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A POLYHEDRAL TRANSVERSALITY THEOREM FOR
ONE-PARAMETER FIXED POINT THEORY

Thomas Plavchak

The fixed point set of a piecewise linear (PL) map h : P×I →
P is the set of points where h coincides with the projection
π : P × I → P ; it is denoted by Fix(h) and is a subpolyhedron
of P × I. When P is a compact polyhedron, we show how to
deform h (with appropriate control) to a new PL map h′ so
that Fix(h′) is as nice as possible. Indeed it is not hard to
arrange that Fix(h′) have dimension ≤ 1 (Theorem A), but
one would wish for a map h′ such that Fix(h′) is a manifold of
dimension ≤ 1. This is achieved in Theorem B. If P is a PL
manifold, Theorem B reduces to a standard PL transversality
theorem (Theorem C).

1. Introduction.

In recent years there has been considerable interest in one-parameter fixed
point theory. See, for example, [D1], [D2], [DG], [GN1−5], [GNO], [J]. A
basic requirement in using that theory is a “preparation theorem” of the
kind described in the abstract. Indeed, several of the papers mentioned cite
the present paper.

To state our theorems precisely we must set up our simplicial notation.
By a simplex of a finite simplicial complex K in Rn we mean an “open
simplex”; thus a k-simplex t is an open subset of a k-dimensional affine
subspace of Rn. If t is a simplex, cl(t) is its closure in Rn and bd(t) is its
boundary. The subspace of Rn spanned by t is denoted by span(t). If the
simplex s is a face of a simplex t we write s < t; in particular t < t. We
note that since our simplexes are open, if s < t and s 6= t then s ∩ t = ∅.
The simplicial complexes {s|s < t} and {s|s < t and s 6= t} are denoted
by t̄ and ∂t respectively. The barycenter of s is denoted by b(s). When
the vertices v0, . . . , vn of K span a simplex of K we sometimes denote that
simplex by 〈v0, · · · , vn〉 (except that we sometimes write v rather than 〈v〉
for a 0-simplex); when s and t are faces of 〈v0, . . . , vn〉, the face spanned by
the vertices of s and of t is the join of s and t, denoted s ∗ t. If s ∈ K,
the star of s in K is st(s,K) = {t ∈ K|s < t} and the link of s in K is
lk(s,K) = {t ∈ K|s and t have no vertex in common and s ∗ t ∈ K}. If
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M ⊂ K, |M | = ∪{s|s ∈ M}. If f : K → L is a simplicial map (between
finite simplicial complexes in Euclidean spaces), |f | : |K| → |L| denotes the
corresponding “simplicial map” of spaces.

Throughout the paper we make some Standing Assumptions: K is
a finite simplicial complex with |K| ⊂ Rn, K0 is a simplicial subdivision
of K × I formed without adding any new vertices, K ′0 is a subdivison of
a barycentric subdivision of K0, and f : K ′0 → K is a simplicial map.
By simplicial approximation, any map |K| × I → |K| is homotopic to a
map with these properties. For the construction of K0 see [RS, page 16].
|π| : |K ′0| → |K| denotes the projection (x, t) 7→ x. We note that π : K0 → K
is simplicial and that Fix(|f |) = {x ∈ |K0|

∣∣|f |(x) = |π|(x)}.
Theorem A. dim(Fix(|f |)) ≤ 1. More precisely: Let t be a p-simplex of
K ′0 containing a fixed point of |f | and let s = f(t); then dim(s) = p or p−1.
(i) If dim(s) = p, t contains exactly one fixed point.
(ii) If dim(s) = p − 1, then Fix(|f |) ∩ t is an open line segment in t the

boundary of which is fixed and contained in bd(t).
(iii) If t ⊂ |K| × {0, 1}, then t contains exactly one fixed point.

To state our next theorem we need some notation.
If s ∈ K, we write Ms = |π|−1(cl(s)). This is a closed cell of the product

cell complex K×I and hence it is subdivided as a subcomplex of any simpli-
cial subdivision of K × I. We write M ′

s for the subcomplex of K ′0 such that
Ms = |M ′

s|. Similarly (below) M ′′
s corresponds to K ′′0 etc. The space Ms is

a closed ball of dimension dim(s) + 1, so M ′
s,M

′′
s etc. are pseudomanifolds

of that dimension, and ∂Ms is triangulated by ∂M ′
s, ∂M

′′
s etc. Note that if

t ∈ M ′
s and dim(t) = dim(s) then lk(t,M ′

s) consist of at most two vertices.
For i = 0 or 1, K ′0,i denotes the subcomplex of K ′0 triangulating |K| × {i}.

Let N ⊂ |K ′0| be the union of the stars of all (open) simplexes which meet
Fix(|f |). Let U be the cover of |K| by the closures of the stars of vertices of
K. Now we can state our main theorem: qualitatively, it says that the fixed
point set can be made as nice as could be expected; see Figure 1.

Theorem B. There is a subdivision K ′′0 of K ′0 and a simplicial map g :
K ′′0 → K, with |g| U-homotopic to |f | by a homotopy rel cl(|K ′0| −N), such
that
(i) Fix(|g|) ⊂ S0 ∪ S1 where S1 = |π|−1(∪{s ∈ K|lk(s,K) = ∅}),

S0 = |π|−1(∪{s ∈ K|lk(s,K) 6= ∅ but not connected}), and dim(Si∩
Fix(|g|)) = i for i = 0 and 1,

(ii) Fix(|g|) is a 1-manifold placed in the following way with respect to the
simplexes of K ′′0 : For t ∈ K ′′0 and s ∈ K such that |π|(t) ⊂ s and
t ∩ Fix(|g|) 6= ∅,
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(a) if lk(s,K) = ∅, dim(t) = dim(s) and t ∈ ∂M ′′
s , then |st(t,K ′′0 )|∩

Fix(|g|) is a half-open line segment with an endpoint in t;
(b) if lk(s,K) = ∅, and dim(t) = dim(s) or dim(s) + 1 and t 6∈

∂M ′′
s , then |st(t,K ′′0 )| ∩Fix(|g|) is the union of two half-open line

segments;
(c) if lk(s,K) 6= ∅, then lk(s,K) is not connected, t contains just

one fixed point of |g|, and |st(t,K ′′0 )|∩Fix(|g|) is the union of two
half-open line segments.

Moreover, if for i = 0 and 1 the points of (Fix |f |)∩ |K ′0,i| all lie in principal
simplexes of K ′0,i then the homotopy from |f | to |g| can be chosen to be rel
|K| × {0, 1} and K ′′0 can be chosen to have K ′0,0 and K ′0,1 as subcomplexes.

Figure 1.

Next, we recall the definition of PL manifold transversality. Let X be a
PL manifold and let h : X × I → X be a PL map. We denote the graph
of h by Γh. We say h is transverse to |π| : X × I → X if h has no fixed
points on (∂X) × I and each point of Γ|π| ∩ Γh has a regular neighborhood
in (X × I × X,Γ|π|,Γh,Γ|π| ∩ Γh) which is PL homeomorphic to a regular
neighborhood of 0 in either (Rn×R×Rn;Rn×R× 0, 0×R×Rn, 0×R× 0)
or (Rn × R+ × Rn;Rn × R+ × 0, 0× R+ × Rn, 0× R+ × 0).

Theorem C. If |K| is a PL manifold then the proof of Theorem B yields
a map |g| which is transverse to |π|.
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2. Proof of Theorem A.

Lemma 2.1 is used to locate fixed points, only in Lemma 2.1 are simplexes
closed.

Lemma 2.1. Let A and B be closed simplexes with dim(A) ≥ dim(B) and
let f : A → B be a linear extension of a map of the vertices of A onto the
vertices of B. If g : A → B is a continuous function, then there is a point
x ∈ A such that f(x) = g(x).

Proof. First, assume dim(A) = dim(B). Then f is a homeomorphism and
so g ◦ f−1 : B → B is defined and continuous. By the Brouwer Fixed Point
Theorem there is a point b ∈ B such that g ◦ f−1(b) = b; let x = f−1(b).
Then f(x) = b = g ◦ f−1(b) = g(x).

If dim(A) > dim(B), then there is a face C of A such that f(C) = B
and dim(C) = dim(B). Thus there is a point x in C such that f(x) =
g(x).

Lemma 2.2. Let t be a p-simplex in Rn, p ≥ 1, v a vertex of t, and l a
line in Rn. If l ∩ t contains at least two points, then there is a proper face t′

of t having v as a vertex and such that t′ ∩ l 6= ∅.
Proof. Because l meets t in at least two points, l ⊂ span(t); therefore l∩bd(t)
contains at least two points. Let s be the face of t opposite v. If no proper
face of t having v as a vertex meets l, then every point in l ∩ bd(t) is either
in s or a face of s. So l ⊂ span(s), but l ⊂ span(s) contradicts span(s)∩ t =
∅.
Lemma 2.3. Let t be a p-simplex in Rn, p ≥ 2, v a vertex of t, and P a
plane in Rn. If P ∩ t contains at least three non-collinear points, then there
is a face t′ of t such that v is a vertex of t′, dim(t′) ≤ p− 2, and t′ ∩ P 6= ∅.
Proof. Let p0, p1, and p2 in P ∩ t be three non-collinear points. The line l0,1
spanned by p0 and p1 meets bd(t) at two points x0 and x1, and the line l0,2
meets bd(t) at some point x3. The point x3 is not on the line spanned by
x0 and x1 because p2 6∈ l0,1. Thus there are three non-collinear points of P
in bd(t).

Let s be the face of t opposite v. If no proper face of t having v as a
vertex meets P , then every point in P ∩ bd(t) is either in s or a face of s.
So P ⊂ span(s), contradicting span(s) ∩ t = ∅. Thus P meets a proper face
t1 of t having v as a vertex.

Assume dim(t1) = p−1. Now dim(P∪span(t1)) = dim(P )+dim(span(t1))
−dim(P ∩ span(t1)). Since dim(P ∪ span(t1)) ≤ p and dim(P ) = 2, dim(P ∩
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span(t1)) ≥ 1. Thus there is a line l lying in P and meeting t1 in at least
two points. By Lemma 2.2 there is a proper face t′ of t1 having v as a vertex
and such that l∩ t′ 6= ∅. Thus there is a face t′ of t having v as a vertex such
that dim(t′) ≤ p− 2 and t′ ∩ P 6= ∅.
Lemma 2.4. If t is a simplex of K ′0 and |π|(t) is contained in the simplex
s of K, then there is a vertex v of t such that |π|(v) ∈ s.
Proof. Let K1

0 be the first barycentric subdivision of K0 and let t′′ ∈ K1
0

and t′ ∈ K0 be such that t ⊂ t′′ ⊂ t′. Since s and π(t′) are simplexes of K
and both contain |π|(t), s = π(t′). Since bd(t) ⊂ cl(t′′), either t′′, and so t′,
contains a vertex of t or each vertex of t is in bd(t′′). If t′ contains a vertex
v of t, then |π|(v) ∈ s.

Suppose each vertex of t is in bd(t′′). Since t′′ ∈ K1
0 , t′′ = 〈b(s0), . . . , b(sp)〉

where s0, . . . , sp ∈ K0 and s0 < · · · < sp. Now t′′ ⊂ sp so t ⊂ sp, thus t′ = sp.
Let v′ = b(t′). Let τ be the face of t′′ opposite v′. Now if each vertex of t is
contained in τ or a face of τ , then t ⊂ cl(τ), but cl(τ)∩ t′′ = ∅ contradicting
t ⊂ t′′. Thus there is a proper face t0 of t′′ having v′ as a vertex and
containing a vertex v of t. Because v′ = b(t′), t0 ⊂ t′. Now v ∈ t0 ⊂ t′

implies |π|(v) ∈ |π|(t′) and |π|(t′) is s.

Lemma 2.5. Let t be a simplex of K ′0, s ∈ K, |π|(t) ⊂ s, and let v be a
vertex of t such that |π|(v) ∈ s. If t′ is a face of t and v is a vertex of t′,
then |π|(t′) ⊂ s.
Proof. (By induction on dim(t′).) Let t′ = 〈v, v1, . . . , vn〉 and let p ∈ t′.
Now p = avn + bx where x is a point in 〈v, v1, . . . , vn−1〉. By the inductive
hypothesis |π|(〈v, v1, . . . , vn−1〉) ⊂ s. Since |π|(t) ⊂ s, |π|(vn) ∈ cl(s). Thus
|π|(p) ∈ s.
Proof of Theorem A. Since t contains a fixed point, |π|(t) ⊂ s. Since f is
simplicial, dim(f(t)) ≤ dim(t). So dim(s) ≤ dim(t). Because |π|(t) ⊂ s,
t ∈M ′

s. So dim(t) ≤ dim(s) + 1.
First, assume dim(s) = p and x0, x1 are fixed points of |f | in t. Let v be a

vertex of t such that |π|(v) ∈ s (see Lemma 2.4). Now if t′ is a proper face of
t having v as a vertex, then t′ cannot contain a fixed point of |f | because if v
is a vertex of t′ then |π|(t′) ⊂ s, and if dim(t′) < dim(t), then f(t′) 6= s. But
by Lemma 2.2 the line l determined by x0 and x1 intersects a proper face of
t having v as a vertex and since l ∩ cl(t) is fixed by |f | this face contains a
fixed point of |f |. This contradicts the fact that no proper face of t having
v as a vertex can contain a fixed point.

Next, assume dim(s) = p−1. Then there is a proper face t0 of t such that
f(t0) = s. Since |π|(cl(t0)) ⊂ cl(s), a proper face of t contains a fixed point.
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So t contains a line segment l of fixed points the boundary of which is fixed
and contained in bd(t). Suppose x is a fixed point of |f | and x is not on l.
Let v be a vertex of t such that |π|(v) ∈ s. Now if t0 is a (p − 2)-face of t
having v as a vertex, then t0 cannot contain a fixed point of |f |, because if
v a vertex of t0 then |π|(t0) ⊂ s, and if dim(t0) = p− 2 then f(t0) 6= s. But
by Lemma 2.3 the plane P determined by l and x meets a (p − 2)-face of t
having v as a vertex, and since P ∩ cl(t) is fixed by |f | this face contains a
fixed point of |f |. This contradicts the fact that no (p− 2)-face of t having
v as a vertex can contain a fixed point.

Now suppose t ⊂ |K| × {0, 1}. Since t ⊂ s×{0, 1}, t is a face of a (p+ 1)-
simplex contained in s × I. So p + 1 ≤ dim(s) + 1. Because f(t) = s, p ≥
dim(s). Thus dim(s) = p and t contains just one fixed point.

3. Proof of Theorem B.

Lemma 3.1. Let t, t′ ∈ K ′0, s, s′ ∈ K, |π|(t) ⊂ s, and |π|(t′) ⊂ s′.
(a) If t < t′, then s < s′.
(b) If s < s′ and t ∗ t′ ∈ K ′0, then |π|(t ∗ t′) ⊂ s′.
(c) If t ∗ t′ ∈ K ′0, then s < s′ or s′ < s.

Proof of (a). Let A,B ∈ K0 be such that t ⊂ A and t′ ⊂ B. Then π(A) =
s and π(B) = s′. Now |st(A,K0)| is an open subset of |K0|, |st(A,K0)|
contains t, and each point of t is a limit point of t′, so B ∈ st(A,K0). Thus
A < B and so |π|(A) < |π|(B), i.e., s < s′.

Proof of (b). Let A ∈ K0 be such that t ∗ t′ ⊂ A. Since t < t ∗ t′, |π|(t) ⊂ s,
and |π|(t ∗ t′) ⊂ |π|(A), by Part (a), s < π(A). Similarly s′ < π(A). By
Lemma 2.4 there is a vertex v of t ∗ t′ such that |π|(v) ∈ π(A). But if v is a
vertex of t, then |π|(v) ∈ cl(s) and if v is a vertex of t′, then |π|(v) ∈ cl(s′).
Since s < s′, in either case |π|(v) ∈ cl(s′). Thus |π|(v) is in the simplex
|π|(A) and in the closure of the simplex s′. This means π(A) < s′. From
above, s′ < π(A). So π(A) = s′. Hence |π|(t ∗ t′) ⊂ s′.
Proof of (c). Let A,B, and C be simplexes of K0 such that t ⊂ A, t′ ⊂ B,
and t ∗ t′ ⊂ C. Since t ∗ t′ ⊂ cl(C), t ⊂ cl(C). So A < C. Similarly B < C.
So A ∗B ∈ K0. Since t ∗ t′ ⊂ A ∗B, A ∗B = C.

Let X,Y , and Z be simplexes of K1
0 be such that t ⊂ X, t′ ⊂ Y , and

t ∗ t′ ⊂ Z. From the last paragraph X ∗ Y ∈ K1
0 and X ∗ Y = Z. Let X =

〈b(T0), b(T1), . . . , b(Tp−1), b(A)〉 and let Y = 〈b(S0), b(S1), . . . , b(Sq−1), b(B)〉
where T0 < T1 < · · · < Tp−1 < A and S0 < S1 < · · · < Sq−1 < B. Now
X ∗ Y ∈ K1

0 implies A < B or B < A. So π(A) < π(B) or π(B) < π(A),
that is, s < s′ or s′ < s.
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Proposition 3.2. Let the simplex t0 in K ′0 contain a fixed point of |f |. Then
each component of (Fix(|f |) ∩ |st(t0,K ′0)|) − t0 is contained in a simplex of
st(t0,K ′0).

Proof. Suppose t ∈ st(t0,K ′0), t 6= t0, and t contains a fixed point of |f |.
Suppose that t′ is a proper face of t, t0 is a proper face of t′, and t′ contains
a fixed point of |f |. Then cl(t) contains three non-collinear fixed points of
|f | : a, b, and c. Thus the fixed point set of |f | contains a 2-dimensional
subset: cl(t) ∩ span({a, b, c}). But this contradicts Theorem A. Thus t′

contains no fixed points of |f |.
Lemma 3.3. Let M and N be complexes and let L be a subcomplex of M .
Suppose f : M → N and g : M → N are simplicial maps that agree on L.
Furthermore suppose for each x ∈ |M | − |L| there are simplexes s, t, and s0

in N such that s0 < s, s0 < t, |f |(x) ∈ t, and |g|(x) ∈ cl(s). Then |f | is
U-homotopic to |g| rel |L|.
Proof. Use Lemma 1, page 124 in [Br].

Let M be a simplicial complex and L a subcomplex of M . Define the
simplicial subdivision of M modulo the subcomplex L, denoted by M ′

L, as
follows: The vertices of M ′

L are the vertices of M along with the vertices
b(t) where t is a simplex in M − L. For p ≥ 1, the p-simplexes of M ′

L are of
the form 〈v0, . . . , vq, b(tq+1), . . . , b(tp)〉 where 〈v0, . . . , vq〉 is a q-simplex in
L, tq+1, . . . , tp are distinct simplexes in M − L, and 〈v0, . . . , vq〉 � tq+1 <
· · · < tp. Here q can equal 0 and p can equal q.

Proposition 3.4. Assume t0 is a p-simplex of K ′0, t0 contains a fixed
point of |f |, f(t0) = s0, and dim(s0) = p. Assume lk(t0,M ′

s0
) consists of

two vertices v1, v2 and f(v1) 6= f(v2) are not vertices of s0. Let L be the
subcomplex of K ′0 consisting of t0 and all simplexes that do not have t0 as a
face. Then there is a simplicial map |g| : |(K ′0)′L| → |K| homotopic to |f | rel
|L| such that Fix(|g|) ∩ |st(t0, (K ′0)′L)| is a 1-manifold.

Proof. Define g on the vertices of (K ′0)′L as follows: If a is a vertex of L, g(a) =
f(a); if t0 is a proper face of t and t 6= vi ∗ t0 for i = 1 or 2, then let g(b(t))
be any vertex of s0; for i = 1 and 2 let g(b(vi ∗ t0)) = f(vi).

Let σ = 〈a0, a1, . . . , al, b(tl+1), . . . , b(tm)〉 be a simplex of (K ′0)′L. By def-
inition, g(aj) is a vertex of f(tl+1) for 0 ≤ j ≤ l, and, for l + 1 ≤ j ≤
m, g(b(tj)) is f(v1) or f(v2) or a vertex of s0. If for each j, g(b(tj)) < s0,
then, since s0 < f(tl+1), g(σ) is a face of f(tl+1). If for some j0, g(b(tj0)) =
f(v1) or f(v2), then j0 = l + 1 and tj0 = v1 ∗ t0 or tj0 = v2 ∗ t0. So
g(σ) < f(v1) ∗ s0 or g(σ) < f(v2) ∗ s0. For i = 1 and 2, f(vi) ∗ s0 is a
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simplex of K because f(vi) ∈ lk(s0,K). Thus g(σ) is a simplex of K and so
g : (K ′0)′L → K is simplicial. Furthermore, since σ ⊂ tm, |f |(σ) ⊂ f(tm); be-
cause t0 < tm, s0 < f(tm); and g(σ) is a subset of either cl(s0) or cl(f(v1)∗s0)
or cl(f(v2) ∗ s0). By Lemma 3.3, |g| : |(K ′0)′L| → |K| is U-homotopic to |f |
rel |L|.

Figure 2.

Let t0 = 〈a0, . . . , ap〉 and for i = 1 and 2 let si = f(vi) ∗ s0, let γi be the
unique (p+2)-simplex of M ′

si
having vi∗t0 as a face, let g(b(γi)) = f(aji), and

let σi = 〈a0, . . . , âji , . . . , ap, b(vi∗t0), b(γi)〉. Then g(σi) = si and |π|(σi) ⊂ si
for i = 1 and 2. So cl(σi) contains a fixed point of |g|. No proper face
of σi contains a fixed point of |g|. [Proof: Using Theorem 1 no face of
〈a0, . . . , âji , . . . , ap〉 contains a fixed point of |g|. Any face of σi having
b(vi∗t0) as a vertex but not b(γi) is projected into s0, but the image under |g|
of any such face is not s0. Any face having b(γi) as a vertex but not b(vi ∗ t0)
is projected into si, but the image under |g| of such a face is a face of s0. If
t = 〈a0, . . . , âl, . . . , âji , . . . , ap, b(vi ∗ t0), b(γi)〉 where 0 ≤ l ≤ p, l 6= ji, then
|π|(t) ⊂ si but g(t) 6= si.] Thus for i = 1 and 2, σi ∗ t0 is a simplex of (K ′0)′L
and σi ∗ t0 contains a line segment of fixed points of |g| with endpoints in σi
and t0.

Let µ = 〈a0, . . . , ap, b(tp+1), . . . , b(tq)〉 be a simplex in st(t0, (K ′0)′L) and
suppose µ contains a fixed point of |g|. Let g(µ) = s′. Because µ ⊂ tq
and |π|(µ) is a subset of s′, |π|(tq) ⊂ s′, that is, tq ∈ M ′

s′ . If for each
j, p + 1 ≤ j ≤ q, tj is not the simplex v1 ∗ t0 or the simplex v2 ∗ t0, then
g(µ) = s0. So s′ = s0 and tq ∈ M ′

s0
. But t0 < tq, so q = p and µ = t0.

If for some j0, tj0 = vi ∗ t0 for i = 1 or 2, then g(µ) = si, so si = s′ and
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tq ∈M ′
si

. But γi is the unique simplex in M ′
si

having vi ∗ t0 as a proper face,
thus µ = σi ∗ t0 for i = 1 or 2 [note that if µ = 〈a0, . . . , ap, b(vi ∗ t0)〉, then
µ has no fixed points because |π|(µ) ⊂ s0 but g(µ) = si]. Thus the only
simplexes in st(t0, (K ′0)′L) containing fixed points of |g| are σ1 ∗ t0, σ2 ∗ t0,
and t0. Since f(v1) 6= f(v2), σ1 6= σ2 and so Fix(|g|) ∩ |st(t0, (K ′0)′L)| is a
1-manifold.

Condition 1. A subdivision K ′′0 of K ′0, a simplicial map g : K ′′0 → K,
and a simplex t0 ∈ K ′′0 containing a fixed point of |g| satisfy Condition 1
if for each component A of (Fix(|g|) ∩ |st(t0,K ′′0 )|) − t0, if tA ∈ K ′′0 is the
simplex of st(t0,K ′′0 ) that contains A (see Proposition 3.2) and v is a vertex
in lk(tA,K ′′0 ), then g(v) is a vertex of g(tA).

Addendum 3.5. The simplex t0, the subdivision (K ′0)′L, and the map g
satisfy Condition 1.

Proof. Let A be a component of (|Fix(|g|)|∩|st(t0, (K ′0)′L)|)− t0 and let the
simplex tA in st(t0, (K ′0)′L) be the carrier of A. By construction tA = σ1∗t0 or
tA = σ2 ∗ t0. Suppose tA = σ1 ∗ t0 and v is a vertex in lk(tA, (K ′0)′L). Because
b(v1 ∗ t0) is a vertex of σ1 ∗ t0, b(v1 ∗ t0) is not a vertex in lk(tA, (K ′0)′L). If
b(v2 ∗ t0) ∈ lk(tA, (K ′0)′L), then b(v2 ∗ t0) ∗ tA is a simplex of (K ′0)′L. Since
b(v2 ∗ t0) is not a vertex of tA, b(v2 ∗ t0) ∗ tA is a (p + 3)-simplex in (M ′

s1
)′L

but this contradicts dim((M ′
s1

)′L) = p+ 2. Thus v 6= b(vi ∗ t0) for i = 1 and
2. Since t0 < σ1, v ∈ lk(t0, (K ′0)′L). By definition of g, g(v) is a vertex of s0.
Since s0 < s1 and g(tA) = s1, g(v) is a vertex of g(tA).

Lemma 3.6. Assume t0 is a p-simplex of K ′0, t0 contains a fixed point of
|f |, f(t0) = s0, and dim(s0) = p. Assume lk(t0,Ms0) consists of two vertices
v1 and v2 and f(v1) 6= f(v2). Let L be the subcomplex of K ′0 consisting of
t0 and all simplexes that do not have t0 as a face. If there is an arc cn in
lk(s0,K) with endpoints f(v1) and f(v2) consisting of n 1-simplexes, then
there is a simplicial map |g| : |(K ′0)′L| → |K| U-homotopic to |f | rel |L| such
that lk(t0, (M ′

s0
)′L) consists of two vertices v′1 and v′2, and there is an arc cn−1

in lk(s0,K) with endpoints g(v′1) and g(v′2) consisting of n− 1 1-simplexes.

Proof. Let cn be the arc 〈f(v1)〉∪〈f(v1), b1〉∪〈b1〉∪. . .∪〈bn−1, f(v2)〉∪〈f(v2)〉.
Define g on the vertices of (K ′0)′L as follows: if a is a vertex of L, g(a) = f(a);
if t is a simplex of K ′0 and t0 is a proper face of t and t 6= vi ∗ t0 for
i = 1 or 2, then let g(b(t)) be any vertex of s0; let g(b(v1 ∗ t0)) = b1 and
g(b(v2 ∗ t0)) = f(v2).

Let σ = 〈a0, . . . al, b(tl+1), . . . , b(tm)〉 be a simplex of (K ′0)′L. By definition,
g(aj) < f(tl+1) for 0 ≤ j ≤ l and, for l + 1 ≤ j ≤ m, g(b(tj)) = b1 or f(v2)
or is a vertex of s0. If for each j, g(b(tj)) is a vertex of s0, then, since
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s0 < f(tl+1), g(σ) is a face of f(tl+1). If for some j0, g(b(tj0)) = b1, then
j0 = l + 1 and tj0 = v1 ∗ t0. So g(σ) < 〈f(v1), b1〉 ∗ s0 because for j > l +
1 g(b(tj)) < s0, for j ≤ l g(aj) < f(v1)∗s0, and g(b(v1 ∗ t0)) = b1. If for some
j0, g(b(tj0)) = f(v2), then j0 = l + 1 and tj0 = v2 ∗ t0. So g(σ) < f(v2) ∗ s0,
because for j > l + 1 g(b(tj)) < s0, while for j ≤ l g(aj) < f(v2) ∗ s0 and
g(b(v2∗t0)) = f(v2). Since f(v2) ∈ lk(s0,K) and 〈f(v1), b1〉 ∈ lk(s0,K) in all
cases g(σ) is a simplex of K. So g : (K ′0)′L → K is simplicial. Furthermore,
since σ ⊂ tm, |f |(σ) ⊂ f(tm); because t0 < tm, s0 < f(tm); and g(σ) is a
subset of either cl(f(tm)) or cl(〈f(v1), b1〉∗s0) or cl(f(v2)∗s0). So by Lemma
3.3 |g| is U-homotopic to |f | rel |L|.

Figure 3.

Let v′1 = b(v1 ∗ t0) and v′2 = b(v2 ∗ t0). Then lk(t0, (Ms0)′L) consists of
v′1 and v′2 and cn−1 ≡ 〈g(v′1)〉 ∪ 〈g(v′1), b2〉 ∪ . . . ∪ 〈bn−1, g(v′2)〉 ∪ 〈g(v′2)〉 is
an arc in lk(s0,K) with endpoints g(v1) and g(v′2) consisting of n − 1 1-
simplexes.

Proposition 3.7. Assume t0 is a p-simplex of K ′0, t0 contains a fixed point
of |f |, f(t0) = s0, and dim(s0) = p. Assume lk(t0,M ′

s0
) consists of two

vertices v1 and v2 and that f(v1) and f(v2) are in the same component of
|lk(s0,K)|. Let L be the subcomplex of K ′0 consisting of all simplexes that
do not have t0 as a face. Then there is a simplicial map |g| : |(K ′0)′L| → |K|
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U-homotopic to |f | rel |L| such that |g| has no fixed points in t0.

Proof. Since f(v1) and f(v2) are in the same component of |lk(s0,K)|, by
using Lemma 3.6 repeatedly if necessary, assume f(v1) = f(v2). Define g on
the vertices of (K ′0)′L as follows: If a is a vertex of L, g(a) = f(a); if t0 is a
proper face of t and t 6= vi ∗ t0 for i = 1 or 2 then let g(b(t)) be any vertex
of s0; for i = 1 and 2 let g(b(vi ∗ t0)) = f(v1); let g(b(t0)) = f(v1).

Figure 4.

Let σ = 〈a0, . . . , al, b(tl+1), . . . , b(tm)〉 be a simplex of (K ′0)′L. By def-
inition, g(aj) is a vertex of f(tl+1) for 0 ≤ j ≤ l, and, for l + 1 ≤ j ≤
m, g(b(tj)) = f(v1) or a vertex of s0. If for each j, g(b(tj)) is a vertex of s0,
then, since s0 < f(tl+1), g(σ) < f(tl+1). If for some j0, g(b(tj0)) = f(v1),
then g(σ) is a face of f(v1) ∗ s0. In either case g(σ) is a simplex of K. So g :
(K ′0)′L → K is a simplicial map. Furthermore, |f |(σ) ⊂ f(tm), s0 < f(tm),
and g(σ) is a subset of either cl(f(tm)) or cl(f(v1) ∗ s0). So by Lemma 3.3
|g| is U-homotopic to |f | rel |L|.

Now t0 = ∪τi where each τi = 〈a0, . . . , aqi , b(t0)〉 is a simplex in (K ′0)′L.
Because g(b(t0)) is not a vertex of s0, g(τi) 6= s0. Since τi ⊂ t0, |π|(τi) ⊂ s0.
So no point of t0 can be a fixed point of |g|.

Proposition 3.8. Assume t0 is a p-simplex of K ′0, t0 contains a fixed point
of |f |, f(t0) = s0, and dim(s0) = p. Assume lk(t0,Ms0) consists of just one
vertex v and that f(v) is not a vertex of s0. Let L be the subcomplex of K ′0
consisting of all simplexes that do not have t0 as a face. Then there is a
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simplicial map |g| : |(K ′0)′L| → |K| U-homotopic to |f | rel |L| such that |t0|
contains no fixed points of |g|.
Proof. Define g on the vertices of (K ′0)′L as follows: If a is a vertex of L,
g(a) = f(a); if t0 is a proper face of t and t 6= v ∗ t0, then let g(b(t)) be any
vertex of s0; let g(b(v ∗ t0)) = f(v) and let g(b(t0)) = f(v).

Figure 5.

Let σ ∈ (K ′0)′L be the simplex 〈a0, . . . , al, b(tl+1), . . . , b(tm)〉. By defi-
nition, g(aj) is a vertex of f(tl+1) for 0 ≤ j ≤ l, and, for l + 1 ≤ j ≤
m, g(b(tj)) = f(v) or is a vertex of s0. If for each j, g(b(tj)) is a vertex of
s0, then, since s0 < f(tl+1), g(σ) < f(tl+1). If for some j0, g(b(tj0)) = f(v),
then j0 = l + 1 and tj0 is the simplex v ∗ t0 or t0. So g(σ) < f(v) ∗ s0.
In all cases f(σ) is a simplex of K and so g : (K ′0)′L → K is simplicial.
Also |f |(σ) ⊂ f(tm), s < f(tm), and g(σ) is a subset of either cl(f(tm)) or
cl(s0 ∗ f(v)), so by Lemma 3.3 |g| is U-homotopic to |f | rel |L|.

The same proof as was used in Proposition 3.7 shows that t0 contains no
fixed points of |g|.
Proposition 3.9. Assume t0 is a (p + 1)-simplex of K ′0, t0 contains a
fixed point of |f |, f(t0) = s0, dim(s0) = p, and lk(s0,K) 6= ∅. Let L be
the subcomplex of K ′0 consisting of all simplexes that do not have t0 as a
face. Then there is a simplicial map |g| : |(K ′0)′L| → |K| U-homotopic to
|f | rel |L| such that t0 contains no fixed points of |g|.
Proof. Let w0 be the vertex of s0 that is the image under f of two vertices
of t0 and let b be a vertex in lk(s0,K). Define g on the vertices of (K ′0)′L as
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follows: If a is a vertex of L, g(a) = f(a); if t0 is a proper face of the simplex
t in K ′0, then let g(b(t)) be the vertex w0; let g(b(t0)) be the vertex b.

Let σ = 〈a0, . . . , al, b(tl+1), . . . , b(tm)〉 be a simplex of (K ′0)′L. By defini-
tion g(aj) is a vertex of f(tl+1) for 0 ≤ j ≤ l, and, for l+1 ≤ j ≤ m, g(b(tj))
is either the vertex b or the vertex w0. If for each j, g(b(tj)) = w0, then, since
s0 < f(tl+1), g(σ) < f(tl+1). If for some j0, g(b(tj0)) = b, then j0 = l + 1
and tj0 = t0. So g(σ) is a face of b ∗ s0. In either case g(σ) is a simplex of
K. So g : (K ′0)′L → K is simplicial. Moreover, |f |(σ) ⊂ f(tm), s0 < f(tm),
and g(σ) is a subset of either cl(f(tm)) or cl(s0 ∗ b), thus, by Lemma 3.3, |g|
is U-homotopic to |f | rel |L|.

Now t0 = ∪τi where each τi = 〈a0, . . . , aqib(t0)〉 is a simplex in (K ′0)′L.
Because g(b(t0)) is not a vertex of s0, g(τi) 6= s0. Since τi ⊂ t0, |π|(τi) ⊂ s0.
So τi contains no fixed points of |g| and so no point of t0 can be a fixed point
of |g|.

Addendum 3.10. If σ ∈ (K ′0)′L contains a fixed point of |g|, |π|(σ) ⊂
s,dim(s) ≤ p, and σ is not a face of t0, then σ ∈ L and st(σ,K ′0) ⊂ L.

Note that if t is a proper face of t0, then, by definition of L, t ∈ L.

Proof. Let σ be the simplex 〈a0, . . . , al, b(tl+1), . . . , b(tq)〉 and suppose q 6=
l. Because σ ⊂ tq and |π|(σ) ⊂ s, |π|(tq) ⊂ s. So t0 < tq, |π|(tq) ⊂ s, and
|π|(t0) ⊂ s0, by Lemma 3.1(a), s0 < s. Since dim(s) ≤ dim(s0), s = s0. So
tq ∈M ′

s0
. But t0 is a principal simplex of M ′

s0
and t0 < tq, thus tq = t0 and

σ ⊂ t0. This contradicts the fact that t0 contains no fixed points of |g|. Thus
q = l and σ ∈ L.

Suppose σ ∗ t0 ∈ K ′0. By Lemma 3.1(c), s0 < s or s < s0. Since dim(s) ≤
dim(s0), s < s0. By Lemma 3.1(b), σ ∗ t0 ∈ M ′

s0
. Because t0 is a principal

simplex of M ′
s0

and t0 is a face of t0 ∗ σ, t0 = σ ∗ t0. But this contradicts
the fact that σ is not a face of t0. Thus σ ∗ t0 6∈ K ′0. On the other hand if
t ∈ st(σ,K ′0) and t0 < t, then t0 ∗ σ ∈ K ′0. Thus st(σ, K ′0) ⊂ L.

Addendum 3.11. Assume t ∈ (K ′0)′L contains a fixed point of |g|, t
projects into the simplex s of K, dim(s) < p, t < t0 and Fix(|f |)∩|st(t, K ′0)|
is a 1-manifold. If t, K ′0, and |f | satisfy Condition 1, then t ∈ L, Fix(|g|)∩
|st(t, K ′0)′L| is a 1-manifold and t, (K ′0)′L, and g satisfy Condition 1.

Proof. The simplexes of st(t,K ′0) can be split into two sets I1 = {t′ ∈ K ′0|t0
is not a face of t′} and I2 = {t′ ∈ K ′0|t0 < t′}. By assumption Fix(|f |) ∩
|st(t,K ′0)| is the union of two line segments: One of these is contained in t0,
hence the other line segment cannot meet any other simplex t′ ∈ I2 since oth-
erwise t′∩Fix(|f |) would be at least 2-dimensional. Thus the second line seg-
ment is contained in a simplex in I1. On the other hand, st(t, (K ′0)′L) = I1∪I ′2
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where I ′2 = {〈v0, v1, . . . , vq, b(tq+1), . . . , b(tn)〉|t = 〈v0, . . . , vq〉}. Notice that
g = f on simplexes of I1. It remains to find a simplex in I ′2 containing a line
segment in Fix(|g|) and to show that no other simplex in I ′2 contains a fixed
point.

Since Fix(|f |) ∩ |st(t,K ′0)| is a 1-manifold and t0 contains a fixed point
of |f |, a component, A, of (Fix(|f |) ∩ |st(t,K ′0)|) − t is contained in t0. By
Theorem A this component is a line segment with one endpoint the fixed
point in t and the other endpoint a fixed point in a face t′ of t0. (Note that
t′ 6= t else A ⊂ t.) Note that t′ ∗ t = t0 because t′ ∗ t is a simplex of K ′0 and
A ⊂ t′ ∗ t. By Lemma 2.4 there is a vertex v of t0 such that |π|(v) ∈ s0.
But v is not a vertex of t, so, since t′ ∗ t = t0, v must be a vertex of t′. So
by Lemma 2.5 |π|(t′) ⊂ s0. Since t′ contains a fixed point of |f |, f(t′) = s0.
Thus t′ is a p-face of t0 and t′ contains a fixed point of |f |.

Let t = 〈a0, . . . , aq〉 and t0 = 〈a0, . . . , aq, . . . , ap+1〉. Now, all but one
vertex ai of t0 is a vertex of t′. This vertex must be a vertex of t since
otherwise t < t′ implies t′ ∗ t = t′ 6= t0. So t′ = 〈a0, . . . , âi, . . . , aq, . . . , ap+1〉.

Let s1 = b ∗ s0 and let γ be the unique (p+ 2)-simplex in M ′
s1

having t0 as
a face. Since f(t′) = s0, f(ai) = w0 and there is a vertex aj, j 6= i of t′ such
that w0 = f(aj). Let µ = 〈a0, . . . , âi, . . . , aq, . . . , âj, . . . , ap+1, b(t0), b(γ)〉.
Then µ is a (p+ 1)-simplex in (K ′0)′L contained in γ, g(µ) = b ∗ s0, |π|(µ) ⊂
b ∗ s0 and no proper face of µ contains a fixed point of |g| so µ contains a
fixed point of |g|. Thus t ∗ µ contains a line segment of fixed points of |g|
with an endpoint in t.

Suppose σ ∈ st(t, (K ′0)′L) contains a fixed point of |g|. Then σ =
〈v0, v1, . . . , vr, b(tr+1), . . . , b(tn)〉 where 〈v0, v1, . . . , vr〉 ∈ L, tr+1, . . . , tn 6∈ L
and 〈v0, v1, . . . , vr〉 < tr+1 < · · · < tn. If n = r, then σ = 〈v0, v1, . . . , vn〉 ∈ L
so σ = t or σ is a simplex of K ′0 having t as a proper face but not hav-
ing t0 as a face. Now suppose n 6= r and let g(σ) = s′. Because σ ⊂ tn
and |π|(σ) ⊂ s′, |π|(tn) ⊂ s′. So tn ∈ M ′

s′ . Since t0 < tr+1 each vertex of
〈v0, v1, . . . , vr〉 is a vertex of t0 or lk(t0,K ′0), so by Condition 1 g(vi) is a
vertex of s0. If t0 6= tr+1, then g(σ) < s0. So s′ < s0 and because s0 is a p-
simplex, tn is at most a (p+1)-simplex. But this contradicts the fact that the
(p+ 1)-simplex t0 is a proper face of tn. Thus t0 = tr+1 and so g(σ) < b ∗ s0.
If g(σ) 6= b∗s0, then dim(tn) is at most p+1. So σ = 〈v0, . . . , vr, b(t0)〉. But
then |π|(σ) ⊂ s0, yet g(σ) has b as a vertex. This contradicts the assumption
that σ contains a fixed point of |g|. So g(σ) = b ∗ s0 and tn is at most a
(p+2)-simplex of M ′

b∗s0 . Since γ is the unique (p+2)-simplex in M ′
b∗s0 having

t0 as a face tn = γ, so σ = 〈v0, v1, . . . , vr, b(t0), b(γ)〉. Since 〈v0, . . . , vr〉 <
t0, σ = 〈a0, . . . , ai, . . . , aq, . . . , aj, . . . , âl, . . . , ap+1, b(t0), b(γ)〉. [Remem-
ber that f(ai) = f(aj) = f(b(γ)) = w0.] Since g(σ) = b ∗ s0, j = l. So
σ = t ∗ µ. Thus the only simplexes in st(t, (K ′0)′L) containing fixed points
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are t ∗ µ, t, and simplexes ti in K ′0 having t as a face but not t0 as a face.
Since |st(t,K ′0)| ∩ Fix(|f |) is a 1-manifold at most one such ti exists. Thus
|st(t, (K ′0)′L)| ∩ Fix(|g|) is a 1-manifold.

To see that (K ′0)′L, g, and t satisfy Condition 1, suppose v is a vertex in
lk(t ∗ µ, (K ′0)′L). Then v = aj or v = b(tr) where tr ∈ K ′0 and t0 < tr. By
definition of g, g(v) is a vertex of s0 ∗ b.

The next lemma holds true for the construction of (K ′0)′L and g as given
in Propositions 3.4, 3.7 and 3.8 and Lemma 3.6. The proof is given for the
construction in Proposition 3.4 but is similar, almost word for word, for the
other constructions of g and (K ′0)′L.

Lemma 3.12. If σ 6= t0 is a simplex of (K ′0)′L and σ contains a fixed point
of |g| and σ projects into a simplex s of K of dimension ≤ p, then σ is also
a simplex of K ′0; furthermore st(σ,K ′0)′L ⊂ K ′0.

Proof. Let σ = 〈a0, . . . al, b(tl+1), . . . , b(tq)〉 and suppose q 6= l. Because
σ ⊂ tq, |π|(tq) ⊂ s. Also t0 < tq and |π|(t0) ⊂ s0, so by Lemma 3.1(a), s0 < s.
Since dim(s) ≤ dim(s0), s = s0. So tq ∈M ′

s0
. But t0 is a face of exactly three

simplexes of M ′
s0

, namely t0, v1 ∗ t0, and v2 ∗ t0. So σ = 〈a0, . . . al, b(vi ∗ t0)〉
for i = 1 or 2. But |π|(σ) ⊂ s0 yet g(σ) 6= s0 because g(b(vi ∗ t0)) is not a
vertex of s0 for i = 1 or 2. This contradicts the fact that σ contains a fixed
point of |g|. Thus q = l and σ ∈ L.

Suppose σ ∗ t0 ∈ K ′0. By Lemma 3.1(c) s0 < s or s < s0. Since dim(s) ≤
dim(s0), s < s0. So by Lemma 3.1(b) σ ∗ t0 ∈M ′

s0
. Since t0 < σ ∗ t0, σ ∗ t0 =

v1 ∗ t0 or v2 ∗ t0 or t0. Since both σ and t0 contain a fixed point of |f |, σ ∗ t0
contains a line segment of fixed points of |f |. By Theorem A σ∗t0 6= t0. Since
|π|(vi ∗ t0) ⊂ s0 and f(vi) is not a vertex of s0 for i = 1 or 2, the simplexes
v1 ∗ t0 and v2 ∗ t0 do not contain fixed points of |f |, thus σ ∗ t0 6= v1 ∗ t0 or
v2 ∗ t0. This means σ ∗ t0 6∈ K ′0 or σ = t0.

Now if t is a simplex in K ′0 and σ 6= t0 and σ < t and t0 < t, then t0∗σ < t
which contradicts the fact that t0 ∗ σ 6∈ K ′0; so if t ∈ st(σ,K ′0), then t0 is not
a face of t so t ∈ L.
Proposition 3.13. There is a subdivision K ′′0 of K ′0 and a simplicial map
|g| : |K ′′0 | → |K| U-homotopic to |f | such that
(i) if t is a (p + 1)-simplex of K ′′0 and t projects into a p-simplex s of K

and t contains a fixed point of |g|, then lk(s,K) = ∅,
(ii) if t is a p-simplex of K ′′0 and t projects into a p-simplex s of K and t

contains a fixed point of |g| and lk(s,K) 6= ∅, then
(a) lk(s,K) is not connected,
(b) Fix(|g|) ∩ |st(t,K ′′0 )| is a 1-manifold,
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(c) Condition 1 is satisfied by t, K ′′0 , and g.

Proof. We work by induction on the skeleta of K.

Assume there is a subdivision K ′′0 of K ′0 and a simplicial map |g| : |K ′′0 | →
|K| U-homotopic to |f | such that over the (q−1)-skeleton ofK, statements (i)
and (ii) hold. The induction starts trivially with the (empty) (−1)-skeleton.

If t0 is a (q + 1)-simplex of K ′′0 and t0 projects into the q-simplex s0 of K
and t0 contains a fixed point of |g| and lk(s0,K) 6= ∅, then by Proposition 3.9,
there is a subdivision (K ′′0 )′ of K ′′0 and a simplicial map |g′| : |(K ′′0 )′| → |K|
homotopic to |g| such that t0 contains no fixed points of |g′|. By Addendum
3.10 if t is a simplex of K ′′0 and t contains a fixed point of |g′| and t projects
into the q-skeleton of K, then t is also a simplex of K ′0. By definition of |g′|,
|g| and |g′| agree on t. Thus if x is a fixed point of |g′| and x projects into
the q-skeleton of K, then x is a fixed point of |g|. So no new fixed points are
created over the q-skeleton of K.

Furthermore, suppose t is a p-simplex of (K ′′0 )′, p ≤ q − 1, and t contains
a fixed point of |g′|. If t is not a face of t0 then by Addendum 3.10 each
simplex of st(t, (K ′′0 )′) is also a simplex of K ′′0 . So if Fix(|g|) ∩ |st(t,K ′′0 )| is
a 1-manifold, then Fix(|g′|) ∩ |st(t, (K ′′0 )′)| is a 1-manifold; if Condition 1 is
satisfied by t, K ′′0 and g, then Condition 1 is satisfied by t, (K ′′0 )′ and g′.
And if t is a face of t0, then, by Addendum 3.11, Fix(|g′|)∩ |st(t, (K ′′0 )′)| is a
1-manifold and t, (K ′′0 )′, and g′ satisfy Condition 1. Apply Proposition 3.9
to each (q+ 1)-simplex t of K ′′0 such that t projects into a q-simplex s of K,
t contains a fixed point of |g| and lk(s,K) 6= ∅, subdividing the previously
defined K ′′0 each time. After a finite number of applications of Proposition
3.9, there is a subdivision K ′′0 of K ′0 and a simplicial map |g| : |K ′′0 | → |K|
U-homotopic to |f | such that for p = 0, 1, . . . , q statement (i) holds and for
p = 0, 1, . . . , q − 1 statement (ii) holds.

Now suppose t0 is a q-simplex of K ′′0 and t0 projects into the q-simplex
s0 of K and t0 contains a fixed point of |g|. If v is a vertex in lk(t0,M ′

s0
)

and g(v) is a vertex of s0, then the (q + 1)-simplex v ∗ t0 contains a line
segment of fixed points of |g| and so lk(s0,K) = ∅. Thus if lk(s0,K) 6= ∅,
then g(lk(t0,K ′′0 )) ⊂ lk(s0,K). If g(lk(t0,K ′′0 )) is contained in a component
of |lk(s0,K)| then, either by Proposition 3.7 or by Proposition 3.8, there
is a subdivision (K ′′0 )′ of K ′′0 and a simplicial map |g′| : |(K ′′0 )′| → |K| U-
homotopic to |g| such that t0 contains no fixed points of |g′|. By Lemma 3.12,
if t is a simplex of (K ′′0 )′ and t contains a fixed point of |g′| and t projects
into a simplex of dimension ≤ q, then t corresponds to a simplex of K ′′0 and
each simplex in st(t,K ′′0 ) corresponds to a simplex of K ′0. Since |g| and |g′|
agree on st(t,K ′′0 ), no new fixed points are added over the q-skeleton of K
and statement (ii) holds for p = 0, 1, . . . q − 1. Apply either Proposition 3.7
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or Proposition 3.8 to each q-simplex t of K ′′0 such that t projects into a q-
simplex s ofK, t contains a fixed point of |g| and g(lk(t,M ′

s)) is contained in a
component of |lk(s,K)|, subdividing the previously defined (K ′′0 )′ each time.
Thus there is a subdivisionK ′′0 ofK ′0 and a simplicial map |g| : |K ′′0 | → |K| U-
homotopic to |f | such that statement (i) holds for p = 0, 1, . . . , q, statement
(ii) holds for p = 0, 1, . . . , q − 1, and if t is a q-simplex of K ′′0 and t projects
into a q-simplex s of K and t contains a fixed point of |g| and lk(s,K) 6= ∅,
then lk(t,M ′

s) consists of two vertices v1 and v2 and g(v1) and g(v2) are in
different components of lk(s,K).

If t0 is a q-simplex of K ′′0 and t0 projects into a q-simplex s0 of K and
t0 contains a fixed point of |g| and lk(s0,K) 6= ∅ but not connected, then
by Proposition 3.4 there is a subdivision (K ′′0 )′ of K ′′0 and a simplicial map
|g′| : |(K ′′0 )′| → |K| homotopic to |g| such that Fix(|g′|) ∩ |st(t0, (K ′′0 )′)| is a
1-manifold. By Addendum 3.5, Condition 1 is satisfied by v0, (K ′′0 )′ and g′.
By Lemma 3.12, if t 6= t0 is a simplex of (K ′′0 )′ and t projects into a simplex
s of K of dimension ≤ q and t contains a fixed point of |g′|, then t is also a
simplex of K ′′0 . Since |g′| and |g| agree on t, no new fixed points have been
added. Furthermore each simplex in st(t, (K ′′0 )′) is also a simplex in K ′′0 . By
definition of |g′|, |g′| and |g| agree on |st(t, (K ′′0 )′)|. So if dim(t) = dim(s)
and Fix(|g|) ∩ |st(t,K ′′0 )| is a 1-manifold then Fix(|g′|) ∩ |st(t, (K ′′0 )′)| is a
1-manifold. If Condition 1 is satisfied by t, K ′′0 and g, then Condition 1 is
satisfied by t, (K ′′0 )′ and g′.

Apply Proposition 3.4 to each q-simplex t of K ′′0 such that t projects into
a q-simplex s of K, t contains a fixed point of |g| and lk(s,K) 6= ∅ but not
connected, subdividing the previously defined (K ′′0 )′ each time.

So there is a subdivision K ′′0 of K ′0 and a simplicial map |g| : |K ′′0 | → |K|
U-homotopic to |f | such that for p = 0, 1, . . . , q statements (i) and (ii) hold.
Thus, by induction there is a subdivision K ′′0 of K ′0 and a simplicial map |g|
U-homotopic to |f | satisfying (i) and (ii).

Proof of Theorem B. Let K ′′0 and g : K ′′0 → K be the subdivision and map
given by Proposition 3.13. Let t be a simplex of K ′′0 , let |π|(t) ⊂ s in K
and suppose t contains a fixed point of |g|. By Theorem A either dim(t) =
dim(s) or dim(t) = dim(s) + 1. If dim(t) = dim(s) + 1, by Proposition 3.13,
lk(s,K) = ∅. If dim(t) = dim(s) but lk(s,K) 6= ∅, then, by Proposition 3.13,
lk(s,K) is not connected. So Fix(|g|) ⊂ S0 ∪ S1. If dim(t) = dim(s) + 1,
then by Theorem A, t contains a line segment of fixed points with endpoints
in bd(t), also st(t,K ′′0 ) = {t}. If dim(t) = dim(s), then, by Theorem A, t
contains exactly one fixed point. Suppose dim(t) = dim(s) and lk(s,K) = ∅.
Because dim(t) = dim(s), lk(t,M ′′

s ) consists of one or two vertices v. Because
g(v ∗ t) is a simplex of K having s as a face and lk(s,K) = ∅, g(v) is a vertex
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of s. So v ∗ t contains a line segment of fixed points of |g| with one endpoint
in t. So Fix(|g|) ∩ |st(t,K ′′0 )| is a 1-manifold or half-open line segment with
endpoint in t and t ∈ ∂M ′′

s . Thus dim(S1 ∩Fix(|g|)) = 1. Suppose dim(t) =
dim(s) but lk(s,K) 6= ∅. Since lk(s,K) 6= ∅, by Proposition 3.13, no simplex
in st(t,M ′′

s ) other than t contains a fixed point of |g|. So dim(Fix(|g|)∩S0) =
0 and by Proposition 3.13(ii) (b) Fix(|g|) ∩ |st(t,K ′′0 )| is a 1-manifold.

The reader will observe that our method achieves the claims in the final
paragraph of Theorem B.

4. Proof of Theorem C.

Lemma 4.1. Let Un+1 and V n+1 be linear subspaces of the real vector
space W 2n+1 and let U ∩ V have dimension 1. Then (W,U, V, U ∩ V ) ∼=
(R2n+1;Rn+1 × 0, 0× Rn+1, 0n × R× 0n).

Proof. Pick a basis, starting in U ∩ V , extending to U and also to V , then
to W .

Lemma 4.2. If in addition T 2n ≤ W 2n+1 is such that dim(U ∩ T ) =
dim(V ∩ T ) = n and dim(U ∩ V ∩ T ) = 0, then (W,T,U, V, U ∩ V ) ∼=
(R2n+1;Rn × 0× Rn,Rn+1 × 0, 0× Rn+1, 0× R× 0).

Proof. U ∩ V ∩ T = {0}. Start with a basis in U ∩ V , extend to (U ∩ V )u
(U ∩ T )u (U ∩ T ).

Lemma 4.2 implies:

Lemma 4.3. Let W+ be the closed half space on one side of T . Then
(W+, T, U+, V+, (U ∩V )+) ∼= (Rn×R+×Rn; Rn× 0×Rn, Rn×R+× 0, 0×
R+ × Rn, 0× R+ × 0).

Proof of Theorem C. Let the PL manifold |K| have dimension n. It fol-
lows from Theorem B that Fix(|g|) consists of straight-line segments each
of which connects two points in the interiors of n-dimensional faces of an
(n + 1)-simplex of K ′′0 ; see Figure 6. Transversality over a neighborhood of
a follows from Lemma 4.3, and over a neighborhood of b from Lemma 4.1.
Transversality over a neighborhood of c also follows from Lemma 4.3, for if
we have another (W−, T, Ũ−, Ṽ−, (Ũ ∩ Ṽ )−) ∼= (Rn × R− × Rn, Rn × 0×
Rn, Rn×R−× 0, 0×R−×Rn, 0×R−× 0) we can piece the two together to
get a PL homeomorphism (W,T,U+∪ Ũ−, V+∪ Ṽ−, (U ∩V )+∪ (Ũ ∩ Ṽ )−) ∼=
(R2n+1; Rn × 0×Rn,Rn+1 × 0, 0×Rn+1, 0×R× 0). Thus the graph of |g|
is transverse to the graph of |π|.
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Figure 6.
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