) ∈ X × {0, 1} → (x, i+ 1)

(i.e., exchanging the two sheets). In the present set-up, each ct is a function
on X with the values ±1 and satisfies the cocycle equation

ct+s(ω) = ct(ω)(θt(cs))(ω) = ct(ω)cs(Ft(ω)).
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We set
ϕω,t = ct(ω) ∈ {±1}.

Therefore, the above equation means

ϕω,t+s = ϕFt(ω),sϕω,t,

that is,
ϕ : (ω, t) ∈ X ×R→ ϕω,t ∈ {±1}

is a {±1}-valued Ft-cocycle on X. Therefore, by identifying the multiplica-
tive group {±1} with the symmetric group S2 in the obvious way, the fol-
lowing {F̃t}t∈R defines a flow on X × {0, 1}:

F̃t(ω, i) = (Ft(ω), ϕω,t(i)).

Under the Takesaki duality, σ̂t (the bidual of θt) corresponds to θt⊗Ad(λ(t)∗).
In paticular, for X ∈ Z(N)(⊆ N ⊗B(L2(R))), we have

σ̂t(X) = θt(X).

We also compute

(V ∗σ̂t(V )ξ)(r) = c−rθt(c∗−t−r)ξ(r)

= ctξ(r).

Thus, V ∗σ̂t(V )(∈ Z(N) ∼= L∞(X)) corresponds to the function

ω ∈ X → ct(ω) = ϕω,t ∈ {±1}.
Now it is clear that the dual action θ′t on Z(M̃oσ̃CZ2) ∼= L∞(X × {0, 1}) is
induced by {F̃t}t∈R. Hence we have shown:

Lemma A.2. Let (X,Ft) be a flow of weights of M . Then the flow of
weights of MoσCZ2 is a two-to-one extension of (X,Ft). The S2-valued
Ft-cocycle ϕ on X defining the extension is given by

ϕω,t = ct(ω) ∈ {±1} ∼= S2.

Furthermore, the module of the dual automorphism σ̂C (of period 2) is

(mod σ̂C)(ω, i) = (ω, i+ 1).

Notice that the bidual ˆ̂σC has the same invariants (in the sense of [24, 55])
as σC. Therefore, when one starts from a period 2 automorphism β on
M with a non-trivial module, the dual automorphism β̂ turns out to an
extended modular automorphism. Since mod β commutes with the flow, the
assumption mod β 6= 1 means that the flow of weights of M can be expressed
as a two-to-one extension and that mod β exchanges the two sheets. The
cocycle defining the extended modular automorphism β̂ is the one describing
the two-to-one extension.
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Appendix B. The Loi invariant of the K-action β.

Let A = R0oαG0 ⊇ B = R0oαH0 and β : K → Aut(A,B) be as in §5.
In this appendix, we will compute the Loi invariant of β, that is, the effect
of the (extended) automorphism βk, k ∈ K, on the towers {Aj ∩ B′}j and
{Aj ∩A′}j.

Recall that the Jones tower B ⊆ A ⊆ A1 ⊆ A2 ⊆ · · · is given by

A1 = (R0 ⊗ l∞)oαG0,

A2 = (R0 ⊗B(l2))oαG0,

A3 = (R0 ⊗B(l2)⊗ l∞)oαG0,

A4 = (R0 ⊗B(l2)⊗B(l2))oαG0,

· · · ,

where l∞ = l∞(G0/H0), l2 = l2(G0/H0), and l∞ ↪→ B(l2), are the natural
imbeddings. (The characterization result in [42] can be used.) Here, the
(extended) action αg means

αg ⊗Ad ρg ⊗ · · · ⊗Ad ρg

with (ρgξ)(g′H0) = ξ(g−1g′H0), ξ ∈ l2. Thus, the towers of the relative
commutants are given by

A1 ∩B′ = (l∞)H0 ,

A2 ∩B′ = (B(l2))H0 ,

A3 ∩B′ = (B(l2)⊗ l∞)H0 ,

A4 ∩B′ = (B(l2)⊗B(l2))H0 ,

· · · ,

and

A2 ∩A′ = (B(l2))G0 ,

A3 ∩A′ = (B(l2)⊗ l∞)G0 ,

A4 ∩A′ = (B(l2)⊗B(l2))G0 ,

A5 ∩A′ = (B(l2)⊗B(l2)⊗ l∞)G0 ,

· · · .

Notice that four kinds of fixed point algebras have appeared. The algebras
(B(l2)⊗· · ·⊗B(l2))G0 and (B(l2)⊗· · ·⊗B(l2))H0 simply represent the spaces
of intertwiners of the product representation ρ⊗· · ·⊗ρ and its restriction to
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H0 respectively. The natural action of G0 on the homogeneous space G0/H0

being transitive, (B(l2)⊗· · ·⊗B(l2)⊗ l∞)G0 is identified with (B(l2)⊗· · ·⊗
B(l2))H0 in the obvious way. To describe the remaining fixed point algebra
(B(l2) ⊗ · · · ⊗ B(l2) ⊗ l∞)H0 , we need to look at the double coset space
H0\G0/H0. Let O0 = {H0},O1, · · · ,Om be the orbits of the natural action
of H0 on G0/H0. Choose and fix giH ∈ Oi for each i ∈ {0, 1, · · · ,m} (with
g0 = e), and set

Hi = giH0g
−1
i ∩H0, i = 0, 1, · · · ,m.

It is elementary to see

(B(l2)⊗ · · · ⊗B(l2)⊗ l∞)H0 ∼=
m∑
i=0

⊕(B(l2)⊗ · · · ⊗B(l2))Hi ,(6)

where
∑
gH0

xgH0 ⊗ δgH0 (xgH0 ∈ B(l2) ⊗ · · · ⊗ B(l2) and δgH0 = egH0,gH0 , a
diagonal rank 1 projection) is identified with

∑⊕
i xgiH0 . Therefore, (i) the

irreducible A-A bimodules (arising from A ⊇ B, [39, 40]) are parametrized
by Ĝ0, (ii) the irreducible A-B (and B-A) bimodules are parametrized by
Ĥ0, (iii) the irreducible B-B bimodules are parametrized by

⊔
iĤi. More

careful analysis on involved identifications actually shows that the induction-
restriction procedure for these bimodules is exactly the one for correspond-
ing representations, i.e., the Mackey procedure (see [1, 31] for details, and
[53, 56]).

To compute the Loi invariant of βk, k ∈ K, we begin by determining its
extension (fixing the Jones projections) to Aj. We set

(ρ′kξ)(gH0) = ξ(k−1gkH0); k ∈ K, ξ ∈ l2.
Note that this is well-defined because of k−1H0k = H0 and that

ρg ◦ ρ′k = ρ′k ◦ ρk−1gk (k ∈ K, g ∈ G0).(7)

Define the extension (still denoted by βk) by using

Ad ρ′k ⊗ · · · ⊗Ad ρ′k

on B(l2)⊗· · ·⊗B(l2) or B(l2)⊗· · ·⊗B(l2)⊗ l∞(⊆ Aj). This is exactly what
we wanted since the above product action leaves each of the following Jones
projections (of A ⊇ B) invariant:

e0 = δH0 (∼= 1R0 ⊗ δH0),

e1 =
∑
gH0

egH0,gH0 ⊗ egH0,gH0 ,
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e2 = 1⊗
∑

gH0, g′H0

egH0,g′H0 ,

· · · .
Choose and fix a minimal projection p in (B(l2) ⊗ · · · ⊗ B(l2))G0 . Let

πp ∈ Ĝ0 be the corresponding irreducible representation:

Hπp = p(l2 ⊗ · · · ⊗ l2), the representation space of πp,

πp(g) = ρg ⊗ · · · ⊗ ρg|Hπp .
Consider πp′ with p′ = βk(p) = (Ad ρ′k ⊗ · · · ⊗ Ad ρ′k)(p). Because of (7)
the surjective isometry ρ′k ⊗ · · · ⊗ ρ′k|Hπp : Hπp → Hπp′ intertwines πp(k−1gk)
and πp′(g). Thus πp′ and πp(k−1 · k) are unitarily equivalent, and the Loi
invariant of βk against the irreducible A-A bimodules (i.e., the “even levels”
in {Aj ∩A′}j) is described by

π ∈ Ĝ0 7→ π(k−1 · k) ∈ Ĝ0.

Similarly the one for the irreducible A-B and B-A bimodules is described
by

π ∈ Ĥ0 7→ π(k−1 · k) ∈ Ĥ0.

The description of the Loi invariant for B-B bimodules requires more careful
computations. For each i ∈ {0, 1, · · · ,m} and k ∈ K, kgik−1H0 belongs to
one of the orbits. We set

kgik
−1H0 ∈ On(i,k) (n(i, k) ∈ {0, 1, · · · ,m}),

kgik
−1 = h(i, k)gn(i,k)h̃(i, k) (h(i, k), h̃(i, k) ∈ H0).

For example, h(i, k) is not uniquely determined, but its ambiguity falls into
Hn(i,k).

Let x =
∑
gH0

xgH0 ⊗ δgH0 ∈ (B(l2)⊗· · ·⊗B(l2)⊗ l∞)H0 . For each h ∈ H0

we compute

(Ad ρh ⊗ · · · ⊗Ad ρh)(x) =
∑
gH0

(Ad ρh ⊗ · · · ⊗Ad ρh)(xgH0)⊗ δhgH0 .

Thus, the H0-invariance means

xhgH0 = (Ad ρh ⊗ · · · ⊗Ad ρh)(xgH0).(8)

On the other hand, because (Ad ρ′k)(δgH0) = δkgk−1H0 , we have

βk(x) =
∑
gH0

(Ad ρ′k ⊗ · · · ⊗Ad ρ′k)(xgH0)⊗ δkgk−1H0 .
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When g = gi, we have kgik−1H0 = h(i, k)gn(i,k)h̃(i, k)H0 = h(i, k)gn(i,k)H0

and the “coefficient” of δh(i,k)gn(i,k)H0 is

(Ad ρ′k ⊗ · · · ⊗Ad ρ′k)(xgiH0).

Thanks to (8), the coefficient of δgn(i,k)H0 is

(Ad ρh(i,k)−1 ⊗ · · · ⊗Ad ρh(i,k)−1)(Ad ρ′k ⊗ · · · ⊗Ad ρ′k)(xgiH0).

Consequently, via the isomorphism (6), βk on
∑⊕
i (B(l2)⊗ · · · ⊗B(l2))Hi is

described by the following:
(i) βk((B(l2)⊗ · · · ⊗B(l2))Hi) = (B(l2)⊗ · · · ⊗B(l2))Hn(i,k) ,
(ii) βk(x) = (Ad ρh(i,k)−1 ⊗ · · · ⊗Ad ρh(i,k)−1)(Ad ρ′k ⊗ · · · ⊗Ad ρ′k)(x)

for x ∈ (B(L2)⊗ · · · ⊗B(l2))Hi .
In fact, by (7) we get

ρg(ρh(i,k)−1ρ′k) = ρh(i,k)−1ρh(i,k)gh(i,k)−1ρ′k = (ρh(i,k)−1ρ′k)ρk−1h(i,k)−1gh(i,k)−1k,

and k−1h(i, k)Hn(i,k)h(i, k)−1k = Hi. For a minimal projection p ∈ (B(l2)⊗
· · ·⊗B(l2))Hi (πp ∈ Ĥi) and p′ = βk(p) (πp′ ∈ Ĥn(i,k)), πp′ is unitarily equiv-
alent to πp(k−1h(i, k) · h(i, k)−1k) ∈ Ĥn(i,k) as before, and the Loi invariant
of βk is given by

π ∈ Ĥi 7→ π(k−1h(i, k) · h(i, k)−1k) ∈ Ĥn(i,k).

Recall that an ambiguity for choosing h(i, k) came from Hn(i,k). There-
fore, the above right side uniquely determines a unitary equivalence class (in
Ĥn(i,k)).

Summing up the arguments so far, we have obtained the following de-
scription of the Loi invariant:

Lemma B.1. The Loi invariant of βk, k ∈ K, is described by (i) π ∈
Ĝ0 7→ π(k−1 · k) ∈ Ĝ0 for Ĝ0 (the irreducible A-A bimodules), (ii) π ∈
Ĥ0 7→ π(k−1 · k) ∈ Ĥ0 for Ĥ0 (the irreducible A-B or B-A bimodules), and
(iii) π ∈ Ĥi 7→ π(k−1h(i, k) · h(i, k)−1k) ∈ Ĥn(i,k) for

⊔
i Ĥi (the irreducible

B-B bimodules).
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