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ON CLASSIFICATION OF HEEGAARD SPLITTINGS AND
TRIANGULATIONS

Daniel J. Heath

In this paper we consider Heegaard splittings of 3-manifolds.
By using Gabai’s concept of thin position on the 1-skeleton of
some polyhedral decomposition, together with Casson-
Gordon’s concept of strong irreducibility, we prove the Main
Theorem (4.0). This theorem will allow us to classify the
Heegaard splittings of manifolds whose polyhedral decompo-
sitions are particularily nice, which we demonstrate via ex-
amples. Specifically, we use it to classify Heegaard splittings
of several hyperbolic spaces, including the figure-8 knot com-
plement (Example 6.4) and the genus 2 case of the 52-knot
complement (Example 6.7).

1. Introduction.

In this paper, we continue the line of reasoning of [6], resulting in a theorem
which we use to classify Heegaard splittings of several hyperbolic spaces. We
note that in the spaces mentioned above, the Heegaard splittings coincide
with the well–known unknotting tunnels, lending further creedence to the
conjecture of [8].

In particular, the Main Theorem essentially says that all Heegaard split-
tings satisfying a certain technical property for a manifold with a “good”
polyhedral decomposition can either be classified or the problem can be
simplified in one of two ways. The manifolds arising from the simplification
procedure may not be “good,” so that a complete classification may not be
possible. However, if M is a good manifold with a single boundary compo-
nent of genus n, we can classify its Heegaard splittings of genus n+ 1 using
this theorem.

In Section 2 we give the required definitions. We prove some technical
lemmas in Section 3, the most important of which (3.4) follows the argu-
ment of ([9, 3.1]). In Section 4 we prove the Main Theorem. We give an
independent result in Section 5; demonstrating that the manifolds having
the necessary technical properties form an infinite class.

We give several examples of the use of the Main Theorem in Section 6; we
classify Heegaard splittings of several hyperbolic manifolds obtained from
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the cusped census of [11], and discuss the “bad” case. We note that 22 of
the manifolds in this census having four or less ideal tetrahedra have easy to
find “good” IPD’s, and thus that, theoretically, we can apply this theorem
to each of them. As the number of exceptional cases is quite large for those
with 3 or more edges, we will be content with classifying genus 2 Heegaard
splittings in such examples.

This material is based upon work carried out during my tenure as an
NSF–nominated Japan Society for the Promotion of Science postdoctoral
fellow (NSF grant no. 9400660; JSPS I.D. No. P–94157).

I would like to express my thanks to the department of mathematics
at Nara Women’s University, where much of this was completed, for its
generous hospitality. I would also like to thank Drs. Abigail Thompson and
Tsuyoshi Kobayashi for many helpful conversations, and Dr. Jeffrey Weeks
for assisting me with the use of SnapPea, his wonderful knot theory computer
program.

2. Definitions.

Throughout this paper we use the notation N(∗) to refer to a regular neigh-
borhood of *, ◦∗ to refer to the interior of *, and the notation ](∗) to refer
to the number of components of *.

For a closed surface F , we refer to the number g such that χ(F ) = 2− 2g
as the genus of F . Note that a nonorientable surface may have fractional
genus, for example, genus(RP 2) = 1

2
.

A compression body H is constructed by adding 2-handles to a (closed
connected surface) ×I along a collection of disjoint simple closed 2-sided
curves on (surface) ×{0}, and capping off any resulting 2-sphere boundary
components with 3-balls. The component (surface) ×{1} of ∂H is denoted
∂+H and the surface ∂H \ ∂+H, which may or may not be connected, is
denoted ∂−H. If ∂−H = ∅, then H is a handlebody.

For a compact manifold M , a 3-tuple of manifolds (H0, H1;S) is called
a Heegaard splitting of M if H0, H1 is a pair of compression bodies with
the property that M = H0 ∪ H1 and H0 ∩ H1 = ∂+H0 = ∂+H1 = S,
for some closed connected surface S embedded in M . The surface S is
called the splitting surface of the Heegaard splitting (H0, H1;S), but we
shall sometimes refer to either S or (H0, H1) as the Heegaard splitting. Two
Heegaard splittings of M are considered equivalent if their splitting surfaces
are isotopic. We note that (H0, H1;S) is equivalent to (H1, H0;S).

A spine, X, of a compression body H is a properly embedded 1–complex
such that H = N(∂−H ∪X). Let H be a compression body. Once and for
all pick a point p ∈ ◦H and a point pk in each component of ∂−H. Let X
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be a spine for H chosen so that:
(0) X ∩ ∂−H = ∪{pk},
(1) X ∩ p = ∅ if H is not a handlebody, and
(2) X\(p ∪ (∪{pk})) is a collection of open arcs.

Then we call the number ](X) the complexity of X, denoted c(X). It is
elementary to check that:

c(X) = genus(∂+H)−
∑

genus(∂−H) + ](∂−H)− 1.

Let (H0, H1) be a Heegaard splitting for a manifold M . The spinal com-
plexity of (H0, H1) is the pair {c(X0), c(X1)} arranged in lexicographical
order. The pair {a, b} (with a ≤ b) is said to be less than the pair {c, d}
(with c ≤ d) if both a ≤ c and b ≤ d, and at least one of the inequalities is
strict. A Heegaard splitting (H0, H1) of M is said to have lower spinal com-
plexity than (H̃0, H̃1) of M̃ if {c(X0), c(X1)} < {c(X̃0), c(X̃1)}, see Figure
0.

An elementary stabilization E(H0, H1) of S is the splitting surface ob-
tained by taking the connected sum of pairs (M,S) ] (S3, T 2), for T 2 the
standard unknotted torus in S3. A stabilization of (H0, H1) is a Heegaard
splitting Ek(H0, H1), such that Ei(H0, H1) is an elementary stabilization of
Ei−1(H0, H1). A Heegaard splitting is stabilized if it is an elementary stabi-
lization of another splitting. We note that this is equivalent to the existence
of proper discs Di ⊂ Hi such that ∂D0 ∩ ∂D1 = {one point}.

Following [9], we will say that a splitting surface is reducible if there exists
an essential simple closed (two-sided) curve c ⊂ S which bounds imbedded
discs in both H0 and H1. A splitting surface is weakly reducible if there exist
essential discs D0 ⊂ H0 and D1 ⊂ H1 with ∂D0 ∩ ∂D1 = ∅. If S is reducible
then it is clearly weakly reducible. If S is not weakly reducible, then S is
said to be strongly irreducible. Again, if S is strongly irreducible, S is clearly
irreducible.
Remark 2.0. If S is a splitting surface for an irreducible manifold M
with genus(S) > 1, then it is well known that “S is reducible,” and “S is
stabilized” are equivalent statements. A proof of this can be found in [9].

Since all Heegaard splittings of manifolds of genus 0, 1
2
, and 1 are classified

by [10], [5], and [1], we shall from this point assume that any manifold in
question is of genus at least 3

2
, and thus that “reducible” and “stabilized”

are equivalent.

Let R be a closed surface contained in the boundary of a 3-manifold M .
Let U0, U1 be a pair of compression bodies defining a Heegaard splitting of
M , and assume that R ⊂ ∂U0. Note that there is some R′ ⊂ ∂U0 (R′ can
be empty, or have multiple components) so that U0 = N(R∪R′)∪1-handles.
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Let f be a homeomorphism N(R)→ R×I and p : R×I → R the projection
onto the first factor.

Let M1,M2 be two manifolds each with non-empty boundary and with
Heegaard splittings (U0, U1), (V0, V1) respectively. Let R1, R2 be two home-
omorphic surfaces such that R1 ⊂ ∂U0 ⊂ ∂M1 and R2 ⊂ ∂V0 ⊂ ∂M2, and
let fi, pi, i = 1, 2, be the corresponding functions respectively.

Define an equivalence relation ∼ on M1 ∪M2 as follows:
1) If xi, yi are points such that xi, yi ∈ N(Ri) and pifi(xi) = pifi(yi) then

xi ∼ yi, i = 1, 2.
2) If x ∈ R1, y ∈ R2 and g(x) = y, where g : R1 → R2 is the homeomor-

phism between the surfaces, then x ∼ y.
Furthermore we can arrange that the attaching discs on R1 × I (R2 × I)

for the one handles in U0 (V0) respectively, have disjoint images in R1 (R2)
and hence do not get identified to each other. Now set:

M = (M1 ∪M2)/ ∼, H0 = (U0 ∪ V1)/ ∼, H1 = (U1 ∪ V0)/ ∼ .
Note that H0 = V1 ∪ N(R′1) ∪ (1 − handles) and H1 = U1 ∪ N(R′2) ∪ (1 −
handles) (the 1-handles connect ∂+V1 to ∂N(R′1) (∂+U1 to ∂N(R′2) respec-
tively)) so that H0, H1 are compression bodies defining a Heegaard splitting
for M. This Heegaard splitting is called the amalgamation of the Heegaard
splittings (U0, U1) of M1 and (V0, V1) of M2 along R1, R2. We note that
Figure 1 shows the amalgamation process.

Let M be a 3-manifold. Pick a closed subset ∂0M of ∂M , and set ∂1M =
∂M\∂0M . Let (H0, H1; S) be a genus g Heegaard splitting of M such that
∂−Hi = ∂iM . Choose a minimal set of defining discs for the compression
bodies, so we need at exactly one 3-handle for a handlebody, and none for a
compression body which isn’t a handlebody.

The handle description defines a Morse function h : M → [0, 1]. The
splitting surface will occur as the inverse image of a regular value of h. We
arrange the singular values of h, i.e.

0 < a1 < . . . < ak < b1 < . . . < bl < 1,

so that passing through a critical point labelled with an ai corresponds to
adding a 1–handle, passing a bi corresponds to adding a 2–handle, and h−1(c)
is isotopic to S for ak < c < b1. Thus we have the following:

The leaf of the foliation corresponding to h−1(0) is just ∂−H0 = ∂0M , if
∂0M 6= ∅, or the minimal point if H0 is a handlebody. All leaves h−1(r) are
isotopic for 0 < r < a1, but h−1(a1) is a singular surface in which two points
have been pinched together, forming a 1-handle, see Figure 2. Similarly,
each of the h−1(ai) corresponds to a singular surface in which two points
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on the previous leaves have been pinched together, increasing the genus of
the leaves in the foliation by one, or lowering the number of components
of h−1(r), so that for ak < r < b1, h−1(r) is a genus g surface. On the
other hand, h−1(b1) is a singular level in which a circle has been pinched
into a point, forming a 2-handle, and the picture is the same as in Figure 2,
except turned upside down. Then for b1 < r < b2, h−1(r) is a genus g − 1
surface. Note that h−1(1) is the maximal point in H1, if H1 is a handlebody,
or h−1(1) = ∂1M if ∂1M 6= ∅.

Let T be a polyhedral decomposition for M such that:
(0) M\ (2-skeleton of T ) is a union of balls, T 0

3 , . . . T
n3
3 ,

(1) ∂M appears as a union of (punctured) discs in ∂T k3 ,
(2) (1-skeleton of T)\∂M is a union of open arcs, T 0

1 , . . . T
n1
1 ,

(3) (2-skeleton of T)\∂M is a union of discs, T 0
2 , . . . T

n2
2 , such that each

T k2 is a zerogon (i.e., its boundary lies in ∂M), a monogon (i.e., its boundary
consists of some T i1 union a part of ∂M), a bigon, or a triangle.
Then T is said to be an idealized polyhedral decomposition, or IPD, for M .

Denote by Tj = ∪njk=1T
k
j the j–skeleton of T , that is, each T k3 is a polyhe-

dron, T k2 is a zerogon, monogon, bigon, or triangle, and T k1 is an arc.
We note that all Heegaard splittings are classified for manifolds M with

T having ](T1) ≤ 1 (see [6]), so we assume that ](T1) > 1.
Let I1, . . . , In be the critical values of T1 (with respect to the Morse func-

tion h induced by the Heegaard splitting S), where 0 < I1 < . . . < In < 1.
Let xi be regular values of h |M , h |T2 such that 0 < x0 < I1, In < xn < 1,
and Ii < xi < Ii+1 for 0 < i < n. Then each h−1(xi) is a level surface Si.
Define the width w(T ) of T to be the number of intersections of ∪Si with
T1, that is, w(T ) =

∑
i ](Si ∩ T1). If T has been isotoped to have minimal

width, we say that T is in thin position. Henceforth we assume that T is in
thin position.

If each edge T k1 in the 1-skeleton of T has either no critical points, or if
all critical points are maxima with respect to the Morse foliation induced by
S, (or all minima), then S is said to be weakly rigid. If there exists some i
so that T i1 has more than 1 critical point, and no T j1 has exactly one critical
point which is a minimum, then S is called a Gabaic Heegaard surface.

Let M be a 3-manifold and T an IDP for M . We denote an arc embedded
in a face T k2 as normal if its endpoints lie on distinct edges of T k2 . An arc
imbedded in a side is abnormal if both its endpoints lie on the same edge.
(Arcs with an endpoint on ∂M do not arise in the following arguments.) A
curve lying in T2 is called simple if it does not intersect T1.

Let r be a regular value of h on both T1 and M . Suppose there is an
abnormal arc α of h−1(r)∩T k2 . Then α together with a piece γ of T1 bounds
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a disc D in T k2 . We say that D is bad if ◦D ∩ h−1(r) is empty or consists
of simple closed curves. If D is bad, γ is above h−1(r) if it lies on the side
of h−1(r) containing h−1(1); otherwise it is below. A bad disc lies above or
below h−1(r) according to whether γ lies above or below, see Figure 3.

Let F be a closed 2-sided surface embedded in M . Assume that F in-
tersects T2 in normal arcs and simple curves, and that for at least one i,
F ∩ T i1 > 2. Then F is called a Gabai surface.

If F is a 2-sided surface for which F ∩ T2 contains only normal arcs and
F ∩ T k3 is a collection of discs for each k, then F is called a normalized
surface.

We say that a set S1, . . . , Sn of connected, normalized surfaces is a base
for (M,T ) if any connected normalized surface in (M,T ) is represented (up
to isotopy preserving number of intersections with each T i1) by exactly one of
the Si. If M contains a base with respect to T , then T is called a good IPD,
otherwise it is bad. Similarly, a manifold possessing a good IPD is called
good, otherwise it is bad.

If F is a 2-sided, closed, incompressible surface in M , then F is said
to be a Haken surface in M . Let M be a manifold, and F a collection of
disjoint non-boundary parallel Haken surfaces for M . Then the submanifolds
cl(M\N(F )) are called Haken submanifolds of M .

3. Preliminary Results.

Theorem 3.0. Let S be a Heegaard splitting surface for the manifold M
which is weakly rigid with respect to the idealized polyhedral decomposition
T . Then S is either a regular neighborhood of a subset of T1, together with
a neighborhood of some components of ∂M , or S is stabilized.

Proof. [6, 2.3].

Lemma 3.1 (Thompson). Let S be a Heegaard splitting surface for a
3-manifold M . Let ∆ be a collection of compressing discs in H0 and set
M ′ = H1∪N(∆). If there exists an essential disc (D, ∂D) in (M ′, ∂M ′\∂M),
then S is weakly reducible.

Proof. Note that M ′ has a natural Heegaard splitting along S, since to one
side we have H1, to the other S × I union some 2-handles. By [2, 1.1] we
know that if a manifold has a compressible boundary component, then the
Heegaard splitting is weakly reducible. Apply this to ∂M ′. Since ∂M ′ is
compressible, the Heegaard splitting of M ′ is weakly reducible, and thus S
is weakly reducible when considered at the splitting surface for M .
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Lemma 3.2 (Scharlemann-Thompson). Suppose that S gives a Hee-
gaard splitting of a 3-manifold M into compression bodies H0 and H1, and
F ⊂ S is a compact subsurface so that every component of ∂F bounds a
disc in M disjoint from ◦F . Then either ∂F bounds a collection of discs in
a single compression body Hi, or S is weakly reducible.

Proof. [9, 2.6].

Lemma 3.3. Let F be a Haken surface for M . Then F can be isotoped so
as to be a normalized surface.

Proof. This follows from the argument of [6, 1.1].

Lemma 3.4. Let S be a Gabaic Heegaard splitting surface for M . Then S
is equivalent via isotopy to a Gabai surface.

We will use the following subclaim, which uses the thin position assump-
tion on T .

Subclaim 3.5 (Gabai). Let r be a regular value of h on both T1 and M .
Then h−1(r) ∩ T2 cannot contain abnormal arcs α0, α1 cutting off bad discs
D0 and D1 such that D0 is above h−1(r) and D1 is below.

Proof. [3, §4].

Proof of Lemma 3.4. There is at least one minimum on T1. Consider the
highest such; without loss of generality we may assume that this occurs on
T 0

1 at critical level Ip. T 0
1 has at least one maximum above Ip. In addition,

all arcs of T1 above Ip contain either a single maximum or no critical points.
Note that exchanging the heights of the maxima of two arcs lying above
Ip does not alter the width of T1, see Figure 4. Thus we may assume that
critical level Ip+1 lying immediately above Ip is a maxima for T 0

1 .
For every r such that Ip < r < Ip+1, T 0

1 intersects h−1(r) in at least 3
points. For r very close to Ip, h−1(r)∩ T2 will contain some bad discs below
h−1(r). For r very close to Ip+1, h−1(r) ∩ T2 will contain some bad discs
above h−1(r). Again as in [3, §4], we can conclude that either for some
regular value r of h (on T1, T2, and M), Ip < r < Ip+1 there are disjoint bad
discs both above and below h−1(r), or that there exists a regular value r,
Ip < r < Ip+1 such that h−1(r)∩ T2 contains no bad discs on either side. By
Subclaim 3.5, the first case cannot occur, hence the second case must hold.

Case 1. ak < r < b1.

Then h−1(r) is isotopic to S, and we have the desired result.

Case 2. ai−1 < r < ai for some i, or bi < r < bi+1.
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The cases are symmetric, so we take ai−1 < r < ai. Note that S is
constructed from h−1(r) by 1-surgery along arcs lying in h−1((r, 1]). We can
assume that the ends of these arcs are disjoint from N(h−1(r)∩ T2), so that
h−1(r) ∩ T2 persists into S. Also we may assume that these arcs intersect
T2 transversely, so that no abnormal arcs are added in the process of the
1–surgery. This is the desired result.

4. Main Result.

Main Theorem 4.0. Let T be a good IPD for the manifold M . Then we
can list a finite collection C of (isotopy classes of) surfaces in M together
with a finite collection N of 3-submanifolds of M such that if S is a Gabaic
Heegaard surface, then one of the following is true:
(a) S ∈ C,
(b) S is induced by a Heegaard splitting S′ of M ′ ∈ N , and S′ has lower

spinal complexity than S,
(c) S is weakly reducible, and thus is obtained from amalgamation of Hee-

gaard splittings of a (some) Haken submanifold(s) of M .
Assume that M isn’t a compression body, since all Heegaard splittings of

compression bodies are classified by [6].

Without loss of generality, we assume that the surface S satisfies the
conclusion of Lemma 3.4.

Let µ be the collection of all normal arcs, and let U ⊂ h−1(r) be a regular
neighborhood of µ in h−1(r), see Figure 5. Then each component of ∂U is
compressible in M\U . We call the surface obtained from these compressions
S̄, and the compressing discs ∆. Note that S̄ is a normalized surface, see
Figure 6.

By 3.2 we may assume that either all discs in ∆ lie inside of Hi for i = 0
or i = 1, or that S is weakly reducible.

If S is weakly reducible, then either S is reducible, or by the argument of
[4, 1.1], S is an amalgamation of Heegaard splittings of Haken submanifolds
along a finite collection of Haken surfaces in M . We thus assume that S is
not weakly reducible.

Let H̄0, H̄1 be the manifolds obtained from H0 and H1 respectively by
compression along ∆. Without loss of generality we assume that ∆ ⊂ H0,
so that H̄0 = H0\N(∆), H̄1 = H1 ∪ N(∆). Note that H̄0 is a union of
compression bodies with ∂−H̄0 = ∂−H0.

We thus consider “all” possible normalized surfaces S̄ in M having at
least three intersections with some T i1. Assume that each such S̄ is obtained
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from compression of a Heegaard surface to one side as above. Color the
components of M\S̄ black and white alternately. Without loss of generality
assume that H̄0 is black and H̄1 is white.

In the following argument, Case n assumes that the hypothesis of Case i
is false for i < n.

Case 0. M\S̄ contains more than one white component.
Then H̄1 contains at least two components. But H̄1 = H1 ∪N(∆), imply-

ing that H1 contained multiple components, a contradiction.

Case 1. M\S̄ contains a black component which is not a compression body.

This implies that H̄0 is not a union of compression bodies, a contradiction.

Case 2. The white component of M\S̄ is not a compression body, and the
black component(s) are spineless, i.e., a (perhaps disconnected) surface ×I.

Reconstructing H0, we must add 1-handles along the cores of the discs
∆. If H̄0 contains an F × I component for which F isn’t boundary parallel,
then, since S was connected, we can arrange via edge slides (see [4]) that at
least one 1-handle runs from F ×{0} to F ×{1}. But F ×I union a 1-handle
running between both boundary surfaces isn’t a compression body. This in
turn implies that H0 isn’t a compression body, a clear contradiction.

Thus S̄ is a collection of boundary parallel surfaces. But ](S̄ ∩ T i1) > 2
for some i, so that there are at least two parallel surfaces in S̄. Choose one
such pair, and call the one closer to the boundary S̄′. Then to both sides of
S̄′, there is a component of M\S̄ homeomorphic to S̄′× I. But one of these
two must be colored white, contradicting the fact that the white component
is not a compression body.

Case 3. The white component of M\S̄ is not a compression body, and the
black component(s) have non-trivial spine X0.

Then we consider the manifold M ′ = M\N(X0). Note that any Heegaard
splitting of M having spine X0 induces a Heegaard splitting of M ′ , and
vice versa. In addition, such an induced Heegaard splitting of M ′ has lower
spinal complexity.

Case 4. M\S̄ contains more than one black component.

Then ∆ is non-trivial since H0 is connected. If ∂+H̄1 is compressible, then
S was weakly reducible by 3.1, a contradiction. Thus H̄1 = (surface) × I,
and the original Heegaard splitting can be reconstructed by adding a single
1-handle to H̄0 along an arc corresponding to a vertical arc in the I-bundle
structure of H̄1 by [4, 2.4].

Case 5. S̄ divides M into two compression bodies.
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If S̄ is weakly reducible, let Di ⊂ H̄i be weakly compressing discs for S̄. If
∆ was non-trivial, D1 is an essential disc fulfilling the hypothesis of 3.1, so
that S was weakly reducible, a contradiction. Thus we assume that ∆ = ∅,
and thus that H̄i = Hi. But in this case S̄ = S, so that S is also weakly
reducible, again a contradiction.

Hence S̄ isn’t weakly reducible. Since M isn’t a compression body, there
is a non-trivial spine X0 for H0. As per Case 3, a Heegaard splitting of
M having spine X0 is induced naturally by a Heegaard splitting of M ′ =
M\N(X0). But M ′ is a compression body, so its Heegaard splittings have
already been classified by [4, 2.5].

Note that if S̄ contains three parallel surfaces, we may apply Case 0. If
there exists a finite base for (M,T ), there are only finitely many normalized
surfaces not containing a parallel trio. Thus, in applying the above argument,
we only need to check finitely many surfaces. For each such surface, there
are two possible colorings, and thus finitely many possibile outcomes.

This is the desired result.

5. Good Idealized Polyhedral Decompositions.

Let F be a surface intersecting T2 in normal arcs and T3 in discs. We
shall denote F by the n-tuple (](F ∩ T 0

1 ), . . . , ](F ∩ T n−1
1 )). Note that any

normalized surface has a unique notation (modulo isotopy preserving number
of intersections with each T i1) as such an n-tuple. Conversely, any such n–
tuple either represents a normalized surface, a 1-sided surface, or else no
surface F with the above properties exists, see Figure 7.

Theorem 5.0. Let M be a 3-manifold, and assume that M has an IPD
with only one edge T 0

1 . Then (M,T ) is good.

Proof. This follows from the argument of [6, 1.1].

Theorem 5.1. Let M be a 3-manifold, and assume that M has an IPD
having two edges T 0

1 , T
1
1 . Then (M,T ) is good.

Proof. We denote each surface F intersecting T2 in normal arcs and T3 in
discs with a pair of non-negative integers (a, b) as above.

Such surfaces F cannot intersect zerogonal faces, so we may assume that
no such faces exist.

If a monogonal face exists, say with edge T 1
1 , then ](F ∩ T 1

1 ) = 0, so we
may for the purposes of the argument remove this edge from the manifold,
and consider the manifold M ′ = M\N(T 1

1 ), which has an IPD with only
one edge. Then we apply Theorem 5.0 to (M ′, T ′), and pull the argument
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back into M in the natural way. We may thus assume that there are no
monogonal faces in T .

If T contains a bigonal face with both T 0
1 and T 1

1 edges, then ](F ∩T 0
1 ) =

](F ∩T 1
1 ). We may thus for the purposes of this argument assume that T has

only one edge, and apply 5.0. Thus we assume that T contains no bigonal
face with different edges.

Any other bigonal faces give no information concerning normalized sur-
faces, so we may ignore them for the purposes of this argument. We then
assume that all faces of T are triangular. A face with (i)–T 0

1 edges and
(j)–T 1

1 edges we denote [i,j]. Note that j = 3− i, so there are four types of
faces: [0,3], [1,2], [2,1], and [3,0], see Figure 8.

The case when all faces are of type [0,3] or [3,0] is contained in 5.0. We
thus assume we have faces of type:

Case 0. [1,2] only.

Then (0,1) and (2,1) are either normalized surfaces or 1-sided. (A simple
linear algebra argument shows that such F exist.) Assume the former. Any
normalized surface can be denoted (2n,m), where m ≥ n, since each face in
T2 looks like Figure 9. A normalized surface with n parallel copies of (2,1)
and m − n parallel copies of (0,1) is denoted (2n,m), demonstrating that
(0,1) and (2,1) is a base.

We thus assume that (0,1) and (2,1) are 1-sided. Then any normalized
surface can be denoted (2n, 2m), where n ≤ 2m. For m ≥ n, we have that
n parallel copies of (2,2) union m− n parallel copies of (0,2) corresponds to
(2n, 2m). Hence assume that m < n. Then 2m − n copies of (2,2) union
n−m copies of (4,2) corresponds to the surface (2n, 2m). Thus (0,2), (2,2),
and (4,2) constitute a base.

Case 1. [0,3] and [1,2].

Then any normalized surface can be denoted (2n, 2m), where n ≤ 2m, so
that (0,2), (2,2), and (4,2) constitute a base as per Case 0.

Case 2. [0,3] and [2,1].
The argument is identical to Case 0.

Case 3. [1,2] and [2,1].

Then both ](F ∩ T 0
1 ) and ](F ∩ T 1

1 ) must be even and non-zero, so that
any normalized surface can be denoted (2n, 2m), n,m > 0, with n ≤ 2m
and m ≤ 2n. For m ≥ n, 2n −m copies of (2,2) and m − n copies of (2,4)
corresponds to (2n, 2m). For m < n, 2m−n copies of (2,2) and n−m copies
of (4,2) corresponds to (2n, 2m). Thus (2,2), (2,4), and (4,2) constitute a
base.
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Case 4. [0,3], [1,2] and [2,1].

The argument is identical to Case 3.

Case 5. [0,3], [1,2] and [3,0].

The argument is identical to Case 1.

Case 6. [0,3], [1,2], [2,1] and [3,0].

The argument is identical to Case 3.

All other cases can be obtained from switching the roles of T 0
1 and T 1

1 .
This completes the proof.

Theorem 5.2. Let M be a 3-manifold, and assume that M has an IPD with
](T1) = 3 such that any triangular face T k2 has at most two distinct edges.
Then (M,T ) is good.

Proof. The proof, being analogous to 5.1 but having many more cases, is left
to the reader. We note that two such manifolds are given in Examples 6.6
and 6.7.

Conjecture 5.3. Let M be a 3-manifold, and assume that M has an IPD
such that any triangular face T k2 has at most two distinct edges. Then (M,T )
is good.

We note, for example, that Manifold V3383, obtained from the cusped
census of [11], and having a 7 tetrahedron decomposition, is an example of
a manifold with a good IPD having ](T1) = 6, see Figure 10. (It also has a
good IPD with ](T1) = 7.)

6. Examples.

We consider the cusped hyperbolic manifolds of small volume obtained from
the cusped census of [11]. We give in Figure 11 a table of the triangulations
and good IPD’s we found for manifolds 000–006. Note that manifold 005 may
have a good IPD. If so, it cannot be obtained from the canonical triangulation
by gluing “bad” faces together.

If a Heegaard splitting of a manifold with a given IPD is just a regular
neighborhood of (some boundary components union some components of
T1), then we say that the splitting is trivial (with respect to the IPD). In
particular, when we examine some of the manifolds in the census of [11], we
will often refer to the splittings as “trivial”, the IPD being tacit.
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Note 6.0. In most cases, it is easy to check that Case 0 of 4.0 can be
applied to any normalized surface with ](S̄) > 2. We shall tacitly eliminate
all such cases. Further, we note that although we can color the pieces (as
per 4.0) in two ways, we shall tacitly assume that we have chosen a coloring
which eliminates application of Case 0.

Example 6.1. Manifold 000, M000, the Gieseking Manifold, has only one
irreducible (non-orientable) Heegaard splitting.

This is just Example 6.0 of [6].
We note that the Gieseking Manifold is a nonorientable manifold which

is double covered by the figure–8 knot complement. The above result then
implies that any Heegaard splitting surface for the figure–8 knot complement
which can be isotoped so as to be symmetric with respect to the double
cover must be induced by the pull-back of the one splitting for M000. It is
elementary to check that this pulled-back surface is reducible.

Example 6.2. An irreducible Heegaard splitting S of M001 is trivial.

If S is weakly rigid, then S is trivial by 3.0. Otherwise, S is Gabaic.
The triangulation given in [11] has two edges, so it is good, having base
{(2, 0), (2, 2)}, using the notation of 5.1. Then to apply 4.0 we need only to
check the normalized Gabai surfaces:

(a) (4,0),
(b) (4,2), and
(c) (4,4).

For case (a), H̄0 is a non-trivial I-bundle over a surface of genus 3
2

union a
compression body, so Case 1 applies. Similarly for (b). For (c), H̄0 is again
two pieces, one of which is homeomorphic to the original manifold. Thus
Case 1 can again be applied.

Hence we must assume that S is weakly reducible. All possible candidates
for Haken surfaces are (2,0) and (2,2). It is easy to check that (2,0) has an
essential compressing disc. The surface (2,2) is boundary parallel. Thus any
non-trivial S is almost trivial. But then it is easy to check (as per 6.1), that
almost trivial S are reducible, and hence stabilized.

Example 6.3. An irreducible Heegaard splitting S of M002 is trivial.

By 3.0 we assume that S is not weakly rigid. Note that M002 has two
boundary components, ∂0M002, and ∂1M002. If (∂0M002 ∪ ∂1M002) ⊂ H1,
then it is possible for S to be non-Gabaic. But by reversing the flow of the
Heegaard foliation (considering 1 − h instead of h), we may assume that a
non-weakly rigid Heegaard splitting of M002 is Gabaic.

Again the triangulation is good, having base {(1, 0), (1, 2)}. We only need
to check the Gabai surface (2,4), since all other cases allow application of
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Case 0. But it is easy to check that Case 1 can be applied to this surface.
Then, as per M001, S is trivial.

We note that M002 is a nonorientable manifold which is double covered
by the 62

2-link complement. The above result implies that any Heegaard
splitting surface for the link complement which can be isotoped so as to be
symmetric with respect to the double cover must be induced by the pull-
back of one of the two splittings. It is elementary to check that both such
splittings are reducible.

The 62
2-link has 4 known Heegaard splittings of genus 2: Those given by

the upper and lower tunnels, and those given by the two σ–tunnels (see [7]).
It is interesting to note that the two (reducible) Heegaard splittings given
by the above argument are: (1) that induced by the upper and lower tunnels
(together), and (2) that induced by both σ-tunnels (together).

Example 6.4. An irreducible Heegaard splitting S of either M003 or M004 is
trivial.

We note that M004 is the Figure–8 Knot Complement, and M003 is its
so-called “Sister Manifold”.

As perM001, any such S is either weakly rigid or Gabaic, the triangulations
are good, and a base in either case is the set {(2, 2), (2, 4), (4, 2)}. The
surfaces we need to check are then:

(a) (2,4): Case 5, weakly reducible,
(b) (4,2): Case 5, weakly reducible,
(c) (4,4): Case 1,
(d) (4,6): Case 4; H̄1 compressible ⇒ weakly reducible,
(e) (4,8): Case 4; construct S, easy to check weakly reducible,
(f) (6,4): as per (d),
(g) (8,4): as per (e).

Again as per the argument of M001, weakly reducible implies reducible, so
that S must be trivial.

Conjecture 6.5. An irreducible Heegaard splitting S of M005 is trivial.

The author was unable to find a good IPD for this manifold, so this
question remains open. However, even if a good IPD cannot be located, it
may still be possible to prove that all Heegaard splittings of bounded genus
are trivial. We note that in all cases we have checked, normalized Gabai
surfaces have genus four or greater. If this can be proven to be always
true, then since these surfaces have been obtained from compression of a
Heegaard surface, any Heegaard splitting of genus 2 or 3 must be trivial or
almost trivial.
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Example 6.6. An irreducible genus 2 Heegaard splitting S of M006 is trivial.

First note that S must be weakly rigid or Gabaic. Also note that a good
polyhedral decomposition for M exists by identifying faces having 3 distinct
edges, as per Figure 11.

We now use Lemma 3.4 on the good IPD, and apply the argument of 4.0
to the surfaces of genus less than 3.

It is elementary to check that the set of normalized surfaces {(2,2,0),
(2,2,2), (2,2,4), (2,4,0), (2,4,2), (2,4,4), (4,2,0), (4,2,2), (4,2,4), (4,2,6), (4,2,8),
(8,4,2)} forms a base for T006.1

We thus need to apply the argument of 1.0 to each of: (2,2,4), (2,4,0),
(2,4,2), (2,4,4), (4,2,0), (4,2,2), (4,2,4), etc., that is, each of the Gabai sur-
faces not having three parallel copies of any base surface. Any of these of
genus greater than 2 can be eliminated, since we are only interested in clas-
sifying the genus 2 case. This eliminates all of the cases except for (2,4,2)
and (4,4,4).

(2,4,2): This is a surface of genus 2, and divides M into two pieces. One
of the two pieces has first homology group Z2 ⊕ Z5, and thus cannot be a
handlebody. Thus we can apply Case 3 of 4.0. It is a simple matter to
continue the arguments to demonstrate that any such Heegaard splitting
must in fact be induced by two edges of the 1-skeleton. At any rate, any
such Heegaard surface is of genus greater than 2.

(4,4,4): The center black piece is homeomorphic to M006, so that we may
apply Case 1.

Note then that a non-boundary parallel Haken surface F must be of genus
2 or greater, and that a Heegaard splitting obtained from amalgamations of
Haken submanifolds must thus be of genus at least 4.

Thus any genus 2 Heegaard splitting is trivial or almost trivial. It is an
easy matter to check that almost trivial Heegaard splittings are reducible
(and of genus 3).

We also note that we restricted ourselves to genus 2 only for convenience.
It seems that, given a little patience and a lot of time, we could check each
of the exceptional surfaces and classify all Heegaard splittings.

Example 6.7. Any unknotting tunnel for the 52 knot is isotopic to one of
the edges in the canonical triangulation of its complement.

Proof. It is elementary to check that M015 is the 52 knot complement, and

1We also note that we can apply Lemma 3.4 to the triangulation and glue the “bad”
faces together afterwards. Applying 4.0 to the good IPD at this point allows us to eliminate
several surfaces.



256 DANIEL J. HEATH

that it has two different good IPDs which are equivalent by a homeomorpism
rotating the knot 180 degrees. Any unknotting tunnel for the knot is induced
by a genus 2 Heegaard splitting. We thus classify all genus 2 Heegaard
splittings, as per Example 6.6. There is only one Gabaic surface which is
genus 2; it is shown after an isotopy in Figure 12. Although this is not
induced by an edge in the IPD shown, it is easy to check that its spine is
induced by an edge in the canonical triangulation. It in fact is a Heegaard
surface for M015. All other genus 2 Heegaard splittings must be rigid, hence
induced by the 1-skeleton of the IPD, which coincides with the the other
three edges of the canonical triangulation.

This is the desired result.

Example 6.8. The canonical triangulation of the Whitehead link comple-
ment, W .

The Whitehead link complement has canonical triangulation as shown in
Figure 13. We call the boundary components ∂0W and ∂1W . Let S be a
Heegaard splitting surface such that ∂iW = ∂−Hi. Then T 0

1 has an odd
number of maxima, while T 1

1 has an odd number of minima. Assume that
both have exactly one critical point. Then the Heegaard splitting is neither
weakly rigid nor Gabaic. In addition, reversing the flow of the Heegaard
foliation (switching H0 and H1) doesn’t make the splitting weakly rigid or
Gabaic, as per Example 6.3. Thus we cannot apply the results of this pa-
per to this polyhedral decomposition of W . (We should also note that the
canonical triangulation of W is not “good”.)
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Figure 0.
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Figure 1.

Figure 2.

Figure 3.
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Figure 4.

Figure 5.

Figure 6.
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Figure 7.

Figure 8.
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Figure 9.

Figure 10.
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Figure 11.
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Figure 12.

Figure 13.
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