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A “COBOUNDARY” THEOREM FOR SUMS OF RANDOM
VARIABLES TAKING THEIR VALUES IN A BANACH

SPACE

Richard C. Bradley

Klaus Schmidt proved that if a strictly stationary sequence
of (say) real-valued random variables is such that the family
of distributions of its partial sums is tight, then that sequence
is a “coboundary”. Here Schmidt’s result is extended to some
(not necessarily stationary) sequences of random variables
taking their values in a separable real Banach space.

1. Introduction.

For a given metric space (S, d), let us use the term “standard σ-field” to
denote the σ-field S of subsets of S generated by the open balls (in the
metric d). A function f : S×S×S× . . .→ S is “measurable” (with respect
to S) if for every set A ∈ S one has that f−1(A) is a member of S×S×S×. . . ,
the product σ-field on S × S × S × . . . .

Suppose B is a separable real Banach space. Suppose (Ω,F , P ) is a
probability space. A “B-valued random variable” is of course a function
X : Ω→ B such that, letting B denote the standard σ-field on B, for every
set A ∈ B one has that X−1(A) ∈ F .

Given a sequence (Xk, k ∈ Z) of B-valued random variables, for any pair
of integers J ≤ L we shall denote the “partial sum”

S(J, L) :=
L∑
k=J

Xk

(a B-valued random variable).

The purpose of this paper is to prove the following theorem:

Theorem 1.1. Suppose B is a separable real Banach space. Suppose
(Xk, k ∈ Z) is a sequence of B-valued random variables such that for each
k ∈ Z, the family of distributions of the random variables (S(k,m), m =
k, k + 1, k + 2, . . . ) is tight. Then there exists a measurable function f :
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B × B × B × . . . → B such that, defining for each k ∈ Z the B-valued
random variable

Yk := f(Xk, Xk+1, Xk+2, . . . ),

one has that

(1.1) ∀ k ∈ Z, Xk = Yk − Yk+1 a.s.

In the literature on ergodic theory, (1.1) would be described by saying
that the sequence (Xk) is a “coboundary.”

In the case where B = Rn (say with the Euclidean norm) for some positive
integer n, and the sequence (Xk) is strictly stationary, Theorem 1.1 is due to
K. Schmidt [10, Theorem 11.8]. With a modification of Schmidt’s argument,
the author [3] showed that for real-valued random variables, Theorem 1.1
holds in its present form (without the assumption of stationarity). The main
purpose of that note was to call attention to Schmidt’s result (which was
not well known) and to try to make it more transparent. Here in Theorem
1.1 we extend Schmidt’s result (and its extension in [3]) to B-valued random
variables (again without the assumption of stationarity). The proof here will
be a modification of that in [3] (which in turn was a modification of Schmidt’s
argument). Some parts of the argument in [3] will be adapted directly here.
However, because of the extensive changes and additions that are needed,
the proof here will be given in full. In a related paper, the author [4] proved
an analog of Schmidt’s result for products of some random matrices.

In the case of a weakly stationary sequence (Xk, k ∈ Z) of real-valued,
mean zero, square integrable random variables, Leonov [8] had earlier proved
an analog of Schmidt’s result under the assumption that supn≥1 Var S(1, n) <
∞. (There is more to Leonov’s result than that; for details, see [8] or Ibrag-
imov and Linnik [7, p. 323, Theorem 18.2.2]. Further research in this direc-
tion was done by Gordin [6].)

Remark 1.2. Using standard results in e.g. Billingsley [2], it is easy to
verify that in the statement of Theorem 1.1, the assumption “for each k ∈ Z,
the family . . . is tight” is equivalent to “for some k ∈ Z, the family . . . is
tight”. Also, in Theorem 1.1, the family of distributions of the random
variables (Yk, k ∈ Z) is tight if and only if the family of distributions of
(S(k,m), k ∈ Z,m ≥ k) is tight. Also, if the sequence (Xk) is strictly
stationary then so is (Yk), and if (Xk) is ergodic then so is (Yk). In Theorem
1.1, the restriction to “real” Banach spaces is of course only a matter of style;
any complex Banach space is also a real one (with the scalars restricted).
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Theorem 1.1 will be proved first in Section 2 in the special case where
B = C[0, 1] (real continuous functions), and then from that special case it
will be derived in Section 3 for general separable real Banach spaces.

In what follows, the indicator function of an event A will be denoted I(A).

2. Proof of Theorem 1.1 for the case B = C[0, 1].

In this section we shall prove Theorem 1.1 in the special case where the (real
separable) Banach space is C[0, 1], the space of real continuous functions on
the closed unit interval [0,1] with the usual sup norm

(2.1) ‖x‖∞ := sup
t∈[0,1]

|x(t)|.

For each δ > 0, define the usual “modulus of continuity” function wδ :
C[0, 1]→ [0,∞) by

wδ(x) := sup |x(s)− x(t)|(2.2)

s, t ∈ [0, 1]

|s− t| ≤ δ.

Remark 2.1. In what follows, the following three elementary facts will be
used freely:
(a) The function x 7→ ‖x‖∞ is a continuous, hence measurable function

from C[0, 1] to [0,∞).
(b) For each t ∈ [0, 1], the function x 7→ x(t) is a continuous, hence mea-

surable function from C[0, 1] to R.
(c) For each δ > 0, the function wδ in (2.2) is a continuous, hence mea-

surable function from C[0, 1] to [0,∞).
The following lemma is well known; for example it is an easy corollary of

Billingsley [2, p. 55, Theorem 8.2].

Lemma 2.2. Suppose (V1, V2, V3, . . . ) is a sequence of C[0, 1]−valued
random variables. The family of distributions of these random variables
(V1, V2, V3, . . . ) is tight if and only if the following two conditions hold:
(a) The family of distributions of the real-valued non-negative random vari-

ables (‖V1‖∞, ‖V2‖∞, ‖V3‖∞, . . . ) is tight.
(b) For every ε > 0, there exists δ = δ(ε) > 0 such that for every n ∈

N, P (wδ(Vn) ≥ ε) ≤ ε.
Now we are ready to begin the proof of Theorem 1.1 for the Banach space

C[0, 1]. Assume that (Ω,F , P ) is a probability space, and that (Xk, k ∈ Z) is
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a sequence of C[0, 1]−valued random variables on this probability space, such
that the hypothesis of Theorem 1.1 is satisfied. Without loss of generality, we
assume that for every k ∈ Z, every ω ∈ Ω, Xk(ω) := (Xk(t)(ω), t ∈ [0, 1])
is an element of C[0, 1]. (This assumption will help in keeping track of “bad”
null-sets later on.)

The proof will be structured as follows: Preliminary work is done from
Definition 2.3 through Lemma 2.22, the random variables Yk are formulated
in Definition 2.23, in Lemma 2.24 it is shown that Xk = Yk − Yk+1 a.s., the
(measurable) function f is formulated in Definition 2.25, and finally in Step
2.26 it is shown that Yk = f(Xk, Xk+1, Xk+2, . . . ).
Definition 2.3. For each k ∈ Z, each n ≥ 1, each r ∈ R, each t ∈ [0, 1],
define the (real) random variable

(2.3) V (k, n, r, t) :=
1
n

n−1∑
h=0

I(S(k, k + h)(t) ≤ r).

For each k ∈ Z, each n ≥ 1, each r > 0, define the (real) random variable

(2.4) V ∗(k, n, r) :=
1
n

n−1∑
h=0

I(‖S(k, k + h)‖∞ ≤ r).

For each k ∈ Z, each n ≥ 1, each δ > 0, each ε > 0, define the (real) random
variable

(2.5) V ∗∗(k, n, δ, ε) :=
1
n

n−1∑
h=0

I(wδ(S(k, k + h)) ≥ ε).

Remark 2.4.
(a) Note that (at every ω ∈ Ω), all of these random variables V (k, n, r, t),

V ∗(k, n, r), V ∗∗(k, n, δ, ε) take their values in the closed unit interval
[0,1].

(b) Let us digress a little, to mention a useful fact: If (W (λ)
n , n ∈ N, λ ∈ Λ)

is an array of random variables taking their values in [0, 1], with Λ
being a countable index set, then there exists a strictly increasing
sequence of positive integers m(1), m(2), m(3), . . . such that for all
λ ∈ Λ, n−1

∑n
j=1W

(λ)
m(j) converges a.s. (to a r.v. which depends on λ)

as n→∞. To prove this fact, one first applies repeatedly the Komlós
strong law of large numbers (see e.g. the extension of it given by Berkes
[1, Theorem 2]), and then one uses a simple Cantor diagonalization
argument. (The details of this proof are left to the reader.) This fact
will be used freely in what follows; in particular, it justifies the next
definition:
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Definition 2.5. Let Q denote the set of all rational numbers. Let Q(0,∞)

denote the set of all positive rational numbers. Let Q[0,1] denote the set of
all rational numbers in [0, 1].

Let (m1, m2, m3, . . . ) be a strictly increasing sequence of positive integers
such that the following three statements hold:
(1) For each k ∈ Z, each r ∈ Q, each t ∈ Q[0,1],

(2.6)
1
n

n∑
j=1

V (k,mj, r, t) converges a.s. as n→∞.

(2) For each k ∈ Z, each r ∈ Q(0,∞),

(2.7)
1
n

n∑
j=1

V ∗(k,mj, r) converges a.s. as n→∞.

(3) For each k ∈ Z, each δ ∈ Q(0,∞), each ε ∈ Q(0,∞),

(2.8)
1
n

n∑
j=1

V ∗∗(k,mj, δ, ε) converges a.s. as n→∞.

Definition 2.6. For each k ∈ Z, each r ∈ R, each t ∈ [0, 1], define the
(real) random variable

(2.9) Z(k, r, t) := lim
n→∞

1
n

n∑
j=1

V (k,mj, r, t).

For each k ∈ Z, each r > 0, define the (real) random variable

(2.10) Z∗(k, r) := lim
n→∞

1
n

n∑
j=1

V ∗(k,mj, r).

For each k ∈ Z, each δ > 0, each ε > 0, define the (real) random variable

(2.11) Z∗∗(k, δ, ε) := lim
n→∞

1
n

n∑
j=1

V ∗∗(k,mj, δ, ε).

Functions such as Z(k, r, t) played a role in Schmidt’s [10] original argu-
ment, analogous to the role they will play here.

Remark 2.7.
(a) For every ω ∈ Ω, these random variables Z(k, r, t), Z∗(k, r), Z∗∗(k, δ, ε)

all take their values in the closed unit interval [0, 1].
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(b) For each ω ∈ Ω, each k ∈ Z, each t ∈ [0, 1], the r.v. Z(k, r, t) is
nondecreasing as r increases, by (2.3) and (2.9). (That is, for each
ω ∈ Ω, each k ∈ Z, each t ∈ [0, 1], the real number Z(k, r, t)(ω) is
nondecreasing as r increases.)

(c) Similarly, for each ω ∈ Ω each k ∈ Z, the r.v. Z∗(k, r) is nondecreasing
as r increases, by (2.4) and (2.10).

(d) Similarly, for each ω ∈ Ω, each k ∈ Z, each δ > 0, the r.v. Z∗∗(k, δ, ε)
is nonincreasing as ε increases, by (2.5) and (2.11).

(e) When r ∈ Q (or Q(0,∞)), t ∈ Q[0,1], δ ∈ Q(0,∞), ε ∈ Q(0,∞), the lim sup
in each of (2.9), (2.10), and (2.11) is a.s. a limit.

Lemma 2.8. For each k ∈ Z, each r > 0, each t ∈ [0, 1], the following two
statements hold:
(a) Z∗(k, r) ≤ Z(k, r, t) (at every ω ∈ Ω).
(b) For every γ > 0, Z∗(k, r) ≤ 1 − Z(k,−r − γ, t) a.s.

Proof. (a) For each h ≥ 0 (and each ω ∈ Ω), one clearly has

I(‖S(k, k + h)‖∞ ≤ r) ≤ I(S(k, k + h)(t) ≤ r).
Hence by (2.3) and (2.4), for each n ≥ 1 (and each ω ∈ Ω),

V ∗(k, n, r) ≤ V (k, n, r, t).

Hence (a) holds by (2.9) and (2.10).

(b) Suppose γ > 0. Let q ∈ Q be such that r < q < r + γ. For each
h ≥ 0,

I(‖S(k, k + h)‖∞ ≤ r) ≤ I(‖S(k, k + h)‖∞ ≤ q)
≤ I(S(k, k + h)(t) > −r − γ)

= 1 − I(S(k, k + h)(t) ≤ −r − γ).

Hence by (2.3) and (2.4), for each n ≥ 1,

V ∗(k, n, r) ≤ V ∗(k, n, q) ≤ 1− V (k, n,−r − γ, t).
Hence by (2.9), (2.10), and Remark 2.7(c)(e), one has that with probability
1,

Z∗(k, r) ≤ Z∗(k, q)

= lim
n→∞

1
n

n∑
j=1

V ∗(k,mj, q)
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≤ lim inf
n→∞

1
n

n∑
j=1

[
1− V (k,mj,−r − γ, t)

]
= 1 − lim sup

n→∞

1
n

n∑
j=1

V (k,mj,−r − γ, t)

= 1 − Z(k,−r − γ, t).

Thus (b) holds.

Lemma 2.9. Suppose k ∈ Z, r ∈ R, δ > 0, and ε > 0. Suppose s and t are
elements of [0, 1] such that |s − t| ≤ δ. Then (at every ω ∈ Ω) Z(k, r, s) ≤
Z(k, r + ε, t) + Z∗∗(k, δ, ε).

Proof. By an elementary argument, for each h ≥ 0 (and each ω ∈ Ω),

I(S(k, k + h)(s) ≤ r) ≤ I(S(k, k + h)(t) ≤ r + ε)

+ I(wδ(S(k, k + h)) ≥ ε).

Hence by (2.3) and (2.5), for each n ≥ 1 (and each ω ∈ Ω),

V (k, n, r, s) ≤ V (k, n, r + ε, t) + V ∗∗(k, n, δ, ε).

Hence by (2.9) and (2.11), Lemma 2.9 holds.

Lemma 2.10. For each k ∈ Z, each t ∈ Q[0,1], the following two statements
hold:
(a) Z(k, r, t)→ 0 a.s. as r → −∞.
(b) Z(k, r, t)→ 1 a.s. as r →∞.

Proof. Let k ∈ Z and t ∈ Q[0,1] be arbitrary but fixed. Our task is to verify
(a) and (b) in Lemma 2.10 for this pair k, t.

Applying Lemma 2.2 and the hypothesis of Theorem 1.1, for each ` =
1, 2, 3, . . . let r` ∈ Q(0,∞) be such that

∀h ≥ 0, P (−r` < S(k, k + h)(t) ≤ r`) ≥ 1− 4−`.

That is, for each ` ≥ 1, each h ≥ 0,

EI(S(k, k + h)(t) ≤ r`)− EI(S(k, k + h)(t) ≤ −r`) ≥ 1− 4−`.

Consequently, for all ` ≥ 1, all n ≥ 1,

EV (k, n, r`, t)− EV (k, n,−r`, t) ≥ 1− 4−`.
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Hence by Remarks 2.4(a) and 2.7(e) and dominated convergence,

EZ(k, r`, t)− EZ(k,−r`, t) ≥ 1− 4−`.

Hence by Remark 2.7(a),

EZ(k,−r`, t) ≤ 4−` and 1− EZ(k, r`, t) ≤ 4−`.

Let us first verify (b) in Lemma 2.10 (for our fixed k, t). For each ` ≥ 1,

P (Z(k, r`, t) ≤ 1− 2−`) = P (1− Z(k, r`, t) ≥ 2−`)

≤ E(1− Z(k, r`, t))
/
2−`

≤ 4−`
/
2−` = 2−`.(2.12)

By the Borel-Cantelli Lemma,

(2.13) P (Z(k, r`, t) ≤ 1− 2−` for infinitely many ` ≥ 1) = 0.

Lemma 2.10(b) follows (for our fixed k, t).

By a similar argument, P (Z(k,−r`, t) ≥ 2−`) ≤ 2−` for each ` ≥ 1, and
Lemma 2.10(a) follows from the Borel-Cantelli Lemma and Remark 2.7(b).
This completes the proof of Lemma 2.10.

Lemma 2.11. For each k ∈ Z, one has that

Z∗(k, r)→ 1 a.s. as r →∞.

Proof. Let k ∈ Z be arbitrary but fixed. Applying Lemma 2.2 and the
hypothesis of Theorem 1.1, for each ` = 1, 2, 3, . . . let r` ∈ Q(0,∞) be such
that

∀h ≥ 0, P (‖S(k, k + h)‖∞ ≤ r`) ≥ 1− 4−`.

Then EV ∗(k, n, r`) ≥ 1− 4−` for all ` ≥ 1, all n ≥ 1; and by Remarks 2.4(a)
and 2.7(e) and dominated convergence, EZ∗(k, r`) ≥ 1 − 4−` for all ` ≥ 1.
Now Eqns. (2.12) and (2.13) hold with Z∗(k, r`) in place of Z(k, r`, t); and
Lemma 2.11 follows.

Lemma 2.12. For each k ∈ Z, each ε > 0, each γ > 0, there exists δ > 0
such that

P (Z∗∗(k, δ, ε) ≥ γ) ≤ γ.

Proof. Let k ∈ Z, ε > 0, and γ > 0 be arbitrary but fixed. Decreasing ε if
necessary, we assume without loss of generality that ε ∈ Q(0,∞).
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Applying Lemma 2.2 and the hypothesis of Theorem 1.1, let δ ∈ Q(0,∞)

be such that
∀h ≥ 0, P (wδ(S(k, k + h)) ≥ ε) ≤ γ2.

Then for all n ≥ 1, EV ∗∗(k, n, δ, ε) ≤ γ2, and by Remarks 2.4(a) and 2.7(e)
and dominated convergence, EZ∗∗(k, δ, ε) ≤ γ2. Hence P (Z∗∗(k, δ, ε) ≥ γ) ≤
γ2/γ = γ. This completes the proof of the lemma.

Definition 2.13.
(a) In what follows, an “extended” random variable will mean a measur-

able function from Ω to R ∪ {−∞,+∞}.
(b) For the empty set φ, define the “infimum” by inf φ := +∞. For

a (nonempty) set S of real numbers which is unbounded below, of
course define the “infimum” by inf S := −∞.

(c) For each k ∈ Z, each u ∈ (0, 1), each t ∈ [0, 1], define the extended
random variable Q(k, u, t) as follows: For all ω ∈ Ω,

(2.14) Q(k, u, t)(ω) := inf {r ∈ R : Z(k, r, t)(ω) ≥ u}.

For each k ∈ Z, each u ∈ (0, 1), define the (nonnegative) extended
random variable Q∗(k, u) as follows: For all ω ∈ Ω,

(2.15) Q∗(k, u)(ω) := inf {r > 0 : Z∗(k, r)(ω) ≥ u}.

In (2.14) and (2.15) the conventions in (a) and (b) are used where nec-
essary. The fact that Q(k, u, t) and Q∗(k, u) are measurable functions
from Ω to R ∪ {−∞,+∞}, is an elementary consequence of Remarks
2.7(b)(c).

Remark 2.14.
(a) For each ω ∈ Ω, each k ∈ Z, each t ∈ R, the extended r.v. Q(k, u, t) is

nondecreasing (in {−∞}∪R∪{∞}) as u increases in (0,1), by Remark
2.7(b).

(b) For each ω ∈ Ω, each k ∈ Z, the extended r.v. Q∗(k, u) is nondecreasing
(in [0,∞]) as u increases in (0,1), by Remark 2.7(c).

(c) For each k ∈ Z, each t ∈ Q[0,1], P (−∞ < Q(k, u, t) < ∞ ∀ u ∈
(0, 1)) = 1 by Lemma 2.10.

(d) For each k ∈ Z, P (0 ≤ Q∗(k, u) < ∞ ∀ u ∈ (0, 1)) = 1 by Lemma
2.11.

Lemma 2.15. For each k ∈ Z, each t ∈ [0, 1], one has that

P (|Q(k, u, t)| ≤ Q∗(k, .8) ∀ u ∈ [.3, .8]) = 1.
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Proof. Let k ∈ Z and t ∈ [0, 1] be arbitrary but fixed. By Remark (2.14)(a),
it suffices to prove that

Q(k, .8, t) ≤ Q∗(k, .8) a.s.(2.16)

and

−Q(k, .3, t) ≤ Q∗(k, .8) a.s.(2.17)

For each ω ∈ Ω, by Lemma 2.8(a),

{r > 0 : Z∗(k, r)(ω) ≥ .8} ⊂ {r ∈ R : Z(k, r, t)(ω) ≥ .8}.

Hence (2.16) holds by Definition 2.13(c). Now we need to prove (2.17).

Let Ω0 denote the set of all ω ∈ Ω such that Q∗(k, .8)(ω) < ∞ and for
every pair of numbers r ∈ Q(0,∞) and γ ∈ Q(0,∞), one has that

(2.18) Z∗(k, r)(ω) ≤ 1− Z(k,−r − γ, t)(ω).

By Lemma 2.8(b), P (Ω0) = 1.

Let ω ∈ Ω0 be arbitrary but fixed. Let γ ∈ Q(0,∞) be arbitrary but fixed.
To prove (2.17), it suffices to prove for this ω and this γ that

(2.19) −2γ − Q(k, .3, t)(ω) ≤ Q∗(k, .8)(ω).

Denote the nonnegative number q := Q∗(k, .8)(ω). Let q′ ∈ Q be such that
q′ < q < q′ + γ. (Note that q′ + γ > 0.) Now Z∗(k, q′ + γ)(ω) ≥ .8 by
Definition 2.13(c) and Remark 2.7(c). Hence 1 − Z(k,−q′ − 2γ, t)(ω) ≥ .8
by (2.18) and our assumption that ω ∈ Ω0. Hence Z(k,−q′ − 2γ, t)(ω) ≤ .2.
Hence −q′ − 2γ ≤ Q(k, .3, t)(ω) by Definition 2.13(c) and Remark 2.7(b).
Hence −q−2γ ≤ Q(k, .3, t)(ω). Thus (2.19) holds. This completes the proof
of (2.17) and of Lemma 2.15.

Remark 2.16. Let us digress for a moment to mention an elementary fact
of calculus that will simplify some technicalities in what follows: If a < b are
real numbers and g : [a, b] → R is a monotonic (hence bounded) function,
then ∫ b

a

g(u)du = lim
n→∞

b− a
n

n−1∑
j=0

g

(
a+

j

n
(b− a)

)
.
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Definition 2.17. For each k ∈ Z, each t ∈ Q[0,1], define the (real) random
variable W (k, t) as follows: For ω ∈ Ω,
(2.20)

W (k, t)(ω) :=


5 ·

∫ .6

.4

Q(k, u, t)(ω) du if −∞ < Q(k, u, t)(ω) <∞
∀ u ∈ (0, 1),

0 otherwise.

Remark 2.18. Let us briefly justify Definition 2.17. By Remark 2.14(a),
for any ω ∈ Ω such that −∞ < Q(k, u, t)(ω) <∞ ∀ u ∈ (0, 1), the integral
in (2.20) is well defined as a real number. By Remarks 2.14(c) and 2.16, one
has that with probability 1,

W (k, t) = 5 ·
∫ .6

.4

Q(k, u, t)du

= lim
n→∞

 1
n

n−1∑
j=0

Q(k, (.4) +
j

n
(.2), t)

 .(2.21)

In particular, this gives a simple way of confirming that the function W (k, t)
defined on Ω in Definition 2.17 really is a random variable (i.e. real, mea-
surable).

Lemma 2.19. For each k ∈ Z, each t ∈ Q[0,1], one has that

W (k, t) = Xk(t) +W (k + 1, t) a.s.

Before proving Lemma 2.19, let us motivate it. Our task later on will be
to define for each k ∈ Z a C[0, 1]−valued r.v. Yk satisfying Yk(t) = W (k, t)
a.s. for t ∈ Q[0,1]. This will be justified by Lemmas 2.20 and 2.22 below. We
shall then have the desired equation Yk = Xk + Yk+1 (i.e. Xk = Yk − Yk+1)
a.s.

Proof. Let k ∈ Z and t ∈ Q[0,1] be arbitrary but fixed.

For each r ∈ R, each n ≥ 1,

|V (k, n, r, t)− V (k, n+ 1, r, t)|
(2.22)

=

∣∣∣∣∣− 1
n+ 1

I(S(k, k + n)(t) ≤ r) +
(

1
n
− 1
n+ 1

) n−1∑
h=0

I(S(k, k + h)(t) ≤ r)
∣∣∣∣∣
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≤ 2/n.

For each ω ∈ Ω, each r ∈ R, each n ≥ 1

n∑
h=0

I (S(k, k + h)(t)(ω) ≤ r +Xk(t)(ω))

= I (Xk(t)(ω) ≤ r +Xk(t)(ω))

+
n−1∑
h=0

I (S(k, k + 1 + h)(t)(ω) ≤ r +Xk(t)(ω))

= I (Xk(t)(ω) ≤ r +Xk(t)(ω))

+
n−1∑
h=0

I (S(k + 1, k + 1 + h)(t)(ω) ≤ r)

and hence

∣∣V (k, n+ 1, r +Xk(t)(ω), t)(ω) − V (k + 1, n, r, t)(ω)
∣∣(2.23)

=
∣∣∣∣ 1
n+ 1

I(Xk(t)(ω) ≤ r +Xk(t)(ω))

+
(

1
n+ 1

− 1
n

) n−1∑
h=0

I(S(k + 1, k + 1 + h)(t)(ω) ≤ r)
∣∣∣∣

≤ 2/n.

By combining (2.22) (with r replaced by r + Xk(t)(ω)) with (2.23), we
have that for each ω ∈ Ω, each r ∈ R, each n ≥ 1,

∣∣V (k, n, r +Xk(t)(ω), t)(ω) − V (k + 1, n, r, t)(ω)
∣∣ ≤ 4

n
.

Hence for each ω ∈ Ω, each r ∈ R, each n ≥ 1,∣∣∣∣∣∣ 1n
n∑
j=1

V (k,mj, r +Xk(t)(ω), t)(ω) − 1
n

n∑
j=1

V (k + 1,mj, r, t)(ω)

∣∣∣∣∣∣
≤ 1

n

n∑
j=1

4/mj.

Hence by Definition 2.6 and Toeplitz’ Lemma, for each ω ∈ Ω, each r ∈ R,

(2.24) Z(k, r +Xk(t)(ω), t)(ω) = Z(k + 1, r, t)(ω).
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Now let Ω0 denote the set of all ω ∈ Ω such that ∀j ∈ Z, ∀ u ∈
(0, 1), −∞ < Q(j, u, t)(ω) <∞. By Remark 2.14(c),

(2.25) P (Ω0) = 1.

For every ω ∈ Ω0, every u ∈ (0, 1), one has that

(2.26) Q(k, u, t)(ω) = Xk(t)(ω) + Q(k + 1, u, t)(ω).

This can be shown as follows: Denote a := Q(k, u, t)(ω) and b := Q(k +
1, u, t)(ω). For each r < b, one has that

Z(k, r +Xk(t)(ω), t)(ω) = Z(k + 1, r, t)(ω) < u

by (2.24) and (2.14), and hence r + Xk(t)(ω) ≤ a by (2.14) (and Remark
2.14(a)). Hence b+Xk(t)(ω) ≤ a. For each r > b, one has that

Z(k, r +Xk(t)(ω), t)(ω) = Z(k + 1, r, t)(ω) ≥ u

by (2.24) and (2.14), and hence r + Xk(t)(ω) ≥ a by (2.14). Hence b +
Xk(t)(ω) ≥ a. Hence b+Xk(t)(ω) = a. That is, (2.26) holds.

Hence for each ω ∈ Ω0, W (k, t)(ω) = Xk(t)(ω) + W (k + 1, t)(ω) by
(2.26), Definition 2.17, and a simple calculation. Hence by (2.25), Lemma
2.19 holds.

Lemma 2.20. Suppose k ∈ Z, δ > 0, and ε > 0. Suppose s and t are
elements of Q[0,1] such that |s− t| ≤ δ. Then for a.e. ω ∈ {Z∗∗(k, δ, ε) ≤ .1},
one has that

(2.27) |W (k, s)(ω)−W (k, t)(ω)| ≤ ε+ 10 · Z∗∗(k, δ, ε)(ω) ·Q∗(k, .8)(ω).

(Here of course the notation “a.e.” means “almost every” with respect to
the given probability measure P on (Ω,F). If P (Z∗∗(k, δ, ε) ≤ .1) = 0, then
Lemma 2.20 is taken as “true by default”.)

Proof. Let k, δ, ε, s, and t be as in the hypothesis of Lemma 2.20. Let Ω0

denote the set of all ω ∈ Ω such that
(i) −∞ < Q(k, u, s)(ω) < ∞ and −∞ < Q(k, u, t)(ω) < ∞ for all

u ∈ (0, 1),
(ii) Q∗(k, .8)(ω) <∞, and
(iii) |Q(k, u, s)(ω)| ≤ Q∗(k, .8)(ω) and |Q(k, u, t)(ω)| ≤ Q∗(k, .8)(ω) for all

u ∈ [.3, .8].
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By Remark 2.14(c)(d) and Lemma 2.15, one has that P (Ω0) = 1. Let
ω ∈ Ω0 ∩ {Z∗∗(k, δ, ε) ≤ .1} be arbitrary but fixed. (If no such ω exists,
then Lemma 2.20 is trivial; we assume such an ω exists.) To prove Lemma
2.20, it suffices to prove for this ω that

(2.28) W (k, t)(ω)−W (k, s)(ω) ≤ [r.h.s. of (2.27)].

(For then (2.28) would also hold with s and t reversed, by the same argument,
and (2.27) would follow.)

Define the number

(2.29) z := Z∗∗(k, δ, ε)(ω).

Under our assumptions,

(2.30) 0 ≤ z ≤ .1.

Claim A. Under the above assumptions, for each u such that z < u < 1
one has that Q(k, u− z, t)(ω)− ε ≤ Q(k, u, s)(ω).

Proof. Let u ∈ (z, 1) and γ > 0 be arbitrary but fixed. To prove Claim A,
it suffices to prove that

(2.31) Q(k, u− z, t)(ω)− ε ≤ Q(k, u, s)(ω) + γ.

Define the real number r0 := Q(k, u, s)(ω).

Then
u ≤ Z(k, r0 + γ, s)(ω) ≤ Z(k, r0 + γ + ε, t)(ω) + z

by Definition 2.13(c), Remark 2.7(b), (2.29), and Lemma 2.9. That is, u−z ≤
Z(k, r0 + γ + ε, t)(ω). Hence

Q(k, u− z, t)(ω) ≤ r0 + γ + ε, = Q(k, u, s)(ω) + γ + ε

by Definition 2.13(c). Thus (2.31) holds. This completes the proof of Claim
A.

Now we are ready to finish the proof of (2.28). By Definition 2.17, Eqn.
(2.30), Claim A, and the various properties of Ω0 (recall our assumption
ω ∈ Ω0), one has that

W (k, s)(ω) = 5 ·
∫ .6

.4

Q(k, u, s)(ω) du
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≥ 5 ·
∫ .6

.4

[Q(k, u− z, t)(ω)] du − ε

= − ε+ 5 ·
∫ .6

.4

Q(k, u, t)(ω) du

+ 5 ·
∫ .4

.4−z
Q(k, u, t)(ω) du

− 5 ·
∫ .6

.6−z
Q(k, u, t)(ω) du

≥ −ε + W (k, t)(ω)

− 5z · Q∗(k, .8)(ω)− 5z ·Q∗(k, .8)(ω).

Thus (2.28) holds by (2.29). This completes the proof of Lemma 2.20.

Definition 2.21. For each k ∈ Z, let Ck denote the set of all ω ∈ Ω such
that (W (k, t)(ω), t ∈ Q[0,1]), as a function of t from Q[0,1] to R, is uniformly
continuous on Q[0,1].

Lemma 2.22. For each k ∈ Z, P (Ck) = 1.

Proof. Let k ∈ Z be arbitrary but fixed. In the proof that P (Ck) = 1, some
of the notations will depend on this fixed value of k, but that dependence
will be suppressed.

For each δ > 0, each positive integer n, let A(δ, n) denote the set of all
ω ∈ Ω such that the following holds: For every pair of numbers s, t ∈ Q[0,1]

such that |s− t| ≤ δ, one has that |W (k, s)(ω)−W (k, t)(ω)| ≤ 1/n.

Claim B. For each positive integer n, there exists δ > 0 such that
P (A(δ, n)) ≥ 1− 2−n.

Before proving Claim B, let us first briefly explain why it implies Lemma
2.22. Suppose Claim B holds. For each n ≥ 1 let δn > 0 be such that
P (A(δn, n)) ≥ 1 − 2−n. Let B denote the set of all ω ∈ Ω such that ω 6∈
A(δn, n) for at most finitely many n. By the Borel-Cantelli Lemma, P (B) =
1. Clearly, for each ω ∈ B, one has that (W (k, t)(ω), t ∈ Q[0,1]) is a uniformly
continuous function of t ∈ Q[0,1]. Thus Lemma 2.22 follows from Claim B.
Now we just need to prove Claim B.

Proof of Claim B. Let n be an arbitrary fixed positive integer. It suffices
to show for this n that there exists δ > 0 such that

(2.32) P (A(δ, n)) ≥ 1− 2−n.
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Applying Lemma 2.11, let c be a positive number such that P (Z∗(k, c) ≥
.8) ≥ 1 − 2−n−1. From Definition 2.13(c), one has that P (Q∗(k, .8) ≤
c) ≥ 1− 2−n−1. Next, applying Lemma 2.12, let δ > 0 be such that

P (Z∗∗(k, δ, 1/(2n)) ≥ min {.1, 1/(20nc)}) ≤ 2−n−1.

Denote by D the event

{Q∗(k, .8) ≤ c} ∩ {Z∗∗(k, δ, 1/(2n)) ≤ min {.1, 1/(20nc)}}.

Then P (D) ≥ 1− 2−n.

Now by Lemma 2.20, for a.e. ω ∈ D, one has that for all s, t ∈ Q[0,1] with
|s− t| ≤ δ,

|W (k, s)(ω) − W (k, t)(ω)| ≤ 1
2n

+ 10 · 1
20nc

· c =
1
n
.

That is, a.e. ω ∈ D is an element of A(δ, n). Hence (2.32) holds. This
completes the proof of Claim B and of Lemma 2.22.

Definition 2.23. For each k ∈ Z, define the C[0, 1]-valued r.v. Yk as
follows: Referring to Definition 2.21, for each ω ∈ Ck, (Yk(t)(ω), t ∈ [0, 1]) is
the unique element of C[0, 1] such that Yk(t)(ω) = W (k, t)(ω) ∀ t ∈ Q[0,1].
For each ω 6∈ Ck, Yk(t)(ω) := 0 ∀ t ∈ [0, 1].

Lemma 2.24. For each k ∈ Z, one has that Yk = Xk + Yk+1 a.s.

Proof. This follows easily from Definition 2.23 and Lemmas 2.19 and 2.22.

By Lemma 2.24, in order to complete the proof of Theorem 1.1 for C[0, 1]-
valued random variables, it suffices to produce a measurable function

f : C[0, 1] × C[0, 1] × C[0, 1] × . . .→ C[0, 1]

such that for each k ∈ Z, each ω ∈ Ω,

(2.33) Yk(ω) = f(Xk(ω), Xk+1(ω), Xk+2(ω), . . . ).

Definition 2.25. In the definitions that follow, x := (x1, x2, x3, . . . ) will
denote a generic sequence of elements of C[0, 1]. (This new use of the letter
x is different from that in Remark 2.1.)
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For parameters n ≥ 1, r ∈ R, and t ∈ [0, 1], each of the following is a
measurable function from C[0, 1] × C[0, 1] × C[0, 1] × . . . into the closed
unit interval [0, 1] :

In,r,t(x) :=

{
1 if x1(t) + . . .+ xn(t) ≤ r
0 otherwise

vn,r,t(x) :=
1
n

n−1∑
h=0

Ih+1,r,t(x)

zr,t(x) := lim
n→∞

1
n

n∑
j=1

vm(j),r,t(x)

where m(j) denotes mj (from Definition 2.5). Note that for a given t ∈ [0, 1]
and a given x ∈ C[0, 1] × C[0, 1] × C[0, 1], . . . zr,t(x) is nondecreasing as
r increases in R. For parameters u ∈ (0, 1) and t ∈ [0, 1], the following is a
measurable function from C[0, 1] × C[0, 1] × C[0, 1] ×. . . into R∪{−∞,∞}
(see Definition 2.13(b)):

qu,t(x) := inf {r ∈ R : zr,t(x) ≥ u}.
Note that for a given t ∈ [0, 1] and a given x ∈ C[0, 1] × C[0, 1] ×
C[0, 1] × . . . , qu,t(x) is nondecreasing as u increases in (0,1).

For a given t ∈ Q[0,1], the following is a measurable function from C[0, 1] ×
C[0, 1] × C[0, 1] × . . .→ R :

ψt(x) :=


5 ·

∫ .6

.4

qu,t(x) du = lim
n→∞

 1
n

n−1∑
j=0

q.4+(j/n)(.2),t(x)


if −∞ < qu,t(x) <∞ ∀ u ∈ (0, 1)

0 otherwise.

(See Remark 2.16.) Finally, define the function f(x) := (ft(x), t ∈ [0, 1])
from C[0, 1] × C[0, 1] × C[0, 1] × . . .→ C[0, 1] as follows:

For a given x, if (ψt(x), t ∈ Q[0,1]) is a uniformly continuous function of
t ∈ Q[0,1], then f(x) is the unique element of C[0, 1] such that ft(x) =
ψt(x) ∀ t ∈ Q[0,1]. Otherwise define f(x) := 0, the zero element of C[0, 1].
By an elementary argument, this function f is measurable.

Step 2.26. Proof of (2.33). Let k ∈ Z be arbitrary but fixed.

Suppose ω ∈ Ω, and one denotes the sequence x := (Xk(ω), Xk+1(ω),
Xk+2(ω), . . . ) of elements of C[0, 1]. Then it is easy to check that (for h ≥
0, n ≥ 1, r ∈ R, t ∈ [0, 1], u ∈ (0, 1))

I(S(k, k + h)(t) ≤ r)(ω) = Ih+1,r,t(x)
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V (k, n, r, t)(ω) = vn,r,t(x),

Z(k, r, t)(ω) = zr,t(x), and

Q(k, u, t)(ω) = qu,t(x).

(See (2.3), (2.9), and (2.14).) For t ∈ Q[0,1] one has that

W (k, t)(ω) = ψt(x)

by (2.20). Finally, by Definition 2.23,

Yk(ω) = f(x) = f(Xk(ω), Xk+1(ω), Xk+2(ω), . . . ).

That is, (2.33) holds. This completes the proof of Theorem 1.1 for C[0, 1]-
valued random variables.

3. Proof of Theorem 1.1 (for a general separable real Banach
space).

Before we begin the proof of Theorem 1.1 for general separable real Banach
spaces, we need to get a couple of technical lemmas out of the way. Sup-
pose (S, d) is a complete separable metric space, and x := (x1, x2, x3, . . . )
is a sequence of elements of S. We shall denote Tx := (x2, x3, x4, . . . ), the
sequence obtained from x by deleting the first entry. Also, the term “accu-
mulation point of the sequence x” will simply mean an element s ∈ S (if such
an s exists) which satisfies s = limm→∞ xk(m) for some strictly increasing
subsequence k(1), k(2), k(3), . . . of the positive integers.

Lemma 3.1. Suppose (S, d) is a complete separable metric space, and
A is a compact subset of S. Then there exists a measurable function f :
A × A × A × . . . → A such that for every sequence x := (x1, x2, x3, . . . ) of
elements of A, one has that (i) f(x) is an accumulation point of the sequence
x, and (ii) f(Tx) = f(x).

Proof. Here we shall just give the definition of the function f . The verifi-
cation of its stated properties (measurability and properties (i) and (ii)) is
elementary and is left to the reader.

First, for each positive integer n let (a(n)
1 , a

(n)
2 , . . . , a

(n)
m(n)) be a finite se-

quence of distinct elements of A such that ∀ s ∈ A, ∃ k ∈ {1, 2, . . . ,m(n)}
such that d(s, a(n)

k ) ≤ 2−n.

An elementary observation will be needed. For s ∈ A and ε > 0, let
B̄(s, ε) denote the closed ball ⊂ A with center s, radius ε. Then for any
n ≥ 2, any ` ∈ {1, 2, . . . ,m(n − 1)}, one has that B̄(a(n−1)

` , 2−(n−1)) ⊂
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⋃
j B̄(a(n)

j , 2−n), where the union is taken over all j ∈ {1, 2, . . . ,m(n)} such
that d(a(n−1)

` , a
(n)
j ) ≤ 3 · 2−n. Hence, for any n ≥ 2, any ` ∈ {1, 2, . . . ,

m(n − 1)}, for a given sequence x := (x1, x2, x3, . . . ) of elements of A, if
d(xk, a

(n−1)
` ) ≤ 2−(n−1) for infinitely many k ≥ 1, then there exists j ∈

{1, 2, . . . ,m(n)} such that d(a(n−1)
` , a

(n)
j ) ≤ 3 · 2−n and d(xk, a

(n)
j ) ≤ 2−n for

infinitely many k ≥ 1.

Now let us define the function f . Suppose x := (x1, x2, x3, . . . ) is any se-
quence of elements of A. Let J(1)(x) denote the least element of {1, 2, . . . ,
m(1)} such that d

(
xk, a

(1)
J(1)(x)

)
≤ 2−1 for infinitely many k ≥ 1. Now if

L ≥ 2 is an integer, then assuming the positive integers J(1)(x), . . . , J(L−
1)(x) have already been defined, let J(L)(x) denote the least element of
{1, 2, . . . ,m(L)} such that d

(
a

(L−1)
J(L−1)(x), a

(L)
J(L)(x)

)
≤ 3 · 2−L and

d
(
xk, a

(L)
J(L)(x)

)
≤ 2−L for infinitely many k ≥ 1. Finally define f(x) by

f(x) := limL→∞ a
(L)
J(L)(x).

As indicated above, the rest of the proof of this lemma is left to the
reader.

Lemma 3.2. Suppose (S, d) is a complete separable metric space, and
A1, A2, A3, . . . is a sequence of compact subsets of S. Then there exists a
measurable function h : S × S × S × . . . → S with the following property:
If x := (x1, x2, x3, . . . ) is any sequence of elements of S such that for some
n ≥ 1, xk ∈ An for infinitely many k ≥ 1, then (i) h(x) is an accumulation
point of the sequence x, and (ii) h(Tx) = h(x).

Proof. We shall just give the definition of the function h. The proof of its
stated properties will be left to the reader.

First, applying Lemma 3.1, for each positive integer n let fn : An ×
An ×An × . . .→ An be a measurable function such that for every sequence
y := (y1, y2, y3, . . . ) of elements of An, fn(y) is an accumulation point of the
sequence y, and fn(Ty) = fn(y).

Also, let s0 be an element of S.

Now let us define the function f . Suppose x := (x1, x2, x3, . . . ) is a se-
quence of elements of S. We shall define f(x).

First, if there does not exist n ≥ 1 such that xk ∈ An for infinitely many
k ≥ 1, then define h(x) := s0.

Now suppose instead that there does exist such an n. Let N(x) de-
note the least positive integer such that xk ∈ AN(x) for infinitely many
k ≥ 1. Let k(1)(x), k(2)(x), k(3)(x), . . . be the strictly increasing sequence
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of all positive integers k such that xk ∈ AN(x). Finally, define h(x) :=
fN(x)

(
xk(1)(x), xk(2)(x), xk(3)(x), . . .

)
.

This completes the definition of the function h. The rest of the proof of
this lemma is left to the reader.

Now we are ready to begin the proof of Theorem 1.1.

Proof of Theorem 1.1. Suppose B is a separable real Banach space. Sup-
pose (Xk, k ∈ Z) is a sequence of B-valued random variables on a probabil-
ity space (Ω,F , P ), and this sequence satisfies the hypothesis of Theorem
1.1. Without loss of generality, we assume that for every k ∈ Z, every
ω ∈ Ω, Xk(ω) is defined as an element of B.

It is well known (see e.g. van Dulst [5, p. 14] or Lindenstrauss and Tzafriri
[9, p. 153]) that every separable real Banach space is isometric to some
subspace of C[0, 1]. Hence by a simple argument, we may (and do) assume
without loss of generality that B itself is a subspace of C[0, 1].

Definition 3.3. Applying Theorem 1.1 in the special case of C[0, 1]-
valued random variables (the special case proved in Section 2), let g :
C[0, 1] × C[0, 1] × C[0, 1] × . . . → C[0, 1] be a measurable function such
that, defining for each k ∈ Z the C[0, 1]-valued random variable Zk :=
g(Xk, Xk+1, Xk+2, . . . ), one has that

(3.1) ∀ k ∈ Z, Xk = Zk − Zk+1 a.s.

The random variables Zk defined here need not take their values in B. There
is still some work left.

For each k = 1, 2, 3, . . . , Z0 − Zk = X0 + . . .+Xk−1 a.s. by (3.1). Hence
by the hypothesis of Theorem 1.1, the family of distributions of the random
variables (Z0 − Zk, k = 1, 2, 3, . . . ) is tight. Also, the distribution of the
random variable Z0 itself is tight (a well known fact that can be found e.g.
in Billingsley [2, p. 10, Theorem 1.4]). Hence by an elementary argument,
the family of distributions of the random variables (Z1, Z2, Z3, . . . ) is tight.

Definition 3.4. For each positive integer n, let An be a compact subset of
C[0, 1] such that

(3.2) ∀ k ≥ 1, P (Zk ∈ An) ≥ 1− 2−n.

These particular sets A1, A2, A3, . . . will play a key role in the next defini-
tion.
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Definition 3.5.
(A) For any given sequence x := (x1, x2, x3, . . . ) of elements of C[0, 1], de-

note T 0x := x, T 1x := Tx, and for j ≥ 2, T jx := (xj+1, xj+2, xj+3, . . . ),
the jth iteration of T on x.

(B) Applying Lemma 3.2, let h : C[0, 1]×C[0, 1]×C[0, 1]× . . .→ C[0, 1] be
a measurable function such that if x := (x1, x2, x3, . . . ) is a sequence
of elements of C[0, 1] such that for some n ≥ 1, xk ∈ An for infinitely
many k, then (i) h(x) is an accumulation point of the sequence x, and
(ii) h(Tx) = h(x).

(C) If x := (x1, x2, x3, . . . ) is a sequence of elements of C[0, 1], then x will
be said to satisfy “Condition C” if both of the following two statements
hold:
(a) xj = g(T j−1x) − g(T jx) for every j = 1, 2, 3, . . . (where g is the

function in Definition 3.3), and
(b) there exists a positive integer n such that g(T jx) ∈ An for in-

finitely many j ≥ 1.
(D) Define the function f : C[0, 1] × C[0, 1] × C[0, 1] × . . . → C[0, 1] as

follows:

f(x) := g(x)− h(g(x), g(Tx), g(T 2x), g(T 3x), . . . )

if x satisfies Condition C; otherwise, f(x) := 0 (the zero element of
C[0, 1]).

In the next lemma, we shall use the term “standard σ-field” from the very
first paragraph of Section 1.

Lemma 3.6.
(1) The function f is measurable (with respect to the standard σ-field on

C[0, 1]).
(2) For every sequence x := (x1, x2, x3, . . . ) of elements of B, one has that

f(x) ∈ B.
(3) The function f restricted to B×B×B× . . . is measurable with respect

to the standard σ-field on B.

Proof. The proof of (1) is an elementary exercise involving just basic measure-
theoretic techniques. This is also true of the proof of (3), once (2) is proved.
We shall just give the proof of (2), and leave the proofs of (1) and (3) to the
reader.

Suppose x := (x1, x2, x3, . . . ) is a sequence of elements of B. Our task is
to show that f(x) ∈ B.
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If x fails to satisfy Condition C, then by Definition 3.5(D), f(x) = 0 (the
zero element of C[0, 1]), which is of course an element of B.

Now suppose instead that the sequence x does satisfy Condition C. Again
refer to Definition 3.5. The element h(g(x), g(Tx), g(T 2x), . . . ) is an ac-
cumlation point of the sequence (g(x), g(Tx), g(T 2x), . . . ). Hence f(x) is
an accumulation point of the sequence

(g(x)− g(Tx), g(x)− g(T 2x), g(x)− g(T 3x), . . . ).

Also, for each j ≥ 1,

g(x)− g(T jx) =
j∑

k=1

[
g(T k−1x)− g(T kx)

]
=

j∑
k=1

xk,

which is an element of B. It follows that f(x) is an element of B. This
completes the proof of part (2) of this lemma.

Definition 3.7. Referring to Lemma 3.6(2)(3), for each k ∈ Z define the
B-valued random variable

(3.3) Yk := f(Xk, Xk+1, Xk+2, . . . ).

The task that remains is to prove that

(3.4) ∀ k ∈ Z, Xk = Yk − Yk+1 a.s.

Let us return to the compact sets A1, A2, A3, . . . ⊂ C[0, 1] in Definition
3.4. For each n ≥ 1, each j ≥ 1, define the event D(n, j) := {Zk 6∈ An ∀ k ≥
j}. For each n ≥ 1, one has that D(n, 1) ⊂ D(n, 2) ⊂ D(n, 3) ⊂ . . . ,
and hence

P

 n⋃
j=1

D(n, j)

 = lim
j→∞

P (D(n, j)) ≤ lim sup
j→∞

P (Zj 6∈ An) ≤ 2−n

by (3.2). That is, for each n ≥ 1,

(3.5) P (Zk ∈ An for infinitely many k ≥ 1) ≥ 1− 2−n.

Definition 3.8. Let Ω∗ denote the set of all ω ∈ Ω such that (i) there
exists n ≥ 1 such that Zk(ω) ∈ An for infinitely many k ≥ 1, and (ii)
Xk(ω) = Zk(ω)− Zk+1(ω) for all k ∈ Z.
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As an elementary consequence of (3.1) and (3.5), one has that P (Ω∗) = 1.

Let k ∈ Z and ω ∈ Ω∗ be arbitrary but fixed. To prove (3.4), and thereby
complete the proof of Theorem 1.1, it suffices to prove for this fixed pair k, ω
that

(3.6) Xk(ω) = Yk(ω)− Yk+1(ω).

Let x denote the sequence of elements of B defined by

(3.7) x := (Xk(ω), Xk+1(ω), Xk+2(ω), . . . ).

In the notations of Definitions 3.3 and 3.5 we have x1 := Xk(ω), x2 :=
Xk+1(ω), x3 := Xk+2(ω), and so on; and g(x) = Zk(ω), g(Tx) = Zk+1(ω),
g(T 2x) = Zk+2(ω), and so on.

By Definition 3.8, one has that xj = g(T j−1x)−g(T jx) for all j ≥ 1. Also
by Definition 3.8, ∃ n ≥ 1 such that g(T jx) ∈ An for infinitely many j ≥ 1.
Thus the sequence x satisfies Condition C in Definition 3.5. Hence by (3.3),
(3.7), and Definition 3.5(D),

(3.8) Yk(ω) = g(x)− h(g(x), g(Tx), g(T 2x), . . . ).

By the same argument with the integer k replaced by k+ 1, one has that

(3.9) Yk+1(ω) = g(Tx)− h(g(Tx), g(T 2x), g(T 3x), . . . )

(where x is as defined in (3.7)).

Now by Definition 3.5(B),

h(g(x), g(Tx), g(T 2x), . . . ) = h(g(Tx), g(T 2x), g(T 3x), . . . ).

Hence by (3.8), (3.9), and Definition 3.8,

Yk(ω)− Yk+1(ω) = g(x)− g(Tx) = Zk(ω)− Zk+1(ω) = Xk(ω).

Thus (3.6) holds. This completes the proof of Theorem 1.1.
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