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ON STABILITY OF A CATENOIDAL LIQUID BRIDGE

Lianmin Zhou

We derive a stability criterion for a catenoidal liquid bridge
making contact angles γ1 and γ2 with two parallel plates. We
show that for the case of equal contact angles γ1 = γ2 = γ
the stability and instability sets are connected on the interval
of admissible γ. We also give an example showing that for
unequal contact angles, the family of stable catenoidal drops
with one contact angle fixed can be disconnected with re-
spect to the other angle. At the end of the paper we give a
complete description of the stability and instability sets for
various contact angles.

1. Introduction.

A liquid bridge joining two parallel homogeneous plates in the absence of
gravity will always take the form of a catenoid, nodoid or unduloid. We
restrict attention here to catenoidal bridges, and ask under what condition
the bridge will be stable in the sense of providing a local energy minimum.

Given the contact angles γ1, γ2 of the plates and the separation distance
h between them, it turns out that the volume of the liquid drop plays a
crucial role in the stability of the bridge. Since we are only concerned with
catenoidal liquid bridges in this paper, the volume is entirely determined
by γ1, γ2 and h. We assume that h = 1 by scaling properly. Therefore
it entirely depends upon the contact angles of the plates whether or not a
stable catenoidal liquid bridge will be formed.

In the first part of this paper, we will derive a stability criterion for a
catenoidal liquid drop making contact angels γ1, γ2. We show that such a
bridge is stable if F (γ1, γ2) < 0 and unstable if F (γ1, γ2) > 0, where

F (γ1, γ2) def= 5
∫ π−γ2

γ1

1
sin5 θ

dθ

∫ π−γ2

γ1

1
sin θ

dθ − 9
(∫ π−γ2

γ1

1
sin3 θ

dθ

)2

.(1)

In the second part, we would like to understand what the above stability
criterion really says about the contact angles, at least in the special case
of equal contact angles. We show that there exists γ0 such that a stable
catenoidal liquid bridge making equal contact angles γ with the plates will
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be formed if γ > γ0 and such a bridge will not be formed if γ < γ0. In other
words, the γ -sets of stability and instability are connected. This result is
obtained by showing that the following transcedental equation has one and
only one solution:

F (γ, γ) def= 4
[
5
∫ π

2

γ

1
sin5 θ

dθ

∫ π
2

γ

1
sin θ

dθ − 9
(∫ π

2

γ

1
sin3 θ

dθ

)2]
.(2)

Finally we would like to mention an interesting question raised by Finn
and Vogel [7, pages 17-18]: if a bridge is unstable, then extending that De-
launay surface will only result in unstable bridges? In other words, if one
liquid bridge is a part of another stable liquid bridge, must it also be sta-
ble? They have pointed out that the requirement that the perturbation be
volume preserving makes the problem nontrivial. They also point out that
if this statement failed, it must be due to the second cause of instability in
Vogel’s stability criterion.

An affirmative answer to this question looks more natural. An affirmative
answer would imply that a catenoidal liquid bridge (making equal contact
angles) is stable if γ > γ0 and is unstable if γ < γ0 and therefore there is
no need of showing that (2) has only one zero. Recently we have found an
example that the answer to the above question is not always affirmative. On
the one hand, this shows that for unequal contact angles, the stability set
can be disconnected, and on the other hand, this result sets into relief the
need for an analytic proof that (2) has only one zero in the equal angle case.

The stability problem of a catenoidal liquid bridge making equal contact
angles with the plates has previously been studied by several other authors.
In [8], Langbein derived a stability criterion equivalent to (2) above using
Vogel’s minimum volume criterion and it is he who first computed the nu-
merical value of γ0 as 14.97◦. Strube [10, 11] derived his stability criterion
for a catenoidal liquid bridge directly from first principles. Since we were
not aware of Strube’s previous work, we took the more complicated approach
similar to Strube’s.

Acknowledgment. I would like to take this opportunity to thank the
referee for bringing to my attention the previous work of Strube and for
several valuable suggestions which have led to much improvement of this
paper. I would also like to thank Robert Finn for many helpful discussions
and constant encouragement.
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plate2catenoid plate1

Figure 1. A catenoid.

2. Vogel’s Stability Criterion.

Let f(u), 0 ≤ u ≤ h denote the profile curve of a liquid drop trapped between
two parallel (vertical) plates located at x = 0 and x = h. Then f is a solution
of the following Euler-Lagrange equation:

−1
2

(
f ′′

(1 + (f ′)2)3/2
− 1
f(1 + (f ′)2)1/2

)
= H

f ′(0) = − cot γ1 f ′(h) = cot γ2(3)

where H is the mean curvature of the surface and γ1, γ2 are the contact
angles that the surface makes with the two plates.

Suppose that the following Sturm-Liouville problem associated with (3)

L(ψ) ≡ −
(

fψ′

(1 + (f ′)2)3/2

)′
− ψ

f(1 + (f ′)2)1/2
= λψ

ψ′(0) = ψ′(h) = 0(4)

has only one non-positive eigenvalue. Then
1. the drop is stable if

∫ h
0 φ(u)f(u)du < 0 where φ(u) ∈ C2([0, h]) satisfies

L(φ) = f with φ′(0) = φ′(h) = 0 and
2. the drop is unstable if

∫ h
0 φ(u)f(u)du > 0 where φ is the same as above.
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3. Stability and Instability of Catenoidal Surfaces.

When the mean curvature H = 0, the solution of (3) is a catenoid

f(u) = a cosh
(
u− u0

a

)
, 0 ≤ u ≤ h(5)

where the constant a and the center u0 are uniquely determined by the
separation distance h of the plates and the contact angles γ1 and γ2. Theorem
1 is a special case of Lemma 3.4 in Vogel [13] and the proof follows that of
Theorem 5.7 in Finn and Vogel [7].

Theorem 1. Let f(u) = a cosh[(u−u0)/a], 0 ≤ u ≤ h be the profile curve of
the catenoidal drop making contact angles γ1 and γ2 with the plates. Then
for any a > 0 and any u0 (and therefore for any separation distance h and
any contact angles γ1, γ2), the associated Sturm-Liouville problem (4) has
one and only one non-positive eigenvalue.

Theorem 2. Let f(u) = a cosh[(u− u0)/a], 0 ≤ u ≤ h be the profile curve
of the catenoidal drop making contact angles γ1 and γ2 with the plates, as in
(5). Suppose that φ(u) ∈ C2([0, h]) solves L(φ) = f with φ′(0) = φ′(h) = 0
and F (γ1, γ2) as defined in (1). Then

∫ h

0

φ(u)f(u)du = a3F (γ1, γ2)
[∫ π−γ2

γ1

1
sin θ

dθ

]−1

.

Theorem 3. Suppose that F (γ1, γ2) is as in Theorem 2 and γ0 ≈ 14.97◦ is
defined as in (2). Then F (γ, γ) < 0 if γ > γ0 and F (γ, γ) > 0 if γ < γ0.

Corollary 4. Suppose that a catenoidal drop makes contact angles γ1 and
γ2 with the plates.

1. This drop is stable if F (γ1, γ2) < 0 and is unstable if F (γ1, γ2) > 0;
2. In the case that the two contact angles γ1 = γ2 = γ, the drop is stable

if γ > γ0 and unstable if γ < γ0.

4. Proof of Theorems.

A) Proof of Theorem 1. Theorem 1 is a special case of Lemma 3.4 of [13]
and the proof of this theorem uses the idea of the proof of Theorem 5.7 in
[7]. We prove Theorem 1 in two steps:
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In Lemma 1, we show that, when the two plates are placed close enough
to each other, the Sturm-Liouville problem associated with a catenoid has
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Figure 2. Some graphs of F (γ1, γ2) w.r.t. γ2.
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Figure 3. The graph of F (γ, γ).

only one non-positive eigenvalue. In Lemma 2, we proceed to argue that
it still has only one non-positive eigenvalue when the two plates are moved
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apart from each other by showing that it never has 0 as one of its eigenvalues
wherever the plates are.

Lemma 1. Let f(u) = a cosh[(u − u0)/a], 0 ≤ u ≤ h be defined as in (5).
Suppose that a is fixed and that the two plates are placed close enough, i.e.
h is small enough or equivalently, γ1 is close enough to π − γ2. Then the
liquid drop is stable and the associated Sturm-Liouville problem (4) has only
one non-positive eigenvalue.

Proof. We will show that B(ψ) ≡ (L(ψ), ψ) > 0 for all ψ ∈ f⊥, where

f⊥ ≡
{
ψ ∈ C2 : ‖ψ‖2 = 1 and

∫ h′

0

fψdu = 0
}
.

Indeed, suppose that f ≥ A > 0 and |f ′| ≤ B. Then

B(ψ) =
∫ h

0

(
f(ψ′)2

(1 + (f ′)2)3/2
− ψ2

f(1 + (f ′)2)1/2

)
du >

∫ h

0

(
A(ψ′)2

(1 +B2)3/2
− ψ2

A

)
du

= C1

∫ h

0

[(ψ′)2 − C2ψ
2]du = C1

[∫ h

0

(ψ′)2du− C2

]
(6)

where C1 and C2 are two postive constants.
Since ψ ∈ f⊥ and ‖ψ‖2, we may assume that there exist u1 and u2 such

that ψ(u1) < 0 and ψ(u2) > 1. Thus
∫ h

0 |ψ′(u)|du > 1. Therefore

1
h

∫ h

0

|ψ′|2du ≥
[

1
h

∫ h

0

|ψ′|du
]2

>
1
h2
.

If h is small enough, then
∫ h

0 (ψ′)2du > 1/h > C2. This, together with (6),
implies that B(ψ) > 0 if h is small enough. Therefore, by a result of Vogel,
the drop is stable and the associated Sturm-Liouville problem has only one
non-positive eigenvalue.

Lemma 2. The Sturm-Liouville problem (4) associated with a catenoid
cannot have 0 as one of its eigenvalues, regardless where the two plates are
placed.

Proof. We prove this lemma by contradiction. Suppose that zero were an
eigenvalue of the Sturm-Liouville problem (4) and ψ its eigenfunction which
is not identically 0. Then ψ solves the following problem

−
(

fψ′

(1 + (f ′)2)3/2

)′
− ψ

f(1 + (f ′)2)1/2
= 0

ψ′(0) = ψ′(h) = 0.(7)
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Now we place f(u) = a cosh[(u− u0)/a] into (7) about and obtain

−a2 cosh
u− u0

a
ψ′′(u) + 2a sinh

u− u0

a
ψ′(u)− cosh

u− u0

a
ψ(u) = 0(8)

ψ′(0) = ψ′(h) = 0.(9)

It is easy to check that the ODE (8) has the following general solution

ψ = c1 sinh
u− u0

a
+ c2

(
u sinh

u− u0

a
− a cosh

u− u0

a

)
where c1 and c2 are constants to be determined. Subject to the boundary
condition (9), we must have c1 = c2 = 0. Therefore ψ ≡ 0, a contradiction.

Since we know that the smallest eigenvalue of the Sturm-Liouville problem
is always less than 0, this completes the proof of Theorem 1.

B) Proof of Theorem 2 . Placing f(u) = a cosh[(u−u0)/a] into the boundary
problem L(φ) = f with φ′(0) = φ′(h) = 0, we obtain

a2φ′′(u)− 2a tanh
u− u0

a
φ′(u) + φ(u) = −a2 cosh3 u− u0

a

with φ′(0) = φ′(h) = 0. Solving the above boundary problem yields

φ(u) = sinh
u− u0

a

∫ u

0

(
t sinh

t− u0

a
− a cosh

t− u0

a

)
cosh

t− u0

a
dt−(

u sinh
u− u0

a
− a cosh

u− u0

a

)(
a

2
cosh2 u− u0

a
− c2

)
where c2 = a/2 cosh2(h − u0)/a − (1/h)

∫ h
0 (u sinh(u − u0)/a − a cosh(u −

u0)/a) cosh(u− u0)/adu.
After some straightforward (but tedious) calculation and simplification,

we obtain

∫ h

0

φ(u)f(u)du =
5a3

4

∫ h

0

cosh4 u− u0

a
du− 9a3

4h

(∫ h

0

cosh2 u− u0

a
du

)2

.

(10)

We now make the transformation cot θ = − sinh[(u − u0)/a] and note that
f ′(0) = − cot γ1 and f ′(h) = cot γ2. It follows from (10) that

∫ h
0 φ(u)f(u)du

is equal to
a3∫ π−γ2

γ1

1
sin θ

dθ

{
5
∫ π−γ2

γ1

1
sin5 θ

dθ

∫ π−γ2

γ1

1
sin θ

dθ − 9
(∫ π−γ2

γ1

1
sin3 θ

dθ

)2}
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C) Proof of Theorem 3. For convenience, we denote

g(γ) = 5
∫ π

2

γ

1
sin5 θ

dθ

∫ π
2

γ

1
sin θ

dθ − 9
(∫ π

2

γ

1
sin3 θ

dθ

)2

.(11)

Differentiating (11) with respect to γ, we obtain

g′(γ) = − 5
sin5 γ

∫ π
2

γ

dθ

sinφ
− 5

sin γ

∫ π
2

γ

dθ

sin5 φ
+

18
sin3 γ

∫ π
2

γ

dθ

sin3 φ

=
1

sin5 γ

[(
−5− 15

8
sin4 γ + 9 sin2 γ

)(
− ln tan

γ

2

)
+
(

31
4
− 15

8
sin2 γ

)
cos γ

]
=

1
sin5 γ

[h1(γ) + h2(γ)].

where h1(γ) = (−5− 15
8

sin4 γ+9 sin2 γ)(− ln tan γ
2
) is an increasing function

on (0, 50◦) and h2(γ) = ( 31
4
− 15

8
sin2 γ) cos γ is a decreasing function. We

wish to show that g(γ) has a unique zero at γ0 and that g(γ) > 0 on the
interval (0, γ0) and g(γ) < 0 on the interval (γ0, π/2).

i) If 50◦ ≤ γ < 90◦,

g(γ) ≤ 5
sin2 γ

∫ π
2

γ

1
sin3 θ

dθ

∫ π
2

γ

1
sin θ

dθ − 9
∫ π

2

γ

1
sin3 θ

dθ

∫ π
2

γ

1
sin θ

dθ

=
(

5
sin2 γ

− 9
)∫ π

2

γ

dθ

sin3 φ

∫ π
2

γ

dθ

sinφ

≤
(

5
sin2 50◦

− 9
)∫ π

2

γ

dθ

sin3 φ

∫ π
2

γ

dθ

sinφ

≈ −0.4796
∫ π

2

γ

dθ

sin3 φ

∫ π
2

γ

dθ

sinφ
< 0.

ii) If 29◦ ≤ γ ≤ 50◦,

g′(γ) ≥ 1
sin5 γ

(h1(29◦) + h2(50◦)) >
1

sin5 γ
(−4.042 + 4.274) > 0.

iii) If 22◦ ≤ γ ≤ 29◦, then

g′(γ) ≥ 1
sin5 γ

(h1(22◦) + h2(29◦)) >
1

sin5 γ
(−6.182 + 6.392) > 0.

iv) If 20◦ ≤ γ ≤ 22◦, then

g′(γ) ≥ 1
sin5 γ

(h1(20◦) + h2(22◦)) >
1

sin5 γ
(−6.895 + 6.941) > 0.



ON STABILITY OF A CATENOIDAL LIQUID BRIDGE 193

v) If 19.5◦ ≤ γ ≤ 20◦, then

g(γ) ≤ 5
∫ 90◦

19.5◦

dθ

sin5 φ

∫ 90◦

19.5◦

dθ

sinφ
− 9

(∫ 90◦

20◦

dθ

sin5 φ

)2

< 200.899− 214.703 < 0.

vi) If 19◦ ≤ γ ≤ 19.5◦, then

g(γ) ≤ 5
∫ 90◦

19◦

dθ

sin5 φ

∫ 90◦

19◦

dθ

sinφ
− 9

(∫ 90◦

19.5◦

dθ

sin5 φ

)2

< 223.960− 235.053 < 0.

vii) If 17.5◦ ≤ γ ≤ 19◦, then

g′(γ) ≤ 1
sin5 γ

(h1(19◦) + h2(17.50◦)) <
1

sin5 γ
(−7.270 + 7.230) < 0.

viii) If 15◦ ≤ γ ≤ 17.5◦, then

g′(γ) ≤ 1
sin5 γ

(h1(17.5◦) + h2(15◦)) <
1

sin5 γ
(−7.862 + 7.365) < 0.

ix) If 0◦ ≤ γ ≤ 15◦, then

g′(γ) ≤ 1
sin5 γ

(h1(15◦) + h2(0◦)) <
1

sin5 γ
(−8.932 + 7.75) < 0.

Therefore, g(γ) is strictly decreasing on the interval (0◦, 19◦) and is strictly
negative on the interval [19◦, 90◦). Also, we can easily see that g(γ) > 0
if γ is small enough. We conclude that g(γ) has a unique zero at some γ0.
Numerical calculation shows that γ0 ≈ 14.97◦. Furthermore, this numerical
calculation of γ0 is quite accurate since we have shown above that g(γ) is
strictly decreasing around 14.97◦.

Note that F (γ, γ) = 4g(γ). The proof of Theorem 3 is now complete.

5. A Counter-example.

We have shown that the family {f(γ, γ)} of stable catenoidal bridges making
equal contact angles γ with the two plates is connected on the interval of γ
considered, i.e., if f(γ′, γ′) is in the family of stable catenoidal bridges, so
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is f(γ′′, γ′′) for all γ′′ with γ′ < γ′′ < π/2. In other words, if a catenoidal

stable

unstable

Figure 4. Counter-examples.

bridge making contact angles is unstable, then extending the Delaunay sur-
face (decreasing contact angles but still making equal contact angles) will
necessarily result in unstable bridges.

But this is not guaranteed for catenoidal liquid bridges not making equal
contact angles. Without loss of generality, we can fix one of the plates and
move the other plate. Or equivalently, we can fix γ1 and let γ2 vary. We have
observed that for the contact angle γ1 near the critical value γ0, there exists
γ′2 < γ′′2 such that f(γ1, γ

′
2) is stable but f(γ′1, γ

′′
2 ) is not stable. In other

words, there is an unstable catenoidal liquid bridge with contact angles γ1,
γ2 and with γ1 near γ0 such that extending the Delaunay surface could result
in stable liquid bridges. See Figure 4 for instance, it is easily calculated that

1. F (15.0◦, 15.0◦) < −2.18 < 0 which implies that the catenoidal liquid
bridge making contact angles of 15.0◦ with the plate is stable, and

2. F (16.0◦, 60◦) > 36.29 > 0 which means that the catenoidal liquid
bridge making contact angles of 16.0◦ and 60.0◦ with the plates is not
stable. See Figure 4.

Finally let us take a closer look at the counter-examples. We have pointed
out that the counter-examples are observed when one of the contact angles
is near the critical value γ0. As a matter of fact, it is observed that there are
two boundary angles γ′ and γ′′, whose numerical values are approximately
14.38◦ and 17.62◦ respectively, such that
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Figure 5. When a Counter-example occurs and when it does not?

• a counter-example occurs if one of the contact angles falls between γ′

and γ′′ and
• a counter-example does not occur if neither of the contact angles lies

between γ′ and γ′′. See Figure 5.
Furthermore, suppose that we fix the left plate and move the right plate.

In other words, we fix γ1 and let γ2 vary. With no loss of generality we
assume that 0 < γ1 ≤ π/2 and γ1 < γ2 < π − γ1, since, otherwise, we could
simply switch the role of γ1 and γ2. Therefore, we only need to consider
the stability of catenoidal liquid bridges when the right plate is very close
to the left plate at first and moves away from the left plate until it reaches a
position where it makes the same contact angle as the left plate. The stability
and instability of catenoidal liquid bridges can be completely described as
follows:

1. if γ1 > γ′′, then the catenoidal bridges remain stable from the begin-
ning (when γ2 = π − γ1) to the end (when γ2 = γ1);

stable

2. if γ0 < γ1 < γ′′, then the catenoidal bridges are stable in the beginning
when the right plate is close to the left plate and remains stable until
it reaches a certain position. It then becomes unstable for a while and
it will be stable again until the very end;
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stable unstable stable

3. if γ′ < γ1 < γ0,then the catenoidal bridges are stable in the beginning
when the right plate is close to the left plate and remains stable until
it reaches a certain position. It then becomes unstable for a while and
it will be stable again, but only for a while. It will turn unstable again
until the very end;

stable unstable stable unstable

4. if γ1 < γ′, then the catenoidal bridges are stable in the beginning
when the right plate is close to the left plate and remains stable until
it reaches a certain position. It becomes unstable until the very end.

stable unstable
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Editor’s Note:
Following a quietus of half a century, the last decade or so has witnessed

a surge of interest on liquid free-interface problems, and notably on deter-
mination of stability criteria. In the engineering as well as in mathematical
literature, numerous authors have investigated the ”static stability” of par-
ticular configurations. In all such publications known to me (including one
that bears my name), the criterion for stability has been taken to be posi-
tivity of the quadratic form arising from the second variation of the energy
functional on the extremal surface considered. In this respect the foregoing
paper is no exception, and its usage is certainly consistent with that of a
significant body of literature by respected authors.

From a formal mathematical point of view, the matter reduces to def-
inition of the term ”static stability”. But it should be emphasized that
positivity of the second variation on an extremal does not in itself guarantee
even a weak local minimum for the functional considered; thus in a physical
configuration for which the functional is mechanical energy, the published
literature has not yet provided proofs that the energy is locally minimized,
even among surfaces that are pointwize close to the extremal together with
their derivatives.

In the context of the classical one-dimensional fixed endpoint problem, we
may consider as an example the functional

I[y] ≡
∫ 1

0

f(x, y, y′)dx,(1)

f = x4e−
16
x y′2 − y3(2)

with I to be minimized (locally) among piecewise smooth functions y(x) for
which y(0) = y(1) = 0. One finds immediately that the function y(x) ≡ 0
provides an extremal on which I = 0, and if one considers any family of
functions y(x; ε) such that y(x; 0) ≡ 0, y(0; ε) = y(1; ε) = 0, then the second
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variation on the given extremal becomes

Ï(0) = 2
∫ 1

0

x4e−
16
x η′2dx , η = ẏ(x; 0)

which is positive for any η that achieves the boundary data and doesn’t
vanish identically.

Nevertheless, the function y ≡ 0 does not provide a local minimum for I.
The family of functions

y(x; ε) =


0, x = 0

e−
1
x e−

1
ε−x , 0 < x < ε

0, ε ≤ x ≤ 1


converges uniformly to zero in the closed interval together with its derivatives
of every order as ε→ 0, but is easily seen to yield a negative value of I for
all positive but sufficiently small ε.

Still simpler examples can be given, which yield convergence to the ex-
tremal together with derivatives up to any prescribed order.

In the situation studied in the foregoing paper, and presumably also for
most problems considered in earlier literature, it should be expected in view
of the particular nature of the problem and of the considered extremals that
the stability criterion in terms of second variation actually provides a lo-
cal energy minimum, even in the strong sense of the Calculus of Variations
(which does not require derivatives to be close to those of the extremal). In
fact, some years ago in an unpublished report of the Max-Planck-Institut in
Bonn, H.C. Wente did provide a framework for a proof of the strong local
minimizing property in connection with his stability criteria for pendent liq-
uid drops; later, U. Patnaik in an yet unpublished dissertation at University
of Toledo provided a proof of that property in another particular context.
These seem to have been the only authors to have taken cognizance of the
question. Presumably, a reasoning along lines as indicated by these authors
would apply to the configurations examined in the paper just preceding. In
my view, such a step would be essential for justifying the results concep-
tually as theorems on stability. In the interim, the contribution presently
offered by the foregoing paper seems to me striking and of interest in itself;
the paper received a strongly favorable referee report with which I am in
accord, and I am pleased that it could be published by the Pacific Journal.

Robert Finn


