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SEMI-LOCALIZATION OF A ONE POINTED KAN
COMPLEX

PHiLLiP B. THURBER

This work was motivated by the goal of removing the hy-
pothesis of simple connectedness from the rational homotopy
theory of D. Sullivan. To a simply connected space X is asso-
ciated it’s rational localization ¢ : X — X, and to the differ-
ential graded algebra A(X) of rational polynomial forms on X
it’s Sullivan minimal model ¢y : M — A(X). It is shown that
the minimal model M is dual to the Postnikov tower of Xj.
Thus M determines the rational homotopy type of X.

In the present paper we have eliminated the simply con-
nected hypothesis from the first part of the theory. Working
in the category of semi-simplicial complexes, we show that if
X is a one pointed Kan complex, and P is a family of prime in-
tegers, there exists a semi-P-localization f : X — X, such that
fe 1 m(X) — m1(X,) is an isomorphism and f, : 7 (X) — 7 (X,)
is P-localization of abelian groups, k£ > 2. Semi- P-localization
is also characterized by a universal mapping property, and
the fact that f induces isomorphisms on twisted coefficient
cohomology whenever the coefficients are in a Zp)-module.

1. Preliminaries.

We use semi-simplicial homotopy theory, and notation for the most part as
given in [8].

Definition 1.1. A semi-simplicial complex K is a sequence of sets { K, },>0
where K, is called the set of n-simplices of K, together with functions 0; :
K, - K, yand s; : K, = K,;1,0<4,j5 <n. If 0 € K,, then 0,0 is called
the i*™*-face and s;o is called the j™-degeneracy of o. The functions d; and
s; are required to satisfy the following relations:

81'8]‘ — 8j_18i, Z < j7
SiSj = Sj+18i, ] S j?
Sjai—l if 7> J+1
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A semi-simplicial map f : K — L is a sequence of functions f, : K, — L,
such that

O0ifn = fn-10;, 0<i<m;
ijn:fn+15jv 0<j<n

Definition 1.2. A semi-simplicial complex K is said to be Kan if for every
pair of integers (k,n) with 0 < k < n and for every n (n-1)-simplices

00y +++yOk—1,O0k+41,---,0n € K"_l

such that 0;0; = 0;_10; whenever ¢ < j and i@ # k # j, there exists an
n-simplex o € K,, such that 0,0 = o; for all i # k.

Kan complexes play a role in Semi-simplicial homotopy theory that is
analogous to that played by C.W. complexes in topological homotopy theory.

Definition 1.3. For n > 0 we define A[n| the standard semi-simplicial
n-simplex as follows. A g-simplex of Aln| is a sequence (ag,ay,...,a,) of
integers a; such that

0§a0§a1§...§aq§n.
Face and degeneracy operators are defined by

ai(ao, ...,aq) = (ao, N ¢ 7 I ¢ 7 IS ...,aq);

$i(Ag, ey Gg) = (0, vy Qi Qi ooy Q).

We let o, denote the unique non-degenerate n-simplex (0,1,...,n). o, gener-
ates Aln] in the sense that any simplex of A[n] can be obtained from o, by

applying a suitable sequence of face and degeneracy opperators.
AJ1] will also be denoted by I.

If K is a semi-simplicial complex, and k € K, is a g-simplex, then there
is a unique simplicial map k : Afg] — K such that k(o,) = k.

Definition 1.4. We define the total singular complex of a topological
space X as follows. For n > 0 let A, = {(to,...,t,) € R"™| 0 < ¢; <
1,%t; = 1}. Define e; : A,,_1 — A, by e;(to, ..., en) = (to, ey tiz1,0,t, .0y ty),
0 < i < n. Define f; : A1 — A, by fi(to, ..o, tns1) = (to,.-ntj—1,t; +
tivtstipas o tng), 0< j < m.

If X is a topological space, a singular n-simplex in X is a continuous map
o: A, — X. We define a semi-simplicial complex S(X), called the total
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singular complex of X, by letting S,,(X) be the set of all singular n-simplices
in X. 9; : S,(X) = S,-1(X) and s; : S,(X) — S,41(X) are defined by
00 =coe,s;0=o00of;, 0<4j<nlIff:X — Y isa continuous
map, [ induces the semi-simplicial map S(f) : S(X) — S(Y) defined by
S(f)(o) = foo. It is straight forward to show that S(X) is a Kan complex,
and it is clear that S thus defined is a covariant functor from the category
of topological spaces to the category of semi-simplicial complexes.

Definition 1.5. A simplicial group is a semi-simplicial complex G such
that:
(i) The set G,, of n-simplices is a group, n > 0;
(ii) The face and degeneracy operators 0; : G,, — G,_1, and s; : G,, —
G411 are group homomorphisms, 0 <1i,5 < n.

A simplicial group is a Kan complex, see [8, 17.1].

Definition 1.6. A simplicial group G is said to operate from the right on
a semi-simplicial complex E if there is a semi-simplicial map ¢ : Ex G — E
such that:

(i) ¢(U7 eq) = 0;
(H) ¢(J79192) = ¢(Uagl)792)'

We will denote ¢(a, g) by og. A left operation is defined similarly.

G is said to operate principally on E if whenever o0g = o for some o € E,
we must have g = e,. Notice that G operates principally on itself from
both the left and the right. If G operates principally on E, then we define a
quotient complex B of E by identifying o and og for all 0 € E,, and g € G|,.
The natural map p : E — B is called a principal fibration with base B and
structure group G.

Definition 1.7. Let F and B be semi-simplicial complexes, and G a sim-
plicial group which operates from the right on F. A (right) twisted cartesian
product, or TCP, with fiber F, base B, and group G is a semi-simplicial
complex denoted by either F x™ B or E(7), which satisfies E(7), = F}, x B,
and has face and degeneracy operators:

(i) 9 (f,b) = ((Qof)7(b), ob);
(i) 0i(f,b) = (0:f,0:b), i >0;
(iii) si(f,0) = (sif,sib), >0

where 7 : B, — G,_; is called the twisting function. The requirement that
E(7) be a semi-simplicial complex is equivalent to the following identities
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on 7.

(i) 7(01b) = 9o7(b)7(0ob);
(i) 7(0i41b) = 0T (b), i >0;
(iii) T(sob) = €4, b € By;

(iv) T(8i11b) = s;7(b), i >0.

If F = G, then E(7) is called a principal TCP, or PTCP, as the projection
of E(7) onto B is a princpal fibration.

2. Eilenberg-MacLane Complexes.

Definition 2.1. Let m be an arbitrary group. Define a simplicial group
K(7,0) as follows:

(i) K(m,0), =, qg>0.
(ii) Oh=sj=id.:m—m 0<i,j<gq.

K(7,0) is a minimal complex of homotopy type (7, 0).

Definition 2.2. Let X be a Kan complex with exactly one 0-simplex
¢. Let m = m(X,¢). Define a graded function 7 : X, — K(m,0),_1 by
T(x) = [0z ...0,x] € m. The function 7 satisfies the following identities:

(i) T(O1z) = 0o ()T (0o );
(ii) T(Oj1x) = O7(x), @ >1;
(iii) T(sox) = 1;

(iv) T(sin17) = 5;7(2).

It follows that 7 is a (right) twisting function.

Definition 2.3. Denote the PTCP K(7,0) x™ X by X. X is the universal
covering complex of X.

Definition 2.4. Let m be an arbitrary group. define a semi-simplicial
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complex W () as follows.

() W(m)o = (1);
W(r),=mX...xm, q > 0.
q—factors

(ii)

Oo(x1,...,2q) = (T2,... ,2q);

Og(x, ... xy) = (@1, ..., Tgo1);

0i(x1, ..., g) = (X1, oo, Tim1, TiTig1, Tigas - - 5 Ly), 1<i<q-—-1,
(i)

si(x1, .., xg) = (@1, T, L, Xign, .., 2g), 0<i<gq.

W (r) is a minimal complex of homotopy type (m,1). Notice that
Oy ...0y(x1,... ,xy) = (71), so the twisting function 7 : W (), — K(m,0), 1
of (2.2) is given by 7(z1,... ,x,) =x; € 7.

Definition 2.5. Let W(r) denote the PTCP K(m,0) x™ W(x). Then
W () is the universal covering complex of W (x). It follows that W (m) is
contractible.

Definition 2.6. Let G be an abelian group, A[g] be the standard semi-
simplicial g-simplex, and n > 2. Define a simplicial abelian group C(G,n +
1) as follows. Let C(G,n + 1), = C"(Alq]; G) the group of normalized
n-cochains on Alg] with coefficients in G. An element of C(G,n + 1), is
determined by a function u : Alg], — G such that u(a) = 0 whenever « is
a degenerate n-simplex of Alq].

If p € C"(Algl]; G) then O;u € C™(Alg — 1], G) and s;jp € C"(Alg + 1]; G)
are defined by O;;t = pod;, and s;pu = pog;, where §; : Alg—1] — Afg] and
§j : Alg+1] — Alg] are determined by 6;(o,—1) = 0,0,, and ¢;(0441) = 5;0,.

Define a simplicial group homomorphism § : C(G,n+ 1) — C(G,n + 2)
as follows. If p € C™"(Alg]; G) then du € C™(Alg]; G) is the usual cobound-
ary. Now define K(G,n) = kerd. Then K(G, n) is a simplicial abelian group
with K(G,n), = Z"(Alg]; G) the group of normalized n-cocycles on Alg]
with coeflicients in G.

H"(Alq]; G) = 0 therefore Z"*'(A[q]; G) = 6(C™(Alg]; G)). Thus ¢ maps
C(G,n +1) onto K(G,n + 1) with kernel K(G,n). K(G,n) operates prin-
cipally on C(G,n + 1) by ordinary addition of cochains. It follows that
d:C(G,n+1) = K(G,n+1) is a principal fibration with group K(G,n).
K(G,n) is a minimal complex of homotopy type (G,n) and C(G,n + 1) is
contractible.
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Definition 2.8. The correspondence = — x(o,) between C(G,n+ 1),, and
G determines an n-cochain on C(G, n+1) with coefficients in G. Denote this
cochain by wu, € C"(C(G,n+1);G). u, is called the fundamental cochain
of C(G,n + 1). Note that if p € C"(A[n + 1]; G) then (du,)(1) = Upi1(0p).
It follows that w,, restricted to K(G,n) is a cocycle. We denote this cocycle
by w, and call it the fundamental cocycle of K(G,n). It’s cohomology class
is denoted by ¢,,.

Lemma 2.9. Let K be a semi-simplicial complex. Define
¢ Homs(K,C(G,n+1)) — C"(K;G)

by ¢(f) = f*(u). Then ¢ is an isomorhism of groups with inverse ¢ defined
by Y(7)(0) =77(7) for v € C"(K;G), 0 € K.

Proof. See [8, 24.2]. Ul

¢ and 1) restrict to give isomorphisms between the cocycles Z™(K, G) and
the maps Homs (K, K(G,n)). Finally we have:

Theorem 2.10. Let f,g € Homs(K,K(G,n)) then f = g if and only if
&(f) is cohomologous to ¢(g). Hence there is a one to one correspondence

between the set of homotopy classes [K,K(G,n)] and the set of cohomology
classes H"(K;G).

Proof. See [8, 24.4]. |

Definition 2.11. Let 7 be a group, K be a semi-simplicial complex. By a
simplicial operation of m on K we mean an operation of K(m,0) on K. Note
that if 7 operates simplicially on K, then each x € 7w determines a simplicial
automorphism z : K — K.

If 7 opperates simplicially on the complexes K and L, amap f: K — L
is called equivariant if f(xo) = xf(o) whenever z € 7 and o € K.

If m operates on the abelian group G, and operates simplicially on K,
v € C"(K;G) is said to be equivariant if ~y(zo) = xzy(0), for all o € K,,.

Definition 2.12. Let 7m be a group, G be an abelian group. Suppose
m operates on G, then 7 operates simplicially on C(G,n + 1) as follows.
Suppose p € C"(Alq]; G), x € 7, and o € A[q],,, then (zp)(a) = z(pu(a)) €
G.

It should be noted that equivariant maps correspond to equivariant co-
chains in (2.9), and equivariant homotopy classes correspond to equivariant
cohomology classes in (2.10).
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3. L.(G,n)’s and the classification Theorem.

Definition 3.1. Let 7 be a group. A m-module is a pair (G, ¢) where G is
an abelian group, and ¢ : 7 — Aut(G) is a group homomorphism defining
7 as a group of operators on G. A map f:(G,¢) — (G',¢') of m- modules
is a group homomorphism f: G — G’ such that for all x € 7, g € G, we
have

f(@(x)(9)) = ¢'(x)(f(9))-

If (G, ¢) is a m-module, then ¢ induces simplicial operations of m on C(G,n+
1) and K(G,n) as in (2.12).
Note that 7 acts simplicially on W (7) by x(z¢, 1, ... ,x,) = (0, ... ,T,).

Definition 3.2. In [4] a semi-simplicial complex L, (G, n) is defined by
K(G,n) x W(n)

™

L.(G,n) =

Where we quotient out by the diagonal operation induced by the left op-
erations of 7 on K(G,n) and W(n). If f : (G,¢) — (G',¢') is a map of
m-modules then f induces an equivariant map f, : K(G,n) — K(G',n)
by fi(u) = fou, p € Z*(Alg]; G), and therefore a map f, : L.(G,n) —
L.(G',n).

Let 7 : W(m), — K(m,0),_; be the twisting function (2.2). m oper-
ates simplicially from the right on K(G,n) by ux = ¢(x~ ) opu, z € m,
pu € Z"(Alg]; G). Thus we may form the TCP K(G,n) x™ W(m). Again
if f:(G,¢) — (G',¢') is a map of m- modules then f induces a map
fo i K(G,n) x” W(r) — K(G',n) x” W(r).

Definition 3.3.  Define maps ¢ : L.(G,n) — K(G,n) x™ W(x) and
¢: K(G,n) — L.(G,n) by:

Y, (o, 21, ..., 2q)] = (pzo, (21, ... ,2,));
¢(Ma (xlv cee 7$q)) = [:uv (1,$1, ce 7xq)]'

Proposition 3.4. Y and ¢ are inverse isomorphisms.

Proof. This is a straightforward check.

We will hence forth use L. (G,n) to denote K(G,n) x™ W(r). L.(G,n)
is a minimal complex, with exactly one 0-simplex. It’s fundamental group is
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m and it has exactly one other non-vanishing homotopy group in dimension
n, which is isomorphic to G. The action of m (L.(G,n)) on m,(L,(G,n))
is given by the homomorphism ¢ : 7 — Aut(G) which defines G as a 7-
module.

Let L be the universal covering complex of Ly (G, n).

Definition 3.5. Define maps ( : L — K(G,n) x W(r) and n : K(G,n) x
W(r) — L by:

Claypty (21,0 1g)) = (pz™t, (2,00, ..., 2y));
N, (o, 1, ... ,x4)) = (To, pxo, (T1, ... ,24)).

Proposition 3.6. ( and n are natural, equivariant, and inverse isomor-
phisms.

Proof. This is a straightforward check.

Definition 3.7.  Define a map p : K(G,n) x W(r) — L.(G,n) by
p(p, (zo, 21, ... ,x4)) = (o, (T1,... ,24)). Notice that p(: L — L.(G,n)
is the usual projection. Consequently we may consider p : K(G,n) X
W(r) — L.(G,n) to be the universal covering.

If X is a one pointed semi-simplicial complex, with 7 = 7,(X), p: X —
X the universal covering, (G, ¢) a m-module, let C*(X;Gy) be the cochain
complex on X with coefficients in G twisted by ¢, and C, ()NC, @) the cochain
complex on X of equivariant cochains. We have the following theorem due
to S. Eilenberg, see [2, 25.2].

Theorem 3.8. Let X be a one pointed Kan complex, 7 = m(X), p :
X — X be the universal covering complex. Let (G, ¢) be a m-module, and
let C’;‘V(X; G) be the cochain complex of equivariant cochains. Then there is
an isomorphism

HY(X;G,) = H(X;G)

for all q, which is natural with respect to mappings of complexes with base-
point.

Proof. We define a natural cochain map p;, : C*(X;Gy) — C(’:V(f(; G) as
follows. Note that X, = 7. Define ~ : )~(q —7 by Y(T)=010s...9,T €.
For T € X,, and p € CU(X;G,) define pt, (u)(T) = (T)u(p(T)). Now
define pz, ™' 1 CL(X;G) — C*(X;Gy) by pi, '()(x) = h(l,2) Tt is

straightforward to check that p?, and p’ ~' are inverse isomorphisms of
cochain complexes.
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Definition 3.9. Let (G, ¢) be a m-module. Notice that the fundamental
cocycle u, € C"(K(G,n);G) is equivariant. Let ¢, € HZ (K(G,n); G) be
it’s class. Now consider the diagram

L.(G,n) £ K(G,n) x W(r) 25 K(G,n)

where p is defined in (3.7) and p,; is projection on the first factor. p; is an
equivariant map so we have the induced diagram

*
ev

H™(L.(G,n);Gy) = H™(K(G,n) x W(n);G) &= H"(K(G,n);G).

We define the fundamental class A, € H"(L.(G,n);Gg) by A\, =
(%) 'pi(tn). Notice that if i : K(G,n) — L,(G,n) is inclusion of the
fiber, then i*A, = ¢p,.

Definition 3.10. Let X, Y be one pointed complexes. Let a : m(X) —
m1(Y) be a group homomorphism. Let 7,(X,Y) be the set of homotopy
classes of mappings which induce o on fundamental groups. We have the
following theorem due to S. Gitler:

Theorem 3.11. Let X be a one pointed complex, and « : m(X) — 7 be a
group homomorphism, then the function which to every f € m,(X,L.(G,n))

assigns the class f*A € H"(X; Gya) establishes a one-to-one correspondence
between 7, (X,L.(G,n)) and H"(X;G4q)-

We will need the following result:

Lemma 3.12. Let X be a one pointed compler, and o : m(X) — w
be a group homomorphism. Then there is a unique map g, : X — W(m)
inducing o on the fundamental groups.

Proof. (i) Uniqueness.

Suppose f : X — W(7) induces a on fundamental groups. Since both X and
W (7) are one ponted we must have f(zo) = (1). Suppose z € X;, and let
v = [z] € m(X). Then f(x) = a(y) € 7 since W(r) is a minimal complex.
Now suppose = € X,, ¢ > 1. Let (ay,...,a,) = f(z) € W(rw),. Notice that
(a;) = 05 0% (a1, ... ,a,), 1 < i < q. Set vi(z) = [0) 0L =] € m(X),
1 <4 <gq. Then

(a;) = 0y 0{ 1 f(x)
= (95 0% )
= a(vi(z)).
Hence f(z) = (a(n(2)), ... a(7,(x))).
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(ii) Existence.
It is straight forward to check that the function defined above is a simplicial
map.

4. The twisted coefficient serre spectral sequence.

Definition 4.1. Let p : E — B be a Kan fibration, with fiber F =
pt(by). Let (G, ¢) be a m (B, by) - module. We define a 7, (B, by) - module
(HY(F; @), ¢ ) as follows. For each o € m;(B, by) there is a homotopy class
of automorphisms @ : F — F such that aff = Ba. Define an automorphism
b(a): HI(F;G) — HI(F;G) by d(a) = d(a).a” = a*o(a)..

The transgression 7 : H*(F; G) — H"*1(B;G,) is defined by 7 = j*p* "6
where

H'(F;G) % H™L(E,F;Gy,.) &= H™ (B, by; Gy) = H™(B; Gy).

suspension is 0 = 7+ = 0 'p*7* . In general, 7 and o are inver
The s 1 = §~'p*j*~'. In general, 7 and o are inverse
additive relations.

Theorem 4.2. There is a natural first quadrant spectral sequence {E?7}
with differentials d, of bi-degree (r,1 —r) and

B = O (B HY(F: G), )
By = HY(Bs H(F; G),)

and {E?}, 4—n gives the graded object associated to the induced filtration
on H"(E;Gy,,). Furthermore the additive relation:

- dy
H"(F;G) = B} e— By =% Epi & By = HH(B; G,)
1s the transgression. In particular

Def 7 C Ey® = [H™(F; G)]°
={z € H'(F;Q)|¢(a)x =z for all a € m (B)}.

If H*(B; HY(F;G) ;) = 0 for 0 < g <n, then p* : H(B;Gy) — H'(E; Gy,)
is an isomorphism for all © < n, and the following is an exact sequence of
groups and group homomorphisms

0 — H"(B;Gy) > H"(E; Gyp.) > H"(F; G)°
T HU(B; Gy) B H' T (E; Gy ),
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see [9, 1.1].

Definition 4.3. Let (G,¢) be a m-module. 7 operates simplicially from
the right on C(G,n + 1) by pzr = ¢(z Hopu, zem ue C'(Alg;G).
Thus we can form the TCP P.(G,n+1) = C(G,n+ 1) x™ W(r).

Themap ¢ : C(G,n+1) — K(G,n+1) isequivariant, so it induces a map
p:P.(G,n+1) - L.(G,n+1) by p(p, (1, ... ,24)) = (0, (z1,... ,24)). D
is a minimal Kan fibration with fiber K(G,n).

Notice that K(G,n) is a subcomplex of C(G,n + 1), so L.(G,n) is a
subcomplex of P, (G,n + 1).

Lemma 4.4. Lett, € H"(K(G,n); G) be the fundamental class of K(G,n),
and let \,y1 € H" (L, (G,n+1); Gy) be the fundamental class of L.(G,n+
1). If 7: H"(K(G,n); G) — H"" (L.(G,n+1); Gy) is transgression for the
Kan fibration K(G,n) 5 P,(G,n+1) 5 L.(G,n+1), then 7(t,) = As1-

Proof. Let u, € C1(C(G,q+ 1);G) be the fundamental cochain, and let
w, = i*u,, then w, is the fundamental cocycle of K(G,q). Define U, €
C"(P.(G,n + 1);G) by U,(p,(x1,...,2,)) = wu,(p). Notice that
oU, (u, (x1,... ,Zpns1)) = Oduy(p). Thus *(0U,) = dw, = 0 so oU, €
C" " (P,(G,n+1), K(G,n); G). It follows that if 6 : H"(K(G,n); G) —
H"™ (P,(G,n + 1),K(G,n);Gy) is the connecting homomorphism then
oL, = [0U,].
We claim that p*j* ' \,41 = [6U,].

Let Q.1 € C""Y(L,(G,n+1);G,) be defined by Q,, 1 (1, (T1, ... ,Tpi1)) =
Wnt(p). If p: K(G,n+1)x W(r) — L,(G,n+1) is the universal covering
complex, then p: Q,11 € C"™(L.(G,n+1);Gy4) is given by

PevSlni1 (b (To, T1, - -+ Tng1)) = ToQngr (BT, (X1, -+, Tt1))
= Zown11(75 " 1)
= wp1 (1)
= (P1wn+1) (1, (T, @1, -, Tng1)).

Hence p? Q.1 represents pi(t,11). It follows from the definition of A,
that Q,,,1 represents A, 1.
Notice that

PaQnir(pts (1, Tog1)) = Qg (O, (21, -+, Tog))
= wnt1(0p)
= du, (1)
= 6Un(p, (%15 -+, Tny1))-
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Hence p*j* ' A\,41 = [6U,]. Therefore \,,; € 77 0(1n) = T(1n). or equiv-
alently ¢, € o(A,11). O

5. Geometric realization and the Postnikov tower.

This section follows McClendon [9], except that he worked in the category
of C.W. complexes.

Definition 5.1. Let D be a semi-simplicial complex. A complex over D
is a pair (X, ) where X is a semi-simplicial complex and Z : X — D is a
semi-simplicial map. A map f: (X, %) — (Y,§) over D is a semi-simplicial
map f : X — Y such that §f = &. A D-sectioned complezis a triple (X, Z, &)
such that (X, ) is a complex over D, and # : D — X is a semi-simplicial
map satisfying #& = 1p. If (X,Z) is a complex over D, then X x I is a
complex over D via X x I &5 X 2 D.

A homotopy over Disamap H : X xI — Y over D. Hoiy and H o, are
homotopic over D. Let [X,Y]|p denote the set of homotopy classes of maps
over D. [X,Y]p may be empty, but if Y is a D-sectioned complex then
[X,Y]p is non-empty and has the class [yZ]p as a distinguished element.

If X and Y are complexes over D define their product over D, X xp Y,
by

(X xpY)g ={(z,y) € Xy x Yy|2(z) = 9(y)}-
X xp Y is again a complex over D via the map (x,y) — Z(x) = §(y). A
Kan fibration over D is a Kan fibration p : E — B such that p is a map over
D. Suppose X is a complex over D, p : E — B is a Kan fibration over D,
and f : X — B is a map over D. Define the pull-back over D of p by f to
be q : Ef — X where

Bl ={(e,x) € (E xp X)alp(e) = f(x)}

with obvious face and degeneracy operators, and ¢(e,z) = . Then E is a
complex over D and ¢ is a Kan fibration over D. Note that if p is a minimal
fibration then so is q.

Ezample5.2. P.(G,n+1), and L, (G, n+1) are W (r)-sectioned complexes
via the maps p, and sg where

Doty (1, ..., xq)) = (T4, ..., Ty);

So(Z1y. .., 2q) = (0, (x1,... ,2,)).

Furthermore L.(G,n) - P.(G,n+1) % L.(G,n+1) is a sequence of maps
of W (7)-sectioned complexes, and p is a fibration over W (7).
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Lemma 5.3. If (X, %) is a complex over W (r) then [X,L.(G,n + D% )
has an abelian group structure with identity element [soZ].

Proof. Let f : X — L,(G,n + 1) be a map over W(r). Then pof = &
implies f(x) = (fi(x),2(x)) where f; is a graded function of degree 0, X —
K(G,n + 1), satisfying

f1(0ox) = 0o f1(x)TZ();
f1(0ix) = 0; fi(x), i>0;
fils;z) =s;fi(z), j=>0.

If f,g : X — L.(G,n+ 1) are maps over W(x), define f +¢g : X —
L.(G,+1) by (f + g9)(x) = (fi(z) + g1(x),z(x)). It is clear that f + g is
again a map over W (x). Also (f + soZ)(x) = (fi(z) + 0,%(x)) = f(z) and
if (—)(2) = (—fi(2),3(2)) then f+(—f) = sod.

Furthermore, suppose F' is a homotopy f = f’ over W(x) and G is a
homotopy g = ¢’ over W(m). Then as maps X x I — L. (G,n + 1) we can
form F + G which is a homotopy (f + g) = (f’ + ¢g') over W(xr). Therefore
the addition is defined on homotopy classes over W (7). u

Lemma 5.4. Suppose (X, %) is a one pointed complex over W (r). If &
induces the homomorphism « : m(X) — m, then

[Xa Lﬂ(Gv n+ 1)]W(7r) = Wa(Xv Lﬂ(Ga n+ 1))

Proof. Let f : X — L,(G,n+1) be a map over W(7). Then p,f = & implies
P2, f+ = o on fundamental groups. But p,, = id. : @ — 7 therefore f, = a.
Conversely, if f: X — L,(G,n + 1) is an arbitrary semi-simplicial map
inducing a on fundamental groups, then (p2f). = @. But by (8.16) there is
a unique map X — W () inducing o on fundamental groups. Thus p,f = .
A similar argument shows that if H : (X x I, zg xI) — (L.(G,n+1), (1))
is a homotopy f = f’ (rel xy) of maps inducing « on fundamental groups,

then H is a homotopy over W (). O

Now, let A\,y1 € H"™(L.(G,n 4+ 1); G4) be the fundamental class, and
let Q,41 € C"(L.(G,n+ 1); G,) be it’s representative as in (4.4). Recall
that Qn1(p, (T4, ..., Tp1)) = wppa(p). I fog: X — L,(G,n+ 1) over
W (7) then:

(f+9)" Qii(x) = wpgr (fi(z) + g1(2))
= wn+1(f1 (a:)) + wn+1(g1 (1’))
= [" Qi1 () + 9" Qi ().
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It follows that (f 4+ ¢)*A\ns1 = f*Aus1 + g" A1 Taking account of (3.11)
and (5.4) we now have:

Theorem 5.5. Let (X, %) be a complex over W(rw). Then the func-
tion which assigns to each f € [X;Lr(G,n + 1)|55,) the class f*A, 41 €
H"™ Y (L, (G,n+1);G,) is a group isomorphism.

Lemma 5.6. If (X, %) is a complex over W () where & is the trivial map,
then
(X, L (G, n) i X K (G, )]

Proof. Since & is the trivial map, and 7(s3(1)) = 1, f : X — L.(G,n) is
a map over W(x) if and only if f(z) = (fi(x),si(1)), where f; : X —
K(G,n) is a semi-simplicial map. Furthermore H : X x I — L, (G,n) is
a homotopy over W(x) if and only if H(z,0) = (Hi(z,0),s$(1)) where
H, : X — K(G,n) is a semi-simplicial map.

Lemma 5.7. If (X, %) is as in (10.7) and f : X — Y is a map over W (m),
then
[ [Y7LW(G7n)]W(7r) - [X7K(Gv n)}

s a group homomorphism.

Proof. Since f is a map over W(w) it follows that g f is trivial. If g, h :
Y — L.(G,n) are maps over W(m) Then go f(x) = (g1 o f(z),sd(1)),
ho f(x) = (hio f(x),s5(1)), and (g+h)o f(z) = (g10 f(x)+hio f(z),s5(1)).
Hence f*[g+h] = f*[g] + f*[h]. u

Definition 5.8. Suppose F 4 E 2 Bis a Kan fiber sequence, and
f:B — L,.(G,n+1) is a semi-simplicial mapping. Then f induces maps
making F, E, and B complexes over W(7), andi, p, and f maps over
W(r). Let q : P — B be the pullback over W () by f of the fibration
p:P.(G,n+1) — L. (G,n+1). Note that ¢ : P/ — B is a minimal fibration
because p: P,(G,n+1) — L. (G,n+1) is.

Consider the following diagram

F S E
u | lv
K(G,n) — P/
ql

B L L.(G,n+1).

We say that v : F — K(G,n) is geometrically realized by f if there exists
v: (E,F) — (P/,K(G,n)) such that qv = p and v|F 2 u : F — K(G,n).
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Let ¥f = {[u] € [F,K(G,n)]| u is realized by f }. It is easily checked that
if f= f' over W(r) then ©f = X f', so Xf = S -

Since F — W (1) is trivial, by (5.7) the following map is a homomorphism:
i [E7 LW(Gv n)]W(w) - [F7 LW(Gv n)]W(w) = [F7 K(G7 n)]

Theorem 5.9. Xf is a left coset of the subgroup i*[E, L. (G, 1)l in
[F,K(G,n)].

Proof. (i) Consider the diagram:

[(E’ F)v (Ba bO)]W(w) & [(E7 F)’ (Pf) K(Gv n))]W(n)
(R, F), (PYK(G, 1))k = [F.K(G,n)].

Observe that X f = i*¢. " [plig ()
(ii) We prove the following:

Lemma 5.10. Let (X, A) be a pair over W (7) then there is a group action
of [(X,A),(Lr(G,n), K(G,n))lg, on the set [(X, A), (P K(G,n))w W)
such that for o, 8 € [(X,A), (P, K(G,n))]gx, ¢-a = q*ﬁ if and only if
there exists n € [(X,A), (L.(G,n),K(G, ))] W) Such that nB = a. The
action is natural with respect to maps (X, A) — (X', A’).

Proof. Recall that f(b) = (f1(b),b(b)). It follows that
L. (G,n) Xgg(m PY = {(w,b(b)) x (11, b(b), b) |6 = f1(b)}.

Define v : L.(G,n) Xz PY — P by 4((w,b(b)) x (1,b(b),)) = (w +
1y l;(b), b). Notice that 0(w + p) = dp = f1(b) so v is well defined. Note also
that ¢v(z,y) =q(y) for all (z,y) € L.(G,n) X () P/

If 3:(X,A) - (P K(G,n)) and 7 : (X,A) — (L.(G,n),K(G,n))
are maps over W (m). Define 13 : (X,A) — (P/,K(G,n)) by (n8)(z) =
v(n(x), B(x)). Notice that q(nB(x)) = q((x)) for all z. It is easy to check
that this action is defined on homotopy classes.

Let g: (X,A) — (X’,A’) be amap over W (r). Consider the maps

g [(Xla A/)7 (Pf? K(Ga n))]W(w) - [(Xa A)a (Pf7 K(Ga n))]W(rr);
g : [(X/v A/)v (Lﬂ(Gv TL), K(Gv n))]W(ﬂ') - [(Xv A)a (LW(G> n)7 K(Gv n))]W(w)

Notice that

g"(nB)(x) = v(n(g(x)), B(g(x)));
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Suppose ¢.[a] = g.[5]. By choice of representatives we may assume goa =
q o 3. Now we can write:

where oy (z) = fi(b(xz)) = dps(x). It follows that 6(uy(x) — pa(x)) = 0
for all . Hence py(z) — po(z) € K(G,n) for all . Define n : (X,A) —

(Lx(Gyn), K(G,n)) by n(x) = (pa(2) = pa(x), 2(x)). Then

(nB)(x) = ((11() = pa(2)) + pa (), &(), b())
= (m (@), 2(x), b())
a(z).

Thus 13 = « as required. Ul

(iii) We apply (ii) with (X, A) = (F, F), and again with (X', A’) = (E, F).
Let a € ¢. 7" [pRg(r)- By (ii)
Q*_l [p]W(w) = {770477 € [(E7 F)? (LW(Ga n)v K(G7 n))]W(w)}'
Note ihat (E,F), (L:(G,n),K(G,n))kg(ry = [E,La(G, 1)l because
F — W(n) is trivial. Consider the maps:
i [(Ea F)? (va K(G7n))]W(7r) - [(Fv F)v (vaK(Gvn))]W(rr) )
i [(Ev F)? (LW(Gv n)v K(G7 n))]W(ar) - [(F7 F), (LW(G7 n)? K(G7 n))]W(w)'
Note that:
[(F,F), (P, K(G,n) )., = [F.K(G, )
[(Fv F)7 (Lﬂ(Gv n)a K(G7 n))]W(ﬂ') - [Fa K(Gv n)]

Under these bijections the action of [(F,F), (L.(G,n),K(G,n))l5 ., on
(F,F), (Pf,K(G,n))]W(W) is just ordinary addition in [F, K( n)] Fur-
thermore the second ¢* is the homomorphism *[E,L.(G,n)w
[F,K(G,n)|. Hence we have

—

0. Pl = {i* ()| € [B, Lo (G, ) g }

= {('n) + (@)l € [B.L,(C.nl(,) )
=i+ Z*[Ey LTr(Gv n)]W(w)‘
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So by (i) we have Xf = i*a + i*[E, L. (G, )55, as was to be shown.

Suppose that F 4 E 2 B is a Kan fiber sequence of one pointed com-
plexes, with 7 = 7;(B), and 7 (F) = 0, for £ < n. We make the identifica-
tions:

)

H" (E, qup*) = [E7 LW(G7 n)]W(rr);

H'(F;G) = [F,K(G,n));

and
H™(B;Gy) = [B: Ly (Gon + 1)y -

If 7:[H"(F;Q)]% — H"(B;G,) is the transgression, then 7 is a homo-
morphism with ker(7) = i*H"(E; G4,.). Thus if o is the suspension, and
w € im(7), then o(p) is a coset of i* H"(E; G4,-) in H"(F; Q). u

Theorem 5.11. For f as in (5.8) we have Xf =of.

Proof. Tt suffices to find a common element in these two cosets. Let [u] € X f
and consider the following commutative diagram

F - E £ B
ul l vl I
K(G,n) — P/ -2 B

K(G,n) — P.(G,n+1) 2 L(G,n+1).

Let 0, ¢” be the suspensions corresponding to the first and third rows, respec-
tively. Recall that ¢, € 0”(\,41). then, by the naturality of the suspension,
we have u*(i,) € u*0”(Ans1) C o f*(Ans1) as required. u

To construct the Moore-Postnikov tower for a connected Kan complex by
the present method it remains only to show that the fundamental class of
the fiber can always be realized.

Lemma 5.12.  Suppose n > 2, and m(F) = 0 for k < n. Let f €
H"(F;m,(F)) be the fundamental class, and ¢ : m(B) — Aut(m,(F)) be

the action determined by the fibration. Then f € [H™(F;m,(F))]?. Hence f
1s transgressive and can be realized.

Proof. See McClendon [9, 4.1]. u
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Now suppose K(G,n) % E 2 B is a Kan fiber sequence of one pointed
Kan complexes. By (5.12) the fundamental class ¢, € H"(K(G,n);G) is
transgressive, and 7(,) € H""'(B;G,) corresponds to some class [f] €
[B;L.(G,n + 1|5z Thus ¢, € of = Xf. But ¢, € H"(K(G,n);G)
corresponds to the identity map K(G,n) — K(G,n), hence there exists a
diagram

K(G,n) —— E

al |l

K(G,n) — P — P (Gn+1)

o

B L L.(Gn+1)

where v : (E,K(G,n)) — (P/,K(G,n)), v]K(G,n) = id, and qu = p.
Comparing the long exact homotopy sequences of the two fibrations, we see
that v is a strong homotopy equivalence of fibrations.

Conversely it is easy to see that strongly equivalent K(G,n) fibrations
over B determine homotopic maps B — L.(G,n + 1). Thus we have the
following:

Theorem 5.13. Let ¢ : @ — Aut(G), B be a one pointed Kan complex
with 7 (B) = w. Then the set of equivalence classes of K(G,n) fibrations

inducing ¢ are in one to one correspondence with [B; L. (G;n + 1)]W(7\') =~
Hn+1 (B, G¢)

See [13].

Definition 5.14. Let K be a connected minimal complex, 7, = m,(K), and
let X = (X% X' ...,X", ...) be the natural Postnikov system of K, see
[8, 8.5]. Then X" ! = (K™ p, K™ V) is a minimal fibration. Hence the
fiber, F(™ of X™ is a minimal complex of homotopy type (m,,n). It follows
that F(™ is isomorphic to K(m,,n). Thus we have a Kan fiber sequence
K(m,,n) — K™ 2 K™D of one pointed Kan complexes.

Let 7 = m(K) = m(K®V), 7, = m,(K) = 7,(K™), and let ¢ :
7 — Aut(r,) be the action determined by X". The n'" k-invariant of K
is defined by k" = t(v,) € H""(K"V;7,,). k" corresponds to a class
[f"] € KO, Lo(mn,n + Dl (P, ¢, K®) is strongly equivalent
to (K™ p, K"™V) but these are both minimal fiber spaces, and a strong
equivalence of minimal fiber spaces is an isomorphism , see [8, 12.8]. Thus
the natural Postnikov system of K is determined by the homotopy groups of
K, the action of m;(K) on m,(K), for all n, and the k-invariants of K. Since
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K is homotopy equivalent to the projective limit of it’s natural Postnikov
system it follows that the homotopy type of K is determined by it’s homotopy
groups the actions of 7, (K), and it’s k-invariants. Finally if L is an arbitrary
connected Kan complex, L contains a minimal subcomplex K which is a
strong deformation retract, see [8, 9.9]. Thus the homotopy type of L is
determined by the homotopy type of K.

Example 5.15. If we consider W(7) as a complex over itself via the
identity map, then the cannonical section so : W(7w) — L.(G,n + 1) is a
map over W () and

P = { (1, 2,2) € P (G, + 1) Xy W(m)|op = 0}

= L.(G,n) X W(n).

Define v : L, (G,n) — P* by v(u,z) = (i, z,z) and notice that q(v(p,x)) =
p2(p, x). We have the following commutative diagram

K(G,n) 5 L.(G,n)

id. || Lo
K(G,n) - P*» P (Gn+1)
aql pl

W(r) 2 L.(G,n+1)
so corresponds to 0 € H"*'Y(W(r);Gy), therefore L,(G,n) has zero k-
invariant.

6. Obstruction Theory.

Let (X, A) be a one pointed semi-simplicial pair, Y be a connected Kan
complex. We develop a twisted coefficient obstruction theory for the ex-
tension of maps f : A — Y and homotopies fo]A = f1|A, (rel z5) where
fo,f1: X—=Y.

This section generalizes the obstruction theory of P. Olum [10], where X
and Y are total singular complexes of arc connected topological spaces.

Lemma 6.1. W.L.O.G. it suffices to consider codomains Y such that Y
is the minimal subcomplex of the total singular complex S(W) of an arc
connected topological space W.

Proof. Let Y be a connected Kan complex and let M <Y be the minimal
subcomplex of Y, see [8, 9.9]. Let M %Y > M be the diagram defining
M as a strong deformation retract of Y. Then r o4 = 1,;, and there exists
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H:Y xI— Y such that Hoiy =ior, Hoi, =1y, and H(m,o) = m, for
all (m,0) e M x 1.

Iffo:A—-Y,let g =7rofy: A — M. Suppose ¢y has an extension
b : XMUA — M. Then iog, : X"WUA — Y with iog,|A = iop, = iorof;.
Define K : AXI — Y by K(a,0) = H(fy(a),o). Then K(a, s{(0)) = iopy(a)
and K(a,si(1)) = fo(a). Now define F, : (X™ x (0)) U(A xI) =Y by

Fo(x,0) = {K(az,a) ?f (z,0) € AxT;
i 0 ¢n(x) if (z,0) € X x (0).

Then F), extends over (X xI)U(A xI) by the homotopy extension property.
Define f, : X™ UA — Y by f.(z) = F,(z,s{(1)). Then for a € A we have
fula) = fo(a), hence f, is an extension of f;.

Conversely suppose f, has an extension f, : X U A — Y. Define
¢n=r10f,: X" UA — M Then ¢, is an extension of ¢y.

Therefore f, extends to X™ U A if and only if ¢, does. Hence it suffices
to consider codomains Y such that Y is a connected minimal complex.

Now let Y be a connected minimal complex. We have a homotopy equiv-
alence ¥(Y) : Y — S(T(Y)), see [8, 16.6]. Let M < S(T(Y)) be the
minimal subcomplex. Then 7o ¥(Y) : Y — M is a homotopy equivalence
of minimal complexes, but such a map is an isomorphism, see [8, 9.7]. This
proves the Lemma. [l

If Y < S(W) is the minimal subcomplex of the total sigular complex of
an arc connected topological space W, then Y is a one pointed complex.
Let yo : Ag — W be the unique 0-simplex of Y, and let wy = y(Ay) € W.
If y € Y, is an arbitrary ¢g-simplex then y : A, — W, and if v; is the "
vertex of A, then y(v;) =wy, 0<1i<gq.

Definition 6.2. Let A[n] be the standard semi-simplicial n-simplex, with
generator o,, and let 0 = 9;0,,, 0 < i < n. Let dA[n] be the subcom-
plex of A[n] generated by the o¥. Suppose f : 0A[n] — Y is a semi-
simplicial map. If i : Y — S(W) is the inclusion then io f : 9A[n] — S(W).
Let ¢(iof) : 0A,, — W be the adjoint map, see [8, 16.1]. Ife; : A,,_; — A, is
the i*" face, then ¢(io f)oe; = f(e@): A,_; — W. Now f(c)) €Y, _, for
all 4, so if vy is the leading vertex of A,, then ¢(io f) : (0A,,v9) — (W, wy).
Therefore ¢(i o f) determines an element a(f) € m,_1(W,wy).

Lemma 6.3. f extends over Aln| if and only if a(f) is trivial in
Wn_l(w,wo).

Proof. If a(f) is trivial, then ¢(i o f) extends to a continuous function b
A, — W. Note ¢ € S,,(W). If r : S(W) — Y is the retraction, define a
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map f:A[ln]—Y by f(o,)=r(¢) €Y. Then

0:f (@) = r(didlio f))
=r(p(io f)oe)
= f(0ion).
Thus f is an extension of f. [l

Conversely, if f extends to f : A[n] — Y then ¢(i o f) = ¢(i o f)|0A,
hence a(f) is trivial.

Theorem 6.4. Let fy : A — Y be a semi-simplicial map and suppose
0 : 7 (X) — 7 (Y) is a homomorphism. Then f, has an extension fy : XU
A — Y inducing 0 on fundamental groups if and only if fo(a) represents
0la] whenever a € A;.

Proof. If an extension f, exists inducing # on fundamental groups, then
fola) = fa(a) represents Ola] whenever a € A;.

Conversely suppose fy(a) represents 6[a] whenever a € A;. Extend f, to
fi: XWUA — Y as follows. If # € X; — A, is nondegenerate, let y € Y}
represent [z] and define f;(z) = y.

Now we show that f; can be extended to fo : X UA — Y. Let z €
X, — A, be nondegenerate. Let y; = f1(9;z), 0 <i < 2. Let 7: A2] — X®
be the map determined by Z(cy) = =z, and let 97 : dA[2] — XY be T
restricted to OA[2]. Then the composite map dA[2] 25 XD 5y determines
an element o(f1,z) € m (W, wp) as in (6.2). But

a(fi,z) = [?/0]@2”91]71
= 0([002][0s][0r2] )
=1

because [Jyz][02x] = [O1z] by the definition of multiplication in m(X),
see [8, 4.1]. Thus f; o 9T extends over A[2] by (6.3), so fi extends over
x. It is clear from the construction that f, will induce 6 on fundamental
groups. ]

Definition 6.5. Suppose f, has an extension f,_; : XD UA — Y,
n > 3, inducing 6 on fundamental groups. Let x € X,, . Then the com-
posite map JA[n] % x -1 251 ¥ determines an element a(fn_1,x) €
o1 (W,wg) as in (6.3), such that f, ; extends over z if and only if
a(fo_1,z) = 0. Notice that a(f,_1,2) = 0 whenever z € X"~V U A.
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Thus we obtain a normalized cochain z(f,—1) € C™(X, A;7m,_1(W)yp) de-
fined by z(fn-1)(z) = a(fn_1,z). Where ¢ : m(Y) — Aut(m,_1(W,wp)) is
the action determined by the action of 7 (W) on m,_1(W).

We require the following to show that z(f,_1) is a cocycle.

Lemma 6.6. Let A, be the boundary of the geometric (r+1) simplex , let
J be a fized integer 0 < j < r+1, let o, be the j"-face of A1, let py € DA, 44
be the leading vertex of A,11, and let p; be the leading vertex of ;. Suppose
that f, "+ OA, 41 — W such that f(po) = f(p1) = ['(po) = ['(p1) = wo,
f10A 1 — 05 = flIOA1 — o and f'|o; is an alteration of flo; by the
homotopy element § € 7.(W,wo). If f and f' determine oy and «f in
(W, wg) with py as basepoint then o) = ag+ (—1)7we1 3 where wy, is the
class in m.(W,wg) containing the image under f of all paths in OA, 1 from
Do to pi.

Proof. See [10, 6.5]. Note that wp; is trivial unless j = 0, so we have

, Jaotwanp if j=0;
a4 (=178 if j>0.

Theorem 6.7. z(f,—1) € C"(X, A;m,—1(W,wp)es) is a cocycle.

Proof. Let e; : A, 1 — A,, imbed A, ; as the i'" face of A,, ¢ > 1. Suppose
r € X4, let 7 1 Aln + 1] — X™*D be the map determined by z, and
let 7™~V be T restricted to the (n-1) skeleton of A[n + 1]. Then we have
a composite map i o f,_ 07"V : Aln+1]""Y — S(W). Let T be
the (n-1)-skeleton of A, ;. Define F: ("9 — W to be the adjoint map
F=¢(iof, 107" V). Notice that Foejoe; = f, 1(0,0;,7) : A, — W.

Next define F' : X"~V — W by setting F'|e,41€;(A,_1) equal to an al-
teration of Fle, 1e;(A,_1) by the homotopy element (—1)""'z(f,_1)(0:iz) €
Tno1(W,wp), 0<i<n+1 and setting F' = F elsewhere.

Let a;(F') € m,—1(W,wp) denote the homotopy element determined by
F'|0e;(A,), 0 <i<mn+1. Then for 0 <1i < n, we have

ai(F') = 2(fo1)(@ix) + (=1)"(=1)"""2(fn1)(0i)

by (6.6), since F|de;(A,) induces the element z(f,_1)(0;xz), and
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enirei(An 1) = eren(An_1) is the n face of ¢;(A,). Furthermore
@1 (F') = 2(fa1)Buis) + (~1) wor2(fa1)(002)
" i(—l)i(—l)"“Z(fn1)(32-36)
= ) @)

by (6.6), since F|de,1(A,) induces the homtopy element z(f,_1)(0n11%),
eni16i(An,_1) is the i face of e,,11(A,), and F'|e,;1e;(A,,_1) is an alteration
of Flepiiei(An_1) by (=1)""2(f,_1)(0;x). We also use the fact that wy; is
represented by f,_1(0s...0,112), whence wg; = 0[0s...0, 1] € T (W).
a;(F") =0, 0 < i < n, implies that F’ extends over e;(4A,), 0 < i < n.
eo(A,)Uer(A,)U. .. Ue,(A,) forms a disc in 0A,,;; with boundary (except
for orientation) equal to de,1(A,). Therefore F’|0e,1(A,) extends over a
disc in A, 11, s0 a1 (F’) =0, hence (0z(f,—1))(x) = 0. Since this holds
for all x € X411, 2(fn-1) is acocyclein C™(X, A;m,_1 (W, wp)s0)-
[l

Definition 6.8.  The cocycle z(f,_ ;) determines a cohomology class
h(fn-1) € H*(X; A;m,—1(W,wp) ) called the obstruction class of f,_1.

Lemma 6.9. z(f,_1) is natural with respect to mappings of one pointed
Pairs.

Proof. Let g : (U,B) — (X,A) be a map of one pointed pairs. Then
foo10g: UMD UB — Y determines the obstruction cocycle z(f,_10g)
where z(f,_1 0 ¢g)(u) is the homotopy element induced by the map ¢(io

fano10g00u). glu) =gow so godu= 9dg(u), thus

Z(fn—l 0 g)(u) = [¢(’L 0 fn—lag(u))]
= 2(fn-1)(g(u))
= (9"2(fu-1))(u).

Hence 2(f,_109) = g*2(fn_1)- [l

Lemma 6.10. Suppose n > 2, and f,,f, : X" UA — Y such that
fo XD U A 2 f/1XCPD U A (rel zy). Where we require that f, and
f both induce 0 on fundamental groups if n = 2. Then h(f) = h(f’) €
H™ (X, A m,(W,wg) ge)-

Proof. Let K : XU x TUA x I — Y be a homotopy f,|X" D uUA =
F1IXEP=DUA (rel x4). Define H : X™ x (0)U(X"™ Y xTUAXxT)UX™ x (1) —
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Y by
f(z) if (z,0) € X™ x (0);
H(z,0) = K(z,0) if (2,0) € X" D xTUA xI;
f'(x) if (z,0)€X™ x(1).

It is straight forward to check that H extends over (X x I)(™ U A x I. Since
H(zg x I) = {yo} we may think of H as being defined on the one pointed
complex ([X xI]™UA xI)/(xox1I). It follows that H induces an obstruction
class h(H) € H"" (X x T, AxT;m, (W, wp) 5). Where 8 : m (X xT) — my(Y)
is the homomorphism induced by H. By (6.9) we have

h(f) = igh(H)
= i*h(H)

= h(f).
U

Corollary 6.11. The obstruction class h(f,) depends only on the based
homotopy class of f,.

Definition 6.12.  Alteration of a semi-simplicial mapping. Let z be an
n-simplex of X. Given a map f : X™ UA — Y, n > 2. We may consider
alterations of the singular n-simplex f(z) : A, — W by homotopy elements
a € m, (W, wp).

Note that if y : A, — W is an n-simplex of Y, and u : A,, — W is an
alteration of y then 0;u = 0,y € Y,,_1, for all i, and since Y is the minimal
subcomplex of S(W) it follows that there exists ' € Y,, such that y is
homotopic to u (rel 9A,). Thus we may assume that an alteration of an
n-simplex of Y is again an n-simplex of Y.

Now, given an n-cochain ¢ € C™(X, A;m,(W,wp)s) we define a new
semi-simplicial mapping f, : X U A — Y as follows. For z € X,, set

fi() = {f(ﬂf)/ if C:(x) = 0;
f(zx) if ¢"(z) #0.
Where f(z)" is an alteration of f(z) by the homotopy element ¢"(z).

We commpute the effect of an alteration on the obstruction cocycle.

Lemma 6.13. Given f: X™WUA — Y, n> 2, and an alteration f, of f
by " € C™(X, A;m, (W, wp)ge) then z(f,) — z(f) = dc™.

Proof. z(f)(x), and z(f,)(x) areinduced by ¢(iofo0Z) and ¢(iof,007)
respectively. Now ¢(i o f 0 0%) o e; = f(O;x) and ¢(i o f, 0 OT) o e; =
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fa(0sx). But f,(0;x) is an alteration of f(9;x) by ¢"(09;x). Therefore by
(6.9) z(fa)(2) = 2(f) (@) Fworc™(Qx) + i) (—1) e (i), whence z(f,) () —
2(f)(x) = (6¢")(x). O

Theorem 6.14. If f: X™WUA — Y, n>2, induces 0 : 1 (X) — m(Y),
then there exists g : XD U A — Y inducing 6, such that g X"V U A =
FIXC=DU A if and only if h(f) =0¢€ H" (X, A; 7, (W, wp)ge)-

Proof. Suppose h(f) = 0.

Then z(f) = dc" for some c¢* € C™(X, A;m,(W,wp)gp). Let f, : XM U
A — Y be an alteration of f by —c", then by (6.13) z(f,) = z(f) —dc™ = 0.
Hence f, may be extended to a map g : XY UA — Y , and

g X" VUA = f[ XV UA
= X"V U A.
Conversely, suppose such a map g exists. Let f/ = g|X™ U A. Then

2(f) =0 and f/| XD UA = fIX" D UA so by (6.10) h(f) = h(f) =
0. O

Definition 6.15.  Obstruction to a homotopy. Suppose fo, f1 : X — Y,
and let K : (A xI,zg xI) — (Y,y0) be a homotopy fo|A = fi|A (rel zy).
Leth:XX (O)UAXIUXX (1)CXXI DeﬁneHO:K01—>Yby

fo(zx) if (z,0) € X x (0);
Hy(z,0) = ¢ K(x,0) if (z,0) € AxI;
fi(zx) if (z,0)€ X x (1).

Since H(zo x I) = {yo} we may think of H as a map Ag;/zo x I — Y, and
apply obstruction theory to the one pointed pair (X x I/xq x I, Ag;/zo X I).
Furthermore the obstruction classes are in the cohomology groups

H™ (X X L Ay 10 (W)go ) = H'™H(EX, DA 7, (W)g0)
= Hn(X, A, Wn(W)¢9).

Corresponding to (6.4) we have the following:

Lemma 6.16. H, extends to Hy : (X x I)® U Ay, — Y if and only if f,
and fy induce the same homomorphism 0 : 7 (X) — m(Y).

Proof. Suppose such an H, exists. Let i : Ay; — X x I be inclusion, and
ip: X — X x (0) C Agy, iy : X — X x (1) C Ag;. then ioig and i 04, are
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homotopic maps X — X x I. We have

Jo. = Ha,iig,
- HQ*i*il*
= fl*‘
Conversely, suppose f, and f; both induce 6 : m(X) — m(Y). Let
X : m(X) — 7 (X x I) be the isomorphism defined by x = 4.ip, = .41,. Let
0:m (X xI) — m(Y) be given by = 6 o x~!. We claim that H,, = 0i,.
Therefore, by (6.4) the extension H, exists.

An application of the Van Kampen theorem shows that the following

diagram is a pushout
T (A) — 7 (X)

o
m(X) 25 1 (Ag)
Hence any a € m; (Xm) can be written as a product:
a =10, (1)1, (22) . . ioy (Tar_1)i14 (Tar)
where z; € m(X), for all 7. It follows that:

Ho*(a) = Ho*io*(xl)Ho*il*(ﬂfz) s

= fo.(@1) f1,(x2) ...
=0(x1)0(x2) ...

=0(z1xs...).
On the other hand
0o, () = O0x " (ivio, (71)isir(22)...)

= Ox ' (x(21)x(22) .. .)
=0(x122...).

Thus H()* = gl* |:|

7. Semi-Localization.

Let P be a finite collection of prime integers, and let Zpy be the integers
localized with respect to P. We show that if X is a one pointed Kan com-

plex, there exists a diagram X EN X, such that f. : m(X) — m(X,) is an
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isomorphism, and f, ® Zpy : 7,(X) — 7,(X,,) is an isomorphism for k£ > 2.
This diagram is characterized by a universal mapping property.

Remark 7.1. Note that if f: X — Y is a semi-simplicial map, then there
exits a factorization:

Z

ay

Xy
such that 4 is an inclusion, and p is a fibration. Furthermore the factor-
ization can be chosen so that ¢ or p is a weak homotopy equivalence, as
preferred. If in addition X and Y are Kan complexes, then, since p is a
fibration, Z must also be a Kan Complex. If X and Y are connected

then Z must also be connected.

If Z is a connected Kan complex, and z, € Zy, define a one pointed
subcomplex Z' < Z as follows. Let Z) = {z}. Inductively for ¢ > 1 let
Zy={z€ 2|0,z € Z;_,, 0<i<q}. Itisstraightforward to check that
Z’ is a Kan complex, and the inclusion Z' < Z is a homotopy equivalence.
It follows that if f : X — Y is a map of one pointed Kan complexes then
there is a factorization:

Z/
2
/LR
XLy

Such that 4 is an inclusion, Z’ is a one pointed Kan complex, and h is a
homotopy equivalence.

Any Kan fiber sequence (Z,p,Y) contains a minimal sub fiber sequence
(Z',p',Y’) as a deformation retraction. It follows that there is a commuting
diagram:

X Moz

fl lp’
Y 2y

such that h, and hy are homotopy equivalences, and (Z’,p’, Y') is a minimal
fiber sequence.

Lemma 7.2. LetF 5 E 2 B be a Kan fiber sequence of connected Kan
complexes, (G, ¢) be a m(B)-module, and suppose

G if ¢q=0;

HI(E; G) = {0 if ¢>0.
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Then p* : H1(B; G,) — HY(E;Gy,,) is an isomorphism for all q.

Proof. Consider the spectral sequence of (4.2). We have a filtration preserv-
ing map of fibrations

F — (by)

il !

E - B.

pl L

B ‘% B

Let {E,,d,} be the spectral sequence corresponding to p, and let {E!,d.}
be the spectral sequence corresponding to id. Notice that p induces an iso-

morphism on the 2°¢ terms of the spectral sequences, since
E3* = HP(B; H(F; G);3)
_ JHP(B;Gy) if ¢g=0;
0 if ¢ >0;

_ P,9
= E'2,

But the filtration is finite in each degree, so this implies the result, see

3]. O

Definition 7.3. A Kan complex Y such that 7,(Y) is a Zp)-module for
all k > 2 is called a semi-Zpy complex.

Definition 7.4. Let X be a one pointed Kan complex, with 7 = 7 (X).
View X as a complex over W (r) by letting # : X — W (7)) be the unique
map inducing the identity homomorphism on fundamental groups, see (3.12).
Then X will be called a m complez.

Definition 7.5. A 7 complex which is also a semi-Zp) complex will be
called a m-semi-Zpy complex.

Lemma 7.6.

(i) Let X and Y be mw-complezes, and f : X — Y be a semi-simplicial
map. Then f is a map over W () if and only if f induces the identity
homomorphism on fundamental groups.

(i) If fo,f1 : X — Y are maps over W(n), and H : (X x I,xy x I) —
(Y,yo0) is a homotopy fo = f1 (rel xo) then H is a homotopy over

W(m).

Proof. (i) If f is a map over W () then o f = 2, but & and § both induce
the identity homomorphism on fundamental groups, therefore f does too.
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Conversely if f induces the identity homomorphism on fundamental gro-
ups, then so does jo f : X — W(x), but 2 is the unique map with this
property so gy o f = .

(ii) Let H : (X xI,29 xI) — (Y, y0) be a homotopy fy = fi (rel zp). The
following diagram commutes:

(X x Izg x I) 25 7 (Y)

pl*l%o* f}' lﬂ*

71 (X) 2 (W)

Then we have ¢,H, = Z,p;,. But now it follows from (3.12) that o H =
T o Pi1- I:‘

Theorem 7.7. Let X be a m complexr, X, be a m-semi-Zpy complex,
f:X — X, be a map over W(m) and (G,¢) be a m-module, where G is
also a Z(py module. If f.® Zpy : (X)) @ Z(py — m(X,) @ Z(py = (X))
is an isomorphism for all k > 2, then f* : H1(X,;Gy) — HY(X;G,) is an
isomorphism for all ¢ > 0.

Proof. By (7.1) there exists a diagram

h
X =E

flhlp
X, >~ B

=

Zl\')

I):

where (E, p, B) is a minimal fiber space, and h; and h, are homotopy equiv-
alences. Since h; and h, are homotopy equivalences, and f induces the
identity map on fundamental groups, p, : 71 (E) — m;(B) is an isomorphism,
and p.®Zp) : 1, (E)RZpy — m(B)®Z(py is an isomorphism for all £ > 2.
It will suffice to prove the result for p.

Let F be the fiber of p. E is connected, so we have the following exact
sequence of pointed sets

m(E) 2 m (B) 2 1(F) 2 mo(E) = 0.
It follows that F is connected. We also have the exact sequence
o m(BE) 5 m(B) S 1 (F) — 0.

Hence 7, (F) = m3(B) /p.m2(E), and we see that 7;(F) is abelian. Tensoring
the long exact homotopy sequence of the fibration with Z p) we obtain the
result m,(F) ® Z(py =0, k> 1.
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To show that p* : HY(B;G,,,-1) — HY(E; G, -1) is an isomorphism for
all ¢, by (7.2) it suffices to prove:

G if ¢ =0;
H(F;G) = B
0 if ¢>0.
By the universal coefficient theorem it suffices to prove:
G if ¢ =0;
H,(F,Z =
o(F; Z(p)) {0 i g0,

We conclude by proving the following lemma:

Lemma 7.8. Suppose m,(F) ® Zpy =0, k > 1, then:

Zp) if ¢q=20;

R T

Proof. (i) First we show that if G ® Z(py = 0 then

Z(p) if q = 0;

H,(K(G,n);Z =
«K(G,n); Zpy) {O it > 0.

If n > 2 then this follows from [11]. Suppose n = 1. If G = Z/mZ then

G if ¢ is odd;
H,(K(G,1);Z)=10 if ¢ > 2is even;
Z if ¢=0.

But
H,(K(G,1);Zp)) = H(K(G,1); Z) ® Zp)

so the result follows.

If G is a finite sum of cyclic groups Z/m;Z then we must have Z/m;Z ®
Zpy = 0 for all i. Furthermore K(G,1) is a product of the complexes
K(Z/m;Z,1), again the result follows.

In general G is a direct limit of finite sums of cyclic groups. Since homol-
ogy commutes with direct limits the result follows in general.
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(ii) We prove the result by induction on the Postnikov tower for F. Let
7 = Tn(F). Note that F; = K(m,1) hence

Hy(F2:2)) = {0 if ¢>0

By the universal coefficient theorem:

Zp) if ¢ =0;

H(F1iZp) = {0 if ¢>0

Inductively suppose that

HYR, %) =
(Fnosi Zir) {0 it ¢ > 0.
Consider the spectral sequence (4.2) for the fibration K(m,,n) - F, 5 F,_,

with ordinary coefficients in Zpy. The second term of the sequence is given
by

EPT = HY(F, .y H(K(m,,1); Ze))
=0 whenever (p,q) # (0,0).

Whence
Z(p) if q = 0;

HY (B Ziry) = {0 if ¢>0

But F is the projective limit of the F, and cohomology commutes with
projective limits, therefore

Z if ¢ =0;
HYF;Zpy) =420 1
0 if ¢>0.
Now the result follows by the universal coefficient theorem. [l

Definition 7.9. Let X be a m-complex, X, be a m-semi-Zp) complex and
f: X — X, be amap over W(r). Then f is called a P semi-localization if it
has the following universal property with respect to maps of X into semi-Zp)
complexes:

Let g : X — Y where Y is a semi-Zp) complex, then there exists h :
X, — Y such that ho f = g. Furthermore If gy, g; : X — Y are homotopic
(rel xy), and if hg, hy : X, — Y such that h; o f = g;, t =0, 1, then ho = hy
(rel zp).
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Remark 7.10. The following are consequences of (7.5).

(i) If Y is am-semi-Zpy complex and g is a map over W (rr) then so is h,
because h, f, = g. on fundamental groups, and f and g are maps over W ()
so f and g both induce the identity homomorphism on fundamental groups,
so h must induce the identity homomorphism on fundamental groups. Hence
h is a map over W (7).

(ii) If go, g1, ho, by are all maps over W(7) with gy = g, (rel x,) over
W(r), and h;o f = g;, i = 0,1. Then hy = h; (rel x}) over W () since all
based homotopies of maps over W (7) are homotopies over W ().

Proposition 7.11. P-semi-localization is unique up to homotopy equiva-
lence.

Proof. This is proved in the usual manner from the universal property.

O

Theorem 7.12. Let X be a m complexr, X, be a w-semi-Zpy complex and
f:X — X, be a map over W(x). If f has the property that whenever G is
a Z(py module, then f*: H1(X,;G,) — HIY(X;Gy) is an isomorphism for
all g > 0, then f is the P-semi-localization.

Proof. By (7.1), up to homotopy equivalence, we may assume f is an inclu-
sion. Let g : X — Y where Y is a semi-Zpy complex. Since f is a map over
W () it induces the identity homomorphism on fundamental groups, so the
following diagram commutes:

nX) 2 m(X,)
g\, |0
T (Y)

Where 6 = g,. Thus g extends to hy : XP UX — Y by (6.4).

Inductively suppose n > 3, and g has an extension h,,_; : X]E,"_l) UX — Y,
then the obstruction to extending g over X UX lies in H™(X,,, X;m,-1(Y)y).
But this group vanishes by the long exact sequence for the pair, because
Tn-1(Y) is a Z(py module, hence f*: HY(X,;7,-1(Y)s) = HY(X; m,-1(Y)o)
is an isomorphism for all ¢ > 0 by hypothesis. Hence g has an extension
h:X, —7Y such that ho f =g.

Suppose ¢g,91 : X — Y such that gy = g; (rel zg), and that hg, hy :
X, — Y with h;o f = g;, © = 0,1. The homomorphisms induced on the
fundamental groups are

hO* == go»«f;l
=g [
= hl*'
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Thus ho| XV UX = hy[ XD UX (rel ) by (6.16).

Inductively suppose n > 2 and ho|X*™) U X 2 1y | XD U X (rel o).
The obstruction to a homotopy ho|X{ UX = hy|X{n) U X (rel ) lies in
H"(X,,X;7,(Y)g) =0 as above. Hence hg = hy (rel zo).

Note that (7.7) and (7.12) imply that if f : X — X, is an inclusion
satisfying f. @ Z(py : m(X) ® Z(py — m(X,,) is an isomorphism for all £ > 2,
then f is the P-semi-localization. [l

Theorem 7.13. Let X be a one pointed Kan complex, then X has a P-
semi-localization.

Proof. We construct the P-semi-localization by induction on the Postnikov
tower of X. Let 7 = m(X), 7, = m,(X). Let X,, be the n'" stage of the
Postnikov system for X.

X, is a one pointed Kan complex of type (m,1). It follows that if f; :
X, — W(xr) is the unique map inducing the identity homomorphism on
fundamental groups then f; is a P-semi-localization.

Suppose inductively that we have a P-semi-localization f,_; : X,,_; —
X,,—1,- Then by the universal property there exists a unique map, up to
homotopy, k : X, _1, — Lg(m, ® Z(py,n + 1) over W (7), such that the
following diagram commutes

X,1 B Lo(m,n+1)

fnll l@) Zp,
kn
Xn—l,p - LTr(Trn & Z(P)7 n+ 1)

where k™ is the n'" k-invariant. Let the following be pullback over W ()

X,p —=Pr(m, @ Zpy,n+1)
In | Ip
K
anl,p —p> Lﬂ-(ﬂ'n ® Z(p),n + 1)

We deduce from the long exact homotopy sequence for the fiber sequence
K(m, ® Zp),n) - Xop = Xn-1p
that 7,(X,,,) = T, @ Z¢py, and ¢q,,, : (X, ,) = m(X,_1,) is an isomor-

phism for k # n.
By the universal property of the pullback there exists a map f, : X,, —
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X, p rendering the following diagram commutative

X, — P (m,n+1)

fn ®Zp),

p| N N

Xn—l Xn,p I Pﬂ'(ﬂ-n & Z(p),n + 1) .
fnfl
N qnl Jp

Xoiry 2 Lo(me ® Zpy,n+ 1)
Note that:
X, C P (4 1) Xy X
Xpp CPo(m, @ Zipy,n+1) X W () Xn—1,p}
Jal(p,2),0) = (1 @ Zpy, @), fr-1(0)).
O

Claim. f,, : m(X,) ® Zpy — (X,,p) @ Zpy is an isomorphism for all
k> 2.

Proof. Note that the following diagram commutes for all k > 2

fn.®Zp
m(X,) ® Zp) S T (Xnp) @ Zp)
frno1,®Zp
Te(Xpo1) ® Zp) == T (Xno1,) @ Zp)

Furthermore f,_i, ® Z(p) is an isomorphism for all & > 2, while p,, ®
Zpy, and q,, ® Zp) are isomorphisms for £ # n. Hence f,, ® Zp) is an
isomorphism for k # n.

Note that the following diagram commutes

K(m,,n) — X, 2 X,

®Z<P>*l fnl fml :

K(m, @ Zpy,n) > Xy p 55X 1,

We obtain the following commutative diagram

i« ®Z(p)
0— T (K(my,m)) @ Zp) & m(X,)® Zipy —0

F ®Zp), fui® Z(P)l

1+ QZ(p)
0—>7’[’n(K(7Tn®Z(p),n))®Z(p) = TI'n(Xn,p)(X)Z(p) — 0
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The claim now follows. Hence f, : X,, — X, ,, is the P-semi-localization.

O

The composite map over W(7), X % X, Iy X, , induces isomorphisms
T (X) @ Zipy = (X p), 2 <k <n. If welet X, be the projective limit
X, = lim._, X,,,. We obtain a map f : X — X, over W(m) such that
fe @ Zipy : m,(X) @ Z(py — mx(X,) is an isomorphism for all £ > 2.

Lemma 7.14. Let X be a © complezr, and f': X — X be an arbi-
trary P-semi-localization. Then f. ® Z(py : m(X) ® Z(py — m(X,) is an
isomorphism for all k > 2.

Proof. By (7.13) there exists a P-semi-localization f : X — X, such that
fe @ Zipy : m,(X) ® Z(py — m,(X,) is an isomorphism for all & > 2. By
(7.11) there exists a commutative diagram

x Lox
fL/h
X

P

where h is a homotopy equivalence. It follows that f; ® Zp) is an isomor-
phism for all £ > 2. L1

We have now proved our main result

Theorem 7.15. Let X be a ™ complex, X, be a w-semi-Zpy complex and
f:X — X, be a map over W(x). Then the following are equivalent:
i) fi®Zpy: m(X) ® Zpy — m(X,) is an isomorphism for k > 2.
(i) f* : HY(X,;Gy) — HYX;Gy), is an isomorphism for all ¢ > 0,
whenever G is a Zpy-module.

(i) f has the universal prorerty for maps of X into semi-Zpy complezes.

Proof. (i)=(ii). This is (7.7).
(ii)=>(iii). This is (7.12).
(iii)=>(i). This is (7.14). O

In the following T denotes the Milnor geometric realization functor.

Theorem 7.16. Suppose f : X — X, has the universal property, Then
T(f): T(X) — T(X,) also has the universal property.

Proof. Let Y be a topological space with 7,(Y) a Zp) module for k > 2.
Let g : T(X) — Y be a continuous map. Let 1(g) : X — S(Y) be the
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adjoint map, see [8, 16.1]. Then there exists a factorization:

X 9 s(v)

fL/h

Xp
Let ¢(ho f) : T(X) — Y be the adjoint map. Notice that ¢(h o f) =
¢(h) o T(f). Furthermore ¢(1(g)) = g, and we have the factorization:

T™X) 4 Y
T(f)j/qb(h)
T(X,)

Now suppose go,g1 : T(X) — Y are homotopic (rel zy) and suppose
ho,hy : T(X,) — Y such that h;oT(f)=g¢;, i =0,1. Let H : T(XxI) —
Y be a homotopy gy = g1 (rel zp). Then ¢(H) : X xI — S(Y) is a
homotopy ¥(go) = 1(g1) (rel zg). Furthermore 1 (h; o T(f)) = ¢(h;) o f.
Thus we observe that ©¥(h;) o f =(g;), ©=0,1. Since f has the universal
property there exists a homotopy H : X, x I — S(Y), ¢(hy) = ¢(h1)
(rel zp). But then the adjoint map ¢(H) : T(Xp x I) — Y is a homotopy
ho & hy, (rel zg). |

Example 7.17. Let P be the empty set, in which case Zpy = Zp) = Q,
the rational numbers. Let S = S?"*! be an odd dimensional sphere, 7 be
a finite group, and suppose S has a C.W. complex structure such that w

S

acts freely, cellularly on S. Let X = —. S is the universal cover of X, and
_ ™

7 (X) = 7. Let M - S(X) be the minimal subcomplex of the total singular

complex of X. Let f : M — My be the semi-localization. Note that

Q if k=2n+1;
(S ®Q =
(Seq {0 if k#2n+1.
Therefore
T if k=1;
0 if otherwise.

It follows that the 2n'"-stage of the Postnikov system of Mg looks like
(M(O))(2n+1)
pgfL-‘rl /! Jpgﬁ“

M) —  W(n)
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Where p3; ., is a homotopy equivalence. Furthermore the £ invariant is an
element of H?"*?(m; Queg). But this group is trivial because  is finite. It
follows that My is homotopy equivalent to an L.(Q,2n + 1).

8. Appendix. The cohomology of L.(G,n).

The following is a generalization of a theorem of J. Siegel, see [12, 3.7]. Let
G; be an abelian group, ¢; : 7 — Aut(G;) be a homomorphism i = 1,2. Ac-
cording to [12, 3.6], the twisted coefficient cohomology H*(L.(G1,m); Gay,)
can be computed from the total complex associated to the double complex
Homg (11, C*(K(G1,m); G)) where II, — Z is a free Z[r]-resolution of Z.

According to G. Bredon [1], we can choose a C.W. model for K(G;,m)
such that C,(K(G1,m)) is a free Z[r]- module for ¢ > 0. Consequently
C1(K(G1,m); Gs) is relative injective for ¢ > 0, see [5].

We filter the total complex associated to Homg(IL,, C*(K(G1,m); G2))
by the second index. This yeilds a first quadrant spectral sequence converg-
ing to H*(L,(G,m);Gs,,). Furthermore as a consequence of the relative
injectivity of C1(K(Gy,m); Gy) for ¢ > 0, as well as the existence of the sec-
tion sq : W () — L, (G, m), this spectral sequence collapses at the second
term with

0 if p>0andqg>0;
EP* = { H (K(Gy,m); Gy) it p=20;
H?(K(m,1); Gay,) if ¢q=0.

Hence we have the following;:
Theorem 8.1.

H™"(LA(G1;m); Gay,) = HLL(K(G1,m); Gy) @ H"(K(m,1); Gay,)-
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