
pacific journal of mathematics
Vol. 178, No. 2, 1997

THE DEGIORGI-NASH-MOSER TYPE OF ESTIMATE FOR
PARABOLIC VOLTERRA INTEGRODIFFERENTIAL

EQUATIONS

Bei Hu and Hong-Ming Yin

The DeGiorgi-Nash-Moser estimate plays a crucial role in
the study of quasilinear elliptic and parabolic equations. In
the present paper we shall show that this fundamental esti-
mate holds for solutions of a linear parabolic Volterra inte-
grodifferential equation:

∂u

∂t
=

∂

∂xi

[
aij(x, t)

∂u

∂xj

]
+
∫ t

0

∂

∂xi

[
bij(x, t, τ)

∂u

∂xj

]
dτ,

where {aij} and {bij} are only assumed to be measurable,
bounded and {aij} satisfy a strong ellipticity condition. The
proof is based on L2,µ theory for parabolic equations. A global
solvability result in the classical sense for a class of quasilinear
parabolic integrodifferential equations is presented as an ap-
plication of the general results.

1. Introduction.

In this paper we consider the following linear parabolic Volterra integrodif-
ferential equation (PVIDE):

∂u

∂t
=

∂

∂xi

[
aij(x, t)

∂u

∂xj

]
+
∫ t

0

∂

∂xi

[
bij(x, t, τ)

∂u

∂xj

]
dτ, (x, t) ∈ QT ,(1.1)

where QT = Ω × (0, T ],Ω is a bounded domain in Rn with boundary S =
∂Ω ∈ C1.

The equation arises from a variety of mathematical models in engineering
and physical sciences. For example, in the study of heat conduction in
materials with memory, the classical Fourier’s law is replaced by the following
form (cf. [10]):

heat flux ~q = −d∇u−
∫ t

−∞
∇[k(x, t, τ)u(x, τ)]dτ,(1.2)

where u is the temperature, d the diffusion coefficient and the integral term
represents the memory effect in the material. The conservation of energy
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implies that u(x, t) will satisfy Eq. (1.1) with an inhomogeneous term, pro-
vided that the temperature is assumed to be known for t ≤ 0. Another
example is from a diffusion process in a glassy polymer (cf. [2], [7] and the
references therein). Experiments indicate that the classical Fickian law does
not match the diffusion process. A non-Fickian law (1.2) is used to model
the problem, where u(x, t) represents the concentration of the glassy poly-
mer. Again the conservation of mass leads to a same type of equation as
(1.1).

The study for this type of equations has drawn considerable attention (cf.
[1], [4]-[7], [16]-[17], etc.). The reader can find many more references in
[10] and [13]. From a mathematical point of view, one would expect that
the integral term should be dominated by the leading term in the Equation
(1.1). Therefore, the theory of parabolic equations should be applicable to
this type of equations. This is indeed true in some cases. Previous research
strongly suggests that a solution of PVIDE has many similar properties
to those of a parabolic equation. In [16] we have shown that the global
Schauder estimate and a W 2,1

p -estimate hold. More recently, the author of
[17] considered a general equation

ut = div ~A(x, t, u, ux) + a(x, t, u, ux) +
∫ t

0

div ~B(x, t, τ, u, ux)dτ.

Under some structure conditions on ~A, ~B and a similar to the case of
parabolic equations, the existence of a unique weak solution is established.
Regularity of the weak solution is also investigated. On the other hand, there
are many essential differences between a PVIDE and a parabolic equation.
For instance, the solution to a parabolic Volterra integrodifferential equation
does not obey the maximum principle. A counterexample can be constructed
without much difficulty. Therefore, it is a challenge to deduce an a priori
L∞-bound of a solution. Unfortunately, it seems difficult to use the energy
method to derive such a bound (see [17] for some special cases). Another
essential difference concerns the regularity of solutions. By the DeGiorgi-
Nash-Moser theory, we know that the solution of a parabolic equation with
measurable coefficients {aij} is Hölder continuous in the interior of the do-
main. No information is needed from initial and boundary data, as long as
a weak solution exists. However, because of the nonlocal integral term in
parabolic Volterra integrodifferential equations, the regularity of a solution
strongly depends on the regularity of initial value.

The DeGiorgi-Nash-Moser’s estimate is a milestone in the study of quasi-
linear elliptic and parabolic equations. In the present paper, we shall de-
rive this fundamental a priori estimate for weak solutions of a PVIDE. The
argument of the proof is based on various estimates in Campanato space
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L2,µ(QT ), where 0 < µ < n+ 2, which were developed recently for parabolic
equations (cf. [18]). This L2,µ type estimate gives the precise dependency of
Hölder norm of a solution, without a priori assuming u(x, t) to be bounded.
This theory enables us to use various integral estimates to replace the clas-
sical norm of a Hölder space. This method is widely used in the study of
regularity of solutions of elliptic equations and systems (cf. [8], [11], [14],
etc.). It turns out that this theory for parabolic equations is also very pow-
erful.

This paper is prepared in the following manner. We will state the main
results in Section 2 and present the proofs in Section 3. In Section 4, we
employ the preceding results to obtain a global solvability result for a class
of quasilinear PVIDE’s in the classical sense.

2. Notation and Main Results.

We shall introduce some standard notation for reader’s convenience:
A point (x, t) in QT will be denoted by z. The distance between two

points z1 = (x1, t1) and z2 = (x2, t2) is equal to

max
{
|x1 − x2|, |t1 − t2| 12

}
.

For r > 0,

Br(x0) = {x ∈ Rn : |x− x0| < r}
and Qr(z0) = Br(x0)× [t0 − r2, t0], where z0 = (x0, t0).

Let
uz0,r =

1
|Qr(z0)|

∫
Qr(z0)

udz,

where |Qr(z0)| denotes the Lesbegue measure of Qr(z0) in Rn+1.
For µ > 0 and z0 = (x0, t0), let

[u]2,µ,Qr =

(
sup

z0∈Qr, 0<ρ<r
ρ−µ

∫
Qρ(z0)

|u− uz0,ρ|2dz
) 1

2

.

We shall use Qr

⋂
QT in the integration whenever Qr is not a subset of QT .

The space L2,µ(Qr) consists of all functions in L2(Qr) such that

[u]2,µ,Qr <∞.

L2,µ(Qr) is a Banach space with the norm

||u||2,µ,Qr = {||u||2L2(Qr) + [u]22,µ,Qr}
1
2 .



268 BEI HU AND HONG-MING YIN

The Banach spaces H1(Ω), L2(0, T ;H1(Ω)), Cα,α2 (QT ), etc. are the same as
those in [12]. Repeated subscript means a summation.

To the Equation (1.1), we append the following initial and boundary con-
ditions:

u(x, t) = g(x, t) on ST = ∂Ω× [0, T ],(2.1)

u(x, 0) = u0(x) on Ω.(2.2)

Throughout this paper, the strong ellipticity condition is assumed regarding
the measurable coefficients aij:

aij = aji, λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2 for ξ ∈ Rn,(2.3)

where 0 < λ ≤ Λ <∞ are constants.

Remark 1. Note that no ellipticity assumption is required regarding the
coefficients {bij}.
Definition. A function u ∈ L2(0, T ;H1(Ω)) is said to be a weak solution of
(1.1) in QT satisfying (2.1)-(2.2), if u− g ∈ L2(0, T ;H1

0 (Ω)) (here we assume
that g(x, t) can be extended to QT ) and the following integral identity holds:∫∫

QT

[
−uϕt +

[
aijuxj +

∫ t

0

bijuxjdτ

]
ϕxi

]
dxdt =

∫
Ω

u0ϕ(x, 0)dx

for any test function ϕ ∈ C1(QT ) with ϕ(x, t) = 0 on t = T and ST .
The existence of a unique weak solution of (1.1), (2.1)-(2.2) can be proved

by means of the finite element method (cf. [17]). Our objective is to obtain
a priori estimates of the DeGiorgi-Nash-Moser type which imply the Hölder
continuity of the weak solution u(x, t) of (1.1), (2.1)-(2.2). We begin by
obtaining an “interior estimate”:

Theorem 2.1. Let T > 0 and Q ⊂⊂ QT with d = dist{Q,ST} > 0. Let
aij(x, t), bij(x, t, τ) be measurable and {aij} satisfy (2.3). Assume that

n∑
i,j=1

[||aij||L∞(QT ) + ||bij||L∞(QT )

] ≤M <∞,

and that
||∇u0||L2,(µ0−2)+ (Ω) <∞,

where µ0 = n+ 2β for some β ∈ (0, 1). Then there exist constants α ∈ (0, 1)
and C > 0 such that any L2(0, T ;H1(Ω)) solution u(x, t) of (1.1), (2.1)-(2.2)
on QT satisfies

||u||
Cα,

α
2 (Q)
≤ C,
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where the constant C and the Hölder exponent α depend only on d,M, λ, T,
||u||L2(0,T ;H1(Ω)) and ||∇u0||L2,(µ0−2)+ (Ω).

Remark 2. As we mentioned in Introduction, the interior estimate in
Theorem 2.1 holds actually down to the bottom t = 0, but away from the
lateral boundary ST . This interior estimate is not valid without the required
regularity on u0.

Next, we obtain a DeGiorgi-Nash-Moser type estimate valid up to the
boundary:

Theorem 2.2. In addition to assumptions of Theorem 2.1, assume that
there exists a function ψ(x, t) ∈ H1(0, T ;H1(Ω)) such that

ψ(x, t) = g(x, t) on ST , and ψ(x, 0) = u0(x) on Ω

in the sense of trace. If ψt, ψxi ∈ L2,µ0(QT ) for i = 1, · · · , n, then there exist
constants C and α ∈ (0, 1) such that

||u||
Cα,

α
2 (QT )

≤ C,(2.4)

where the constants C and α depend only on ||ψt||L2,µ0 (QT ) + ||∇ψ||L2,µ0 (QT )

and the data in Theorem 2.1.

Remark 3. The estimate (2.4) is also true for the following conormal
boundary condition:

aijuxj cos(ni, xi) = g(x, t), where ~n is the outward normal on S,

provided that g(x, t) is uniformly bounded.

Remark 4. The equation is linear for u. By renormalization of the
equation, one can write the dependence on the initial data in the interior
estimate as follows.

||u||
Cα,

α
2 ≤ C

(||u||L2(0,T ;H1(Ω)) + ||∇u0||L2,µ0−2(Ω)

)
.

A similar remark also applies to the global estimate.

Remark 5. We stated our Theorems 2.1 and 2.2 for the operator contain-
ing only the highest order derivative. All the results can be extended without
any difficulty to the following operator

L[u]

=
∂u

∂t
−
{
∂

∂xi

[
aij(x, t)

∂u

∂xj

]
+ bi(x, t)

∂u

∂xi
+ cu
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+
∫ t

0

(
∂

∂xi

[
bij(x, t, τ)

∂u

∂xj

]
+ di(x, t, τ)

∂u

∂xi
(x, τ) + e(x, t, τ)u(x, τ)

)
dτ

}
+
∑
j

∂fj
∂xj

+ f,

provided that suitable conditions on the coefficients of lower order terms
hold.

3. Proofs.

We shall first state the following interior DeGiorgi-Nash-Moser type esti-
mate. Let x0 ∈ Ω be arbitrary with d = dist{x0, ∂Ω} > 0. Let Q

R,T̃
=

BR(x0)× (T̃ −R2, T̃ ], where T̃ ∈ [0, T ]. We shall restrict R ≤ d
2
.

Lemma 3.1. Let v(x, t) be a solution to the following equation (no initial-
boundary conditions needed)

vt =
∂

∂xj

[
aij(x, t)

∂v

∂xi

]
in Q

R,T̃
,

then there exists constants C1 > 0 and α ∈ (0, 1) such that for any r ∈ (0, R]∫∫
Q
r,T̃

|∇v|2dxdt ≤ C1

(
r

R

)n+2α ∫∫
Q
R,T̃

|∇v|2dxdt,

where the constants C1 and α depend only on λ and Λ, they are independent
of r and R.

This is the same as Lemma 2.4 in [18]. We shall not repeat the proof.
For the convenience of the proof we extend the solution u(x, t) to t < 0

by letting
u(x, t) ≡ u0(x) for t < 0.

We also define
aij(x, t) ≡ λδij for t < 0.

Our key estimate is the next lemma. As indicated in the introduction,
the estimates will have to depend on the initial data, owing to the nonlocal
nature of the equation.

Lemma 3.2. Let u(x, t) ∈ L2(0, T ;H1(Ω)) be a weak solution of Equation
(1.1). Suppose that u0 ∈ H1(Ω) such that for any x0 ∈ Ω∫

BR(x0)

|∇u0|2dx ≤M1R
n−2+2β for any 0 < R <

d

2
,
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(without loss of generality, we may assume that β < α, where α is the
constant in Lemma 3.1).

(1). (Interior estimates) If dist
{
Q

2R,T̃
, ST

}
> 0, then∫∫

Q
R,T̃

|∇u|2dxdt ≤ CRn+2β,

where the constant C depends only on λ,Λ, d, the constant M in Theorem
2.1, the constant M1, and the L2(0, T ;H1(Ω))-norm of the solution u.

(2). (Boundary estimates) Moreover, if u satisfies the boundary condi-
tion as specified in Theorem 2.2, then for any T̃ > 0,∫∫

Q
R,T̃
∩(Ω×[−1,T̃ ])

|∇u|2dxdt ≤ CRn+2β,

where the constant C depends only on the boundary data in addition to the
quantities in the interior estimate (1) above.

Proof. Let v(x, t) be the solution of the following problem:

vt =
∂

∂xj

[
aij(x, t)

∂v

∂xi

]
in Q

R,T̃
,

v(x, t) = u(x, t) on ∂pQR,T̃
.

It is then clear that u− v satisfies the following equation in the weak sense

(u− v)t =
∂

∂xj

[
aij
∂(u− v)
∂xi

]
+

∂

∂xj
bj(x, t) +

∂

∂xj
fj(x, t),(3.1)

where

bj(x, t) =


∫ t

0

bij(x, t, τ)
∂u(x, τ)
∂xi

dτ for t ≥ 0

0 for t < 0,
(3.2)

fj(x, t) =


0 for t ≥ 0

−λ∂u0

∂xj
(x) for t < 0.

Multiplying this equation with u− v and integrating over Q
R,T̃

, we obtain

sup
T̃−R2≤τ≤T̃

∫
BR

(u− v)2dx+
λ

2

∫∫
Q
R,T̃

|∇(u− v)|2dxdt

≤ 1
2λ

∑
j

∫∫
Q
R,T̃

(bj + fj)2dxdt.

(3.3)
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Observe that the estimate in Lemma 3.1 holds for v independently of the
initial and boundary conditions on the parabolic boundary ∂pQR,T̃

. Indeed,
for any r ≤ R

2
we have from Lemma 3.1

∫∫
Q
r,T̃

|∇v|2dxdt ≤ C1

(
r

R

)n+2α ∫∫
Q
R,T̃

|∇v|2dxdt.

When R
2
≤ r ≤ R, the estimate is trivial. Using Lemma 3.1 and (3.3), we

now get, for any r ≤ R,∫∫
Q
r,T̃

|∇u|2dxdt

≤ 2
∫∫

Q
r,T̃

|∇v|2dxdt+ 2
∫∫

Q
r,T̃

|∇(u− v)|2dxdt

≤ 2C1

(
r

R

)n+2α ∫∫
Q
R,T̃

|∇v|2dxdt+ 2
∫∫

Q
R,T̃

|∇(u− v)|2dxdt

≤ 4C1

(
r

R

)n+2α ∫∫
Q
R,T̃

|∇u|2dxdt
(3.4)

+

[
4C1

(
r

R

)n+2α

+ 2

] ∫∫
Q
R,T̃

|∇(u− v)|2dxdt

≤ 4C1

(
r

R

)n+2α ∫∫
Q
R,T̃

|∇u|2dxdt+ (4C1 + 2)
∫∫

Q
R,T̃

|∇(u− v)|2dxdt

≤ 4C1

(
r

R

)n+2α ∫∫
Q
R,T̃

|∇u|2dxdt+
2(2C1 + 1)

λ2

∑
j

∫∫
Q
R,T̃

|bj + fj|2dxdt.

We now estimate bj(x, t). Recalling that M is the bound for the coefficients
bij(x, t), we have (by Hölder’s inequality)

|bj(x, t)|2 ≤M2T̃

∫ t

0

∣∣∣∣ ∂u∂xi
∣∣∣∣2 (x, τ)dτ ≤M2T̃

∫ T̃

0

∣∣∣∣ ∂u∂xi
∣∣∣∣2 (x, τ)dτ.(3.5)

It follows that∫∫
Q
R,T̃

|bj(x, t)|2dxdt

≤M 2T̃R2

∫ T̃

0

∫
BR

|∇u|2dxdt
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≤M2T̃R2

[T̃ /R2]∑
k=0

∫ T̃−kR2

T̃−(k+1)R2

∫
BR

|∇u|2dxdt(3.6)

≤M2T̃R2
([
T̃ /R2

]
+ 1

)
max

0≤k≤[T̃ /R2]

∫ T̃−kR2

T̃−(k+1)R2

∫
BR

|∇u|2dxdt

≤M2T̃
(
T̃ +R2

)
max

0≤k≤[T̃ /R2]

∫ T̃−kR2

T̃−(k+1)R2

∫
BR

|∇u|2dxdt,

where [T̃ /R2] is the integer part of T̃ /R2.
By assumption, we have∫∫

Q
R,T̃

|fj(x, t)|2dxdt ≤ C2R
n+2β.(3.7)

Now let T ∗ > 0 to be specified later and x0 ∈ Ω such that BR(x0) ⊂ Ω. Set
(notice that u(x, t) has already been extended to t < 0)

g(R, x0) = sup
0≤t≤T∗

∫ t

t−R2

∫
BR(x0)

|∇u|2dxdt.(3.8)

Then by (3.4), (3.6) and (3.7),

g(r, x0) ≤
[
4C1

(
r

R

)n+2α

+
4(2C1 + 1)

λ2
M 2T ∗(T ∗ +R2)

]
g(R, x0)

+ C∗Rn+2β.

(3.9)

Note that we have assumed that β < α. By [8] (Lemma 2.1, p. 86), there
exists ε0 > 0, depending only on α, β and C1 (ε0 is independent of C∗), such
that if

(4C1 + 2)
λ2

M 2T ∗(T ∗ +R2) ≤ ε0,(3.10)

then

g(r, x0) ≤ C
[(

r

R

)n+2β

g(R, x0) + C∗rn+2β

]
,(3.11)

where the constant C depends only on α, β and C1. The condition (3.10)
is satisfied if we choose T ∗ to be suitably small. By a well-known iteration
process (cf. [8]), we have∫∫

Q
R,T̃

|∇u|2dxdt ≤ CRn+2β if 0 ≤ T̃ ≤ T ∗, BR ⊂ Ω,(3.12)
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where C depends only on L2(0, T ;H1(Ω))-norm of u(x, t), β and the constant
in (3.11).

Notice that the estimate (3.12) is good for small T ∗ satisfying (3.10).
Next we want to show that this estimate can be extended step-by-step in
t direction with exactly the same step length (equal to T ∗) in each step.
Therefore the estimate is valid for any given finite time interval.

Suppose that the estimate (3.12) is correct for 0 < T̃ ≤ kT ∗. We rewrite
the equation as

ut =
∂

∂xj

[
aij(x, t)

∂u

∂xi

]
+

(∫ t

kT∗
+
∫ kT∗

0

)
∂

∂xi

[
bij(x, t, τ)

∂u

∂xj

]
dτ.

(3.13)

All the previous estimates are still valid, with

fj(x, t) =
∑
i

∫ kT∗

0

bij(x, t, τ)
∂u(x, τ)
∂xi

dτ.(3.14)

By the induction hypothesis we have, for kT ∗ < T̃ < (k + 1)T ∗,

∑
j

∫∫
Q
R,T̃

|fj(x, t)|2dxdt ≤M 2R2kT ∗
∫ kT∗

0

∫
BR

∣∣∇u∣∣2dxdτ
≤M 2R2kT ∗

([
kT ∗

R2

]
+ 1

)
Rn+2β(3.15)

≤ C(k)Rn+2β,

where the constant C(k) may increase with each step. Now the exact pro-
cedure as in (3.1) to (3.10) implies that

g(r, x0) ≤
[
4C1

(
r

R

)n+2α

+ ε0

]
g(R, x0) + C · C(k)Rn+2β.(3.16)

Since the choice of ε0 in (3.10) is independent of the constant C · C(k), the
estimate (3.12) extends to kT ∗ < T̃ < (k + 1)T ∗. This proves the interior
estimates.

From the proof, we see that the estimates (3.12) extends to the lateral
boundary if Lemma 3.1 extends to the lateral boundary. We know that
such results are valid (see [11]) if either a Dirichlet or Neumann boundary
condition is imposed on the lateral boundary and the boundary value satisfies
the condition stated in Theorem 2.2. We shall skip the detail here.

Finally, let us finish the Proof of Theorems 2.1 and 2.2. In order to show
that u(x, t) is Hölder continuous, we shall employ the parabolic embedding
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theorem (Lemma 2.6 in [18]). By applying Lemma 2.6 in [18], we have for
any Qρ ⊂ QT with dist{B2ρ, ∂Ω} > 0,∫∫

Qρ

(u− uz0,ρ)2dz

≤ Cρ2

∫∫
Q2ρ

|∇u|2dz + Cρ2

∫∫
Q2ρ

n∑
j=1

[
f2
j + b2

j

]
dz

≤ Cρ2

[∫∫
Q2ρ

|∇u|2dz + ρ2

∫
B2ρ

∫ t0

0

|∇u|2dτdz + ρ2

∫
B2ρ

|∇u0|2dx
]

≤ Cρn+2+2β,

where at the final step we have used the estimates for fj and bj.
As L2,n+2+2β(Q) for any β ∈ (0, 1) is equivalent to Cβ, β2 (Q) (cf. Proposi-

tion A in [14]) it follows that u(x, t) is Hölder continuous in Qr = Br(x0)×
[0, T ]. As r is independent of solution and x0 is arbitrary in Ω, by a finite
covering technique we conclude that u(x, t) is Hölder continuous in Q as long
as dist{Q,ST} > 0. This completes our proof for Theorem 2.1.

Using the second part of Lemma 3.2 and the same argument as above, we
can establish Theorem 2.2.

4. Applications.

In this Section, we shall use the results obtained in the preceding section to
show global existence of a classical solution for nonlinear parabolic Volterra
integrodifferential equations. Consider the following problem:

ut =
∂

∂xi

[
aij(x, t, u)

∂u

∂xj

]
+
∫ t

0

∂

∂xi

[
bij(x, t, τ, u)

∂u

∂xj

]
dτ in QT ,

(4.1)

u(x, t) = g(x, t) on ST ,
(4.2)

u(x, 0) = u0(x) on Ω.
(4.3)

Theorem 4.1. Assume that the coefficients aij(x, t, s) satisfy the ellipticity
condition (2.3), aij, ∂

∂xk

(
aij
)
, ∂
∂u

(
aij
)
∈ Cα,α2 ,β(QT×R1), and bij, ∂

∂xk

(
bij
)
,

∂
∂u

(
bij
)
∈ Cα,α2 ,

α
2 ,β(QT × [0, T ] × R1), where α, β ∈ (0, 1). Moreover, there

exists a function ψ(x, t) ∈ C2+γ,1+ γ
2 (QT ) (γ = αβ) such that ψ(x, t) = g(x, t)
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on ST and ψ(x, 0) = u0(x) on Ω. Then the problem (4.1)-(4.3) exists a
unique classical solution.

Proof. Local existence of a classical solution is standard from the theory of
parabolic equations and contraction mapping principle. By using the method
of continuity, we know that global existence relies on an a priori estimate in
the space C2+α,1+α

2 (QT ). Multiplying the Equation (4.1) by u − g(x, t), we
can easily obtain

||u||L2(0,T ;H1(Ω)) ≤ C.

From Theorem 2.2, we know

||u||
Cα,

α
2 (QT )

≤ C.

If we rewrite the Equation (4.1) in nondivergence form, then the coefficients
are Hölder continuous. Moreover, their Hölder norms are bounded by known
data. Using the global Schauder estimate for parabolic Volterra integrodif-
ferential equations (cf. [16]), we obtain

||u||
C2+γ,1+ γ

2 (QT )
≤ C (γ = αβ),

where C depends only on known data. Consequently, we have the desired
result.
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