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COVERING THEOREMS FOR OPEN CONTINUOUS
MAPPINGS HAVING TWO VALENCES BETWEEN

ORIENTABLE SURFACES

Abdallah Lyzzaik

Let X be an open orientable surface with finite genus and
finite number of boundary components, and let Y be a closed
orientable surface. An open continuous function from X to
Y is termed a (p, q)-map, 0 < q < p, if it has a finite number
of branch points and assumes every point in Y either p or
q times, counting multiplicity, with possibly a finite number
of exceptions. These comprise the most general class of all
nontrivial functions having two valences between X and Y.

In this paper we generalize and prove in a unified manner
almost all the earlier covering and existence results involv-
ing (p, q)-maps between orientable surfaces. Our main tools
are (i) a generalized embedding theorem (see Lyzzaik, 1995)
which asserts that image surfaces of (p, q)-maps embed in p-
fold closed coverings possibly having branch points off the
image surfaces, and (ii) results (see Lyzzaik and Stephenson,
and Lyzzaik, 1996) “modifying” general (p, q)-maps to “sim-
plicial” ones having the same covering structures. This leads
us to combinatorial results of (p, q)-maps relating their branch
orders and exceptional sets of points to the valences p, q and
the topological invariants of X and Y. The paper ends with
open questions.

0. Introduction and statements of results.

The object of this paper is to prove covering and existence theorems in-
volving the most general class of open continuous mappings having two
valences between orientable surfaces. This concludes in a unified man-
ner most of the earlier results on special classes of these functions (see
[2, 3, 4, 7, 8, 10, 11, 12], [13, 14]).

Let us first formulate the precise definition of (p, q)-maps.
Definition 1. Let p and q be integers satisfying 0 < q < p, X an open
orientable surface of finite genus and finite number of boundary components,
and Y a closed orientable surface. A function f : X → Y is termed a (p, q)-
map if f satisfies the following conditions:
(a) f is open and continuous.

307

http://nyjm.albany.edu:8000/PacJ/1997/v178no2.html


308 ABDALLAH LYZZAIK

(b) f admits every point of Y, with at most finitely many exceptions, either
p or q times, counting multiplicity, with at least one point admitted
exactly p times.

(c) f admits only a finite number of branch points.
Further, f is termed a BQ-map if f has no exceptional points.

There will be no loss of generality in assuming throughout the paper that
(p, q)-maps are sense preserving.

Because a (p, q)-map f : X → Y is open and continuous, a branch point
and the order of a branch point will mean the same for f as for an analytic
function (see [15]). The total branch order of f will be denoted by βf . A
companion of f is the integer-valued function νf (y) defined as the number
of times, counting multiplicity, that f assumes a value y in Y. Let P = {y ∈
Y : νf (y) = p}, Q = {y ∈ Y : νf (y) = q} and E = {y ∈ Y : νf (y) 6= p, q}.
We call P the p-set, Q the q-set, and E the exceptional set, of f . Evidently,
these sets are mutually disjoint and their union is Y. The p-set happens to
be open and to have finitely many connected components each with finitely
many boundary components. Every point e ∈ E , called exceptional point,
will be assigned the value

δf (e) = q − νf (e)

which we call the deficiency of f at e.
Let G be a boundary component of X . We use the concept of a boundary

component of an open orientable surface as defined in [1], and the concept
of the impression of a boundary component as defined in [5]. We denote by
C(f ;G) the cluster set of f at G, and by C(f) the set-union of the cluster
sets of f over all the boundary components of X [5, 6].

Generally speaking, δf (e), may, unlike in [7], be negative. This fortunately
can be avoided without losing generality by imposing a weak condition on
f as in [5, 6]. To illustrate this, If G is a boundary component of X , then
either C(f ;G) is a point or a non-degenerate continuum. View X as a
closed orientable surface, X̂ , with a number η(X) of pairwise disjoint points
or closed topological discs, ω, removed. Observe that each point or disc
ω contains the impression of one and only one boundary component G of
X . Choose ω a point if the cluster set of f at the corresponding boundary
component G is a point, and a disc otherwise. It follows that f extends to
a continuous map, g, of the orientable surface, Z, obtained by taking the
union of X and all the points ω. Since these points are isolated and (X , f)
is a covering, g : Z → Y is an open and continuous map [1, pp. 39-41]. If
C(f ;G) is a point for every boundary component G, then either (Z, g) is a
complete covering of Y or g : Z → Y is a (p, q)-map. In the first case, f is
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fully described as the restriction of the projection map of a p-fold covering of
Y to all but finitely many points of the covering. In the second case, every
boundary component of Z is a boundary component G of X and C(g;G)
(= C(f ;G)) is a non-degenerate continuum. It turns out (see [5, 6]) that
the latter property of g is needed to ensure that g takes a valency less than
q at each exceptional point [5, 6].
Definition 2. A (p, q)-map f : X → Y is termed normal if C(f ;G) is a
nondegenerate continuum for every boundary component G of X . Further,
if f is a BQ-map then f is termed a normal BQ-map.

For these maps the total deficiency of f is defined as the sum of all the
deficiences δf (e), e ∈ E .

We will utilize some basic concepts and results from surface topology. For
instance, the genus, number of boundary components and Euler’s character-
istic of a surface, denoted by g(.), η(.) and χ(.), respectively, will be used
in connection with the Riemann-Hurwitz relation to establish the following
theorem:

Theorem 1. Let f : X → Y be a normal (p, q)-map. Then

βf + δf = 2[(g(X )− 1)− q(g(Y)− 1)] + η(X ) + (p− q)χ(P).

This is the paper’s central result. Our second result states as follows:

Theorem 2. Let f : X → Y be a normal (p, q)-map. Then

βf + δf ≥ 2[(g(X )− 1)− p(g(Y)− 1)]− (p− q − 1)η(X ).

Further, the inequality is sharp.

If P is simply-connected but not necessarily connected, then we have:

Theorem 3. Let f : X → Y be a normal (p, q)-map with a simply-connected
p-set. Then

βf + δf ≥ 2[(g(X )− 1)− q(g(Y)− 1)] + p− q + η(X ).

Further, the inequality is strict if and only if P has more than one connected
component.

If D is the unit disc, then an application of this theorem yields [7, Theorem
5]:

Theorem 4. Let f : D→ Y be a normal (p, q)-map. Then

βf + δf ≥ p+ q − 1− 2qg(Y).
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Further, the inequality is sharp for g(Y) = 0 or 1.

We will pay special attention to the following subclass of (p, q)-maps:
Definition 3. A normal (p, q)-map f : X → Y is termed BQ-map if its
exceptional set E is empty.

If η(X ) = 1, then a geometric characterization of normal BQ-maps [6]
yields:

Theorem 5. Let f : X → Y be a normal BQ-map with η(X ) = 1. Then
g(X ) ≥ g(Y) and

βf = 2[(g(X )− 1)− p(g(Y)− 1)]− p+ q + 1 + 2n(p− q),
where n is an integer satisfying 0 ≤ n ≤ g(Y).

The following is somehow a converse of the above result:

Theorem 6. Let α, β, n, and b be non-negative integers satisfying n ≤
β ≤ α, b ≥ p− q − 1 if n < β and b ≥ p− q + 1 otherwise, and

b = 2[(α− 1)− p(β − 1)]− p+ q + 1 + 2n(p− q).
Then there exist an open orientable surface X with g(X ) = α and η(X ) = 1,
a closed orientable surface with g(Y) = β, and a normal BQ-map f : X → Y
so that βf = b.

Further use of the geometry of normal BQ-maps [6] gives:

Theorem 7. Let f : X → Y be a normal BQ-map. Then

a ≤ βf ≤ b
where

a = 2[(g(X )− 1)− p(g(Y)− 1)]− (p− q − 1)η(X )

and

b = min {2[(g(X )− 1)− q(g(Y)− 1)] + (p− q + 1)η(X ),

(p− q + 1)(2[(g(X )− 1)− q(g(Y)− 1)] + (p− q)η(X ))}.
The inequalities are best possible if q = p− 1 or

b = 2[(g(X )− 1)− q(g(Y)− 1)] + (p− q + 1)η(X ).

An immediate consequence of this extends a result of Srebro and Wajnryb
[14, Mapping Theorem]:
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Theorem 8. A necessary condition for a normal BQ-map f : X → Y to
exist is that

g(X ) ≥ q(g(Y)− 1) + 1− (p− q)η(X )/2.

The paper is organized as follows. §1 is devoted to some geometric exam-
ples of (p, q)-maps which will help us to illustrate and assert the sharpness of
some results. In §2, we establish the notation and introduce the preliminary
results that will be deployed in the paper. The proofs of Theorems 1, 2, 3
and 4 will be presented in §3, Theorems 5 and 6 in §4, and Theorems 7 and
8 in §5. The paper concludes with open questions in §6.

1. Examples.

This section makes available a variety of examples that will motivate the
results of the paper and assert their sharpness.

Example 1. Let (Ỹ, π) be a p-fold covering of a closed orientable surface Y.
We modify this covering as follows. Denote by ∆̃1, ∆̃2, . . . , ∆̃p−q, pairwise
disjoint subregions of Ỹ each of which is homeomorphic under π to a closed
Jordan subregion ∆ of Y. Let L be a simple arc joining two points a and b in
the interior of ∆, and let L̃1, L̃2, . . . , L̃p−q, be the lifts of L in the respective
regions ∆̃1, ∆̃2, . . . , ∆̃p−q. Cut Ỹ along each arc L̃j, and identify the edges
of these cuts crosswise in the usual manner leading to two branch points,
ã and b̃, over a and b, respectively, each of order p − q − 1. Denote by Ŷ
the resulting surface, and by π̂ the continuous map coinciding with π on
Ỹ \ (

⋃p−q
j=1 L̃j). Then (Ŷ, π̂) is also a p-fold covering of Y with π̂ having a

total order given by the Riemann-Hurwitz relation as

βπ̂ = 2
[(
g
(
Ŷ
)
− 1

)
− p(g(Y)− 1)

]
.

Now, let D be a closed Jordan subregion of Y containing a in its interior and
b in its exterior. By the above construction, D has a unique lift, D̂, under
π̂ that contains ã in its interior and b̃ in its exterior, and is of multiplicity
p− q. Denote by X the subsurface of Ŷ obtained by removing D̂, and by f
the restriction of π̂ to X . Then X is an open surface satisfying g(X ) = g(Ŷ)
and η(X ) = 1, and f is a (p, q)-map. Obviously, f assumes every value of
D q times and Y \ D p times, counting multiplicity. Further, f has zero
deficiency δf and total branch order βf = βπ̂ − p+ q − 1. It follows that

βf = 2[(g(X )− 1)− p(g(Y)− 1)]− p+ q + 1.

Example 2. A repeated use of the above procedure in Example 1 yields (i)
a p-fold covering (Ŷ, π̂) of Y, and (ii) a covering subsurface (X , f) of (Ŷ, π̂)
satisfying the following properties:
(a) f : X → Y is a normal (p, q)-map.
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(b) f assumes every value in a pairwise disjoint union of closed Jordan
regions D1, D2, . . . , Dn, exactly q times, and p times otherwise.

(c) g(X ) = g(Ŷ), η(X ) = n, and βf = βπ̂ − (p− q − 1)n.
By the Riemann-Hurwitz relation we get:

βπ̂ = 2
[(
g
(
Ŷ
)
− 1

)
− p(g(Y)− 1)

]
,

which gives

βf = 2[(g(X )− 1)− p(g(Y)− 1)]− (p− q − 1)η(X ).

Example 3. Suppose Y is a closed orientable surface with positive genus,
g. It is well known that there exists a system of loops a1, b1, a2, b2, . . . , ag,
bg, in Y starting and ending at the same point, O, and are otherwise pair-
wise disjoint, whose removal reduces Y into a simply-connected domain (see
[9, pp. 37-42]). Let (Ŷ, π1) be a q-fold covering of Y. The branch order of
π1 is given by

βπ1 = 2
[(
g
(
Ŷ
)
− 1

)
− q(g(Y)− 1)

]
.

Choose an integer n, 1 ≤ n ≤ g. Let Z be the surface obtained by removing
from Y the loops a1, b1, a2, b2, . . . , an, bn. It is easy to see that Z is an
open surface of genus, g−n, and with one boundary component. Denote by
Z1, Z2, . . . , Zp−q copies of Z. We attach these surfaces as follows. Let L be
a Jordan arc ending at O and lying otherwise in Z, and let O′ be the other
endpoint. Cut each surface Zj, 1 ≤ j ≤ p − q, along the associated Jordan
arc over L, and attach the resulting surfaces by identifying the edges of the
cuts crosswise in the usual manner leading to a (p− q)-fold covering (Ẑ, π2)
of Z having a branch point of order p− q− 1 over O′. Evidently, the surface
Ẑ has genus (p − q)(g − n) and one boundary component. We attach the
surfaces Ŷ and Ẑ, first by making a cut in each over a Jordan arc in Z that
avoids all the branch values of π1 and π2, and second by identifying the edges
of the cuts crosswise leading to a covering surface (X , f) of Y satisfying:
(a) f : X → Y is a normal BQ-map.
(b) βf = p− q + 1 + βπ1 .
(c) g(X ) = (p− q)(g − n) + g(Ŷ) and η(X ) = 1.
We conclude:

βf = 2[(g(X )− 1)− p(g(Y)− 1)]− p+ q + 1 + 2n(p− q).

Example 4. Let (Ŷ, π1) be the q-fold covering surface of Y of the previous
example. Denote by D1, D2, . . . , Dn, pairwise disjoint Jordan domains in
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Y. For each j, 1 ≤ j ≤ n, let (Zj, hj) be the simply-connected (p − q)-fold
covering of Dj having only one branch point, of order p − q − 1, and one
boundary component, and let Lj be a Jordan arc in Dj not passing through
any of the branch values of π1 or hj. Make a single cut in Ŷ over each Lj,
and a cut in each Zj over Lj, 1 ≤ j ≤ n, then attach the resulting surfaces,
conveniently denoted by Ŷ and Zj, 1 ≤ j ≤ n, by identifying crosswise the
edges of their cuts in the usual manner. This yields a covering surface (X , f)
of Y having the following properties:
(a) f : X → Y is a normal BQ-map.
(b) βf = n(p− q + 1) + βπ1 .
(c) g(X ) = g(Ŷ) and η(X ) = n.
With βπ1 given as in the previous example, we conclude:

βf = 2[(g(X )− 1)− q(g(Y)− 1)] + (p− q + 1)η(X ).

Example 5. Let Y be the torus, π a universal covering map of Y having the
square {z : 0 ≤ <z < 1, 0 ≤ =z < 1} as a fundamental domain, {nk}nk=1 a
finite sequence of positive integers, and Xk the square {z : 0 < <z < nk, 0 <
=z < nk}. Denote by γ1 and γ2 the simple closed curves

π({x : 0 ≤ x ≤ 1}) and π({iy : 0 ≤ y ≤ 1}),
respectively, and e = γ1∩γ2. Let πk = π|Xk . It is easy to see that πk : Xk →
Y is a (p, q)-map with p = pk = n2

k, q = qk = n2
k − nk, p-set Y \ (γ1 ∪ γ2),

q-set (γ1 ∪ γ2) \ {e}, and exceptional set {e}. Observe that δπk = nk − 1,
βπk = 0 and

βπk + δπk = nk − 1 = pk + qk − 1− 2qkg(Y).

Let L be a Jordan arc in Y not meeting γ1 ∪ γ2. With a slight abuse of
notation, we assume the coverings (Xk, πk) pairwise disjoint. Make a single
cut over L in each of these coverings, and attach the resulting coverings by
identifying the edges of the cuts crosswise in the usual manner which leads
to a (connected) covering surface (X , f) having exactly two branch points
each located over one endpoint of L and has order n − 1. It easily follows
that
(a) f : X → Y is a normal (p, q)-map with p = Σn

k=1n
2
k and

q = Σn
k=1(n2

k − nk).
(b) βf = 2(n− 1) and δf = Σn

k=1δπk = Σn
k=1nk − n.

(c) g(X ) = 0 and η(X ) = n.
We conclude:

βf + δf = 2[(g(X )− 1)− q(g(Y)− 1)] + p− q + η(X ).
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2. Notation and preliminaries.

The object of this section is to introduce the notation, concepts and prelim-
inary results that will be used throughout the paper. Our two main sources
will be Ahlfors and Sario [1], Lyzzaik and Stephenson [7] and Lyzzaik [5].

Let F be an orientable surface [1]. If F is compact and without boundary,
then F is termed closed. The canonical (normal) form of a closed orientable
surface is simply a surface with finitely many attached handles. The number
of handles is called the genus of F and is denoted by g(F ).

An open orientable surface, E, of finite genus, g(E), and finite number of
boundary components, η(E), is obtained by removing η(E) pairwise disjoint
points or closed discs from a closed orientable surface F having the same
genus. If only closed discs are removed, then the closure, E, of E in F is a
bordered orientable surface of genus g(E) and number of components η(E).
Here, the surface E is called the interior of the bordered orientable surface
E.

The concept of a boundary component of an open orientable surface will be
used in its formal sense as in [1, pp. 81-90]. The impression of a boundary
component will be used as defined in [5]. If F and F̃ are orientable surfaces
and f : F̃ → F is an open continuous function, then the pair (F̃ , f) is termed
a ramified covering, or simply a covering, of F . It is known that f has the
same local properties as the mappings z → zm, where m is a positive integer.
If m ≥ 2 at some point x ∈ F̃ , then x is termed a branch point of f of order
m− 1 and the point y = f(x) a branch value of f .

A covering (F̃ , f) of an orientable surface F is termed complete if every
point y ∈ F has a neighbourhood N so that each connected component of
f−1(N) is compact. It is known that the points of F will be covered by F̃
equally the same number of times, counting multiplicity. If this number is
n, then (F̃ , f) is termed an n-fold (sheeted) covering of F . Another useful
property of complete coverings is that they permit path lifting so that two
lifts of a given path meet, if at all, only at branch points. This property
yields the following result whose proof can be found in [7]:

Proposition 1. Let (F̃ , f) be a covering surface of an orientable surface
F , and S a subset of F consisting of points that are covered equally the same
number, n, of times. Then there exists an open neighborhood V of S so that
the inverse image under f of every connected component V of V contains
complete coverings of V having total multiplicity at least n. Moreover, if S
is open, then V can be S itself.

Throughout this paper and unless otherwise is specified, the function f :
X → Y stands for a normal (p, q)-map. Recall from §1 the sets P, Q, E and
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B associated with the f . Some basic properties of these sets are given in
[5, Lemma 2] as follows.

Proposition 2. Let f : X → Y be a normal (p, q)-map. Then
(a) P is an open subset whose genus is at most min{g(X ), g(Y)}.
(b) Q∪E is a union of at most η(X ) pairwise disjoint nondegenerate con-

tinua.
(c) Every connected component P of P has finitely many boundary com-

ponents.
(d) C(f) = ∂Q.
(e) νf (e) < q for every e ∈ E .
(f) E ⊂ ∂P ∩ ∂Q.

We will make use of special neighbourhoods of the q-set of f .
Definition 4. An open neighborhood V of Q is termed a fattened q-set
of Q if every connected component V of V meets Q and lifts under f to a
subset of X that contains complete coverings of V having total multiplicity
exactly q.

It follows from Proposition 1 that Q has a fattened q-set. Further, we
have:

Proposition 3. Let f : X → Y be a normal (p, q)-map. There exists a
fattened q-set U satisfying the following properties:
(a) U ∩ P ∩ B = ∅.
(b) Each connected component U of U has finitely many boundary compo-

nents.
(c) Each boundary component of U has a nondegenerate impression in

P ∪ E.
(d) Each U has boundary components that are pairwise separated by (Q∪

E) ∩ U .
(e) Each connected component O of U ∩P is either simply-connected or a

ring domain.
(f) If O is a ring domain, then the impressions of the boundary compo-

nents of O are a common contour of U and P and a nondegenerate
subcontinuum in Q∪ E.

(g) The number of all possible domains O is at most η(X ).

This result comprises [5, Lemmas 5 and 6].
Definition 5. A fattened q-set satisfying the properties of Proposition 3
is termed a refined fattened q-set.
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If f is a BQ-map (Definition 3), then refined fattened q-sets are of special
nature.

Proposition 4. Let f : X → Y be a BQ-map, and U a refined fattened
q-set. Then every component U of U is the interior of a bordered surface so
that each connected component of U \ Q is a ring domain having a common
contour with U .

We use the term Jordan arc for the homeomorph of a closed interval, and
Jordan curve or loop for the homeomorph of the unit circle.

The following result is needed:

Proposition 5. Suppose that f : X → Y is a normal (p, q)-map. Let P be
a connected component of P, and γ ⊂ P a Jordan curve dividing P into two
connected components of which one is a ring domain, A. If A is a subset of
a fattened q-set V and A∪γ has no branch points of f , then f−1(A) contains
pairwise disjoint domains, Ã, satisfying the following properties:
(a) Each Ã is a ring domain belonging to a unique boundary component

of X .
(b) Each Ã has a compact boundary in X which is a Jordan curve, γ̃.
(c) The associated pairs (Ã, f) and (γ̃, f) are complete covering of A and

γ, respectively, with equal multiplicities.
(d) The sum of multiplicities of the coverings (Ã, f) or (γ̃, f) is exactly

p− q.
For a proof of this result see [5].
A main tool for our study is the following embedding theorem whose proof

can also be found in [5]:

Theorem A. Let f : X → Y be a normal (p, q)-map. Then there exists
a p-fold covering surface (Ỹ, π) of Y and an embedding φ : X → Ỹ so that
f ≡ π ◦ φ. The projection map π inherits via φ the branch points of f , if
exists, and possibly has some others that lie in Ỹ \ φ(X ) over the sets E and
Q \ B. Further, the latter set of branch points (over Q \ B) has total order
(p− q)s− r, where r and s are integers satisfying 0 ≤ s ≤ r ≤ η(X ).

In view of this theorem, we introduce:
Definition 6. The branch points of the projection map π lying in Ỹ \φ(X )
over Q are termed the auxiliary branch points of f . Also, The branch values
and total order of these points are termed the auxiliary branch values and
auxiliary branch order of f and denoted by B′ and β′f , respectively.

Normal (p, q)-maps may have quite pathological q-sets. Using a special
type of homotopy [7, 6], termed (p, q)-homotopy, it was shown that every
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normal (p, q)-map deforms continuously to a (p, q)-map bearing the same
covering properties and whose q-set is a finite set of points, Jordan arcs or
loops.

Definition 7. Two (p, q)-maps f and g are said to have the same valence
structure if there is an order preserving bijection between their branch points
and a deficiency preserving bijection between their exceptional points.

Evidently, βf = βg, δf = δg and f and g have the same valence structure.
The notion of (p, q)-homotopy is defined as follows [6, 7]:

Definition 8. A (p, q)-homotopy is a homotopy Λ : X×[0, 1]→ Y satisfying
the property that all maps Λ(., t) : X → Y, t ∈ [0, 1], are (p, q)-maps having
the same valence structure.

It is immediate that (p, q)- homotopy is an equivalence relation.
We will use the following results whose proofs can be found in [6].

Theorem B. Let f : X → Y be a normal (p, q)-map. Then f is (p, q)-
homotopic to a map h whose q-set Qh is either empty or a disjoint union
of B′ and a finite number of open Jordan arcs or loops that do not meet B
and start and end in B′ ∪ E. Further, the number of connected components
of Qh ∪ E is at most η(X ).

Theorem C. Let f : X → Y be a normal BQ-map. Then f is (p, q)-
homotopic to a map h whose q-set Qh satisfies:
(a) Qh ∩ B = Ø.
(b) Qh is a disjoint union of at most η(X ) continua.
(c) Each of the continua is either a singleton in B′ or a union of loops

starting and ending at some point of B′ and are otherwise pairwise
disjoint.

(d) The number of these singletons or loops in Qh is at most

max{η(X ), 2g(Y) + η(X )− 1}.

.

Theorem D. Let f : X → Y be a normal BQ-map with η(X ) = 1. Then
g(X ) ≥ g(Y) and f is (p, q)-homotopic to a map h whose q-set
(a) does not contain any branch value of f , and is either
(b) a singleton, or
(c) a curve given by

a1b1a
−1
1 b−1

1 . . . anbna
−1
n b−1

n ,
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where 1 ≤ n ≤ g(Y), and

a1b1a
−1
1 b−1

1 . . . anbna
−1
n b−1

n . . . akbka
−1
k b−1

k

is a canonical form of Y with a1, b1, . . . , ak, bk loops starting and ending
from the same point and are otherwise disjoint.

Remark 1. It is clear from [6] that the aforementioned (p, q)-homotopies
preserve the number of connected components of the p-set.

A topological invariant that we will need is the concept of Euler charac-
teristic. Suppose W is an m-dimensional cell complex, and let nd(W ) be the
number of d-cells in W . The Euler characteristic of W is defined as

χ(W ) =
m∑
d=0

(−1)dnd(W ).

If m = 1 then χ(W ) is the number of 0-simplices minus the number of 1-
simplices, and if m = 2 then χ(W ) is the number of 0-simplices minus the
number of 1-simplices plus the number of 2-simplices. If W is a compact
orientable surface, then W affects a finite 2-dimensional cell complex, and
the Euler characteristic of W is itself that of the complex. It is known that
this definition is independent of the underlying complex, and that

χ(W ) = 2− 2g(W )− η(W ).

In particular, if W is closed then

χ(W ) = 2− 2g(W ).

Moreover, if W is an open orientable surface with finite genus and finite
number of boundary components, then we can find a bordered subsurface
W

o
of W satisfying g(W

o
) = g(W ) and η(W

o
) = η(W ). This surface is

topologically unique, and as such the Euler characteristic of W is defined as

χ(W ) = χ
(
W

o

)
.

The Riemann-Hurwitz relation [9, pp. 33-34] yields:

Proposition 6. Let W be an open orientable surface with finite genus, and
W̃ be a complete covering covering of W . Then g(W̃ ) ≥ g(W ).

If W is a closed orientable surface that is divided by finitely many disjoint
loops into a finite number of bordered subsurfaces W 1, W 2, . . . , W s, then

χ(W ) = Σs
j=1χ(Wj).
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Using this, we obtain:

Proposition 7. Let W be a closed orientable surface, and let C be a finite
1-dimensional complex in W . Then

χ(W ) = χ(W \ C) + χ(C).

Proof. It is immediate that C divides W into a finite number of surfaces W1,
W2, . . . , Ws. Observe that each Wj has finitely many boundary components
and contains a bordered subsurface V j satisfying g(Vj) = g(Wj) and η(Vj) =
η(Wj). Note that the set W \ (

⋃s
j=1 Vj) is then a disjoint union of finitely

many bordered surfaces U1, U2, . . . , Ut. It is easy to see that each Uk
contains a connected component, Ck, of C such that Uk \ Ck is a disjoint
union of finitely many ring domains each having a common contour with the
some surface Vj. It is easily seen that χ(Uk) = χ(Ck) for each k, 1 ≤ k ≤ t.
This gives

χ(W ) = Σs
j=1χ

(
V j

)
+ Σt

k=1χ
(
Uk

)
= Σs

j=1χ(Wj) + Σt
k=1χ(Ck)

= χ(W \ C) + χ(C).

This completes the proof.

3. Proofs of Theorems 1, 2, 3 and 4.

Recall the sets P, Q, E and B associated with f . Also recall Theorem A;
namely: The covering surface (Ỹ, π) of Y, the embedding φ : X → Ỹ, and
the auxilliary set B′ (Definition 5) of branch values of f .

Theorem B shows that a normal (p, q)-map f is (p, q)-homotopic to a map
satisfying strict regularity conditions. Because (p, q)-homotopy preserves
the valence structure, we loose no generality in assuming henceforth that f
satisfies these conditions unless specified otherwise; namely that the q-set
of f is a disjoint union (possibly empty) of a finite set of points B′ and a
finite number of open Jordan arcs starting and ending at points of the set
B′ ∪ E . Further, this q-set has no branch values of f except possibly at the
exceptional points.

Denote by K the 1-dimensional complex in Y whose 0 and 1-simplices
comprise the sets B′∪B∪E andQ∪E respectively, and by K̃ the 1-dimensional
complex in Ỹ which is the lift of K under π as restricted to Ỹ \ φ(X ). It
is immediate that (i) K̃ and φ(X ) partition Y and (ii) π : K̃ → K is a
(p − q)-fold covering that lifts each 0-simplex v ∈ K under π to exactly
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p− q 0-simplices ṽ ∈ K̃, counting multiplicity, and each 1-simplex σ ∈ K to
exactly p− q 1-simplices σ̃ ∈ K̃.

Proof of Theorem 1. In addition to the above notation, we need the follow-
ing:

(a) υ and υ̃ denote the number of 0-simplices of K and K̃ respectively.
(b) e and ẽ denote the number of 1-simplices of K and K̃ respectively.
(c) βπ and β

K̃
denote the total branch orders of π in Ỹ and K̃ respectively.

Recall that each 0-simlpex v ∈ K belongs to B′ ∪E . Then v is covered by
π exactly q − δf (v) times, counting multiplicity, in X . Note that δf (v) = 0
if v ∈ B′. It follows that π covers v exactly p − q + δf (v) times, counting
multiplicity, in K̃. By adding over all the 0-simplices of K and using the
fact that the number of 0-simplices in K̃ is υ̃ + β

K̃
, we obtain:

δf = υ̃ + β
K̃
− (p− q)υ.

Since a branch point of π belongs either to X or K̃,

βπ = βf + β
K̃
.

The Riemann-Hurwitz relation gives:

βπ = 2[(g(Ỹ)− 1)− p(g(Y)− 1)].

Also, by Proposition 7 we have:

2− 2g(Ỹ) = χ(Ỹ) = χ(X ) + χ(K̃) = 2− 2g(X )− η(X ) + υ̃ − ẽ,
where

ẽ = (p− q)e
since each 1-simplex in K is covered by K̃ under π exactly p− q times.

Further, by Proposition 7 we have:

2− 2g(Y) = χ(Y) = χ(P) + χ(K) = χ(P) + υ − e,
which gives

υ − e = 2− 2g(Y)− χ(P).

Using these identities successively we obtain:

βf + δf = βπ + υ̃ − (p− q)υ
= −(2− 2g(Ỹ))− 2p(g(Y)− 1) + υ̃ − (p− q)υ
= 2(g(X )− 1)− 2p(g(Y)− 1) + η(X ) + ẽ− (p− q)υ
= 2(g(X )− 1)− 2p(g(Y)− 1) + η(X )− (p− q)(υ − e)
= 2[(g(X )− 1)− q(g(Y)− 1)] + η(X ) + (p− q)χ(P).
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This ends the proof.

One can easily verify that Theorem 1 holds in Examples 1, . . . , 5 of §1.

Proof of Theorem 2. If K is the above-mentioned complex, then Proposition
7 gives

χ(P) = 2− 2g(Y)− χ(K).

Since K decomposes into at most η(X ) pairwise disjoint continua, it easily
follows that χ(K) ≤ η(X ), and

χ(P) ≥ 2− 2g(Y)− η(X )

which together with the above theorem yield the desired inequality.
Examples 1 and 2 show equality, and Example 3 shows strict inequality.

Therefore, the inequality is sharp and the proof is complete.

If P is simply-connected, then χ(P) is the number of connected compo-
nents of P and Theorem 3 follows at once from Theorem 1 and Example
5.

It is easy that the proof of Theorem 4 is a consequence of Theorem 3 and
Examples 1 and 4 of [7]; only observe that X = D yields η(X ) = 1 and P
simply-connected [7, Lemma 4(a)].

4. Proofs of Theorems 5 and 6.

Proof of Theorem 5. It is immediate from Theorem D that g(X ) ≥ g(Y)
and that P is a subsurface of Y with exactly one boundary component. By
Proposition 7

χ(P) = 1− 2g(P) = 1− 2(g(Y)− n)

for some integer n, 0 ≤ n ≤ g(Y). Using Theorem 1, the desired inequality
follows and the proof is complete.

To illustrate the result, see Examples 1 and 3.
The proof of Theorem 6 makes use of the well known cyclic p-covering

[14] which is constructed as follows. Let Z be the surface of the handle
body, B(p, β), where p and β are integers satisfying p ≥ 2 and β ≥ 1, shown
in Figure 1. This body is obtained by attaching to a solid torus p congruent
arms each of which is a handle body of genus β − 1. Note that Z has genus
p(β−1) + 1 and is invariant under a cyclic group, G, of order p of rotational
symmetries so that the quotient space Z/G is a closed orientable surface Y
of genus β. Since G acts without fixed points, the natural projection map
h : Z → Y affects the desired regular p-fold regular covering (Z, h) of Y .
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Figure 1. Z = B(4, 3), Z/G = Y.

Proof of Theorem 6. Let Y be a closed orientable surface of genus β, O
a point in Y, and aj, bj, 1 ≤ j ≤ β, be loops that represent a canonical
homology basis of Y, pass through the point O and are otherwise disjoint
(see Figure 2).

Figure 2.

We consider two cases:
(1) n < β. Let (Z, h) be the cyclic p-covering of Y with labelled arms H1,

H2, . . . , Hp as in Figure 2. Let O1, O2, . . . , Op−q be the lifts of O in H1,
H2, . . . , Hp−q respectively. Note that the canonical basis can be labelled
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so that the lifts of the loops aj, bj, 1 ≤ j ≤ n, are as depicted in Figure
2. By Removing these loops from Z we obtain a covering surface (Z1, h1)
of Y where h1 ≡ h|Z1 , g(Z1) = p(β − 1) + 1 − n(p − q), η(Z1) = p − q and
h1 : Z1 → Y is a normal BQ-map that assumes every point in the loops
aj, bj, 1 ≤ j ≤ β, q times, and p times otherwise. We modify the covering
(Z1, h1) twice as follows.

(i) Let ` be a Jordan arc in Y that starts from O and is otherwise disjoint
from the canonical basis, and let O′ be the other endpoint of `. Through
each point Oj, 1 ≤ j ≤ p− q, there exists a unique lift, ˜̀

j, of ` under h that
is homeomorphic to ` and lies except for Oj in Z1. Note that these lifts are
pairwise disjoint. Cut Z1 along the arcs ˜̀

j, and identify the edges of the cuts
crosswise in the manner leading to a covering surface (Z2, h2) of Y with a
branch point of order p− q − 1 over O′. It is easy to see that

g(Z2) = g(Z1) + p− q − 1

= p(β − 1) + p− q − n(p− q)
and η(Z2) = 1.

(ii) Observe that b− p+ q+ 1 is a non-negative even integer, 2r. If r = 0,
then we set Z2 ≡ X and h2 ≡ f . Otherwise, let `1, `2, . . . , `r be pairwise
disjoint Jordan arcs in Y not meeting O′ or the canonical basis. Cut Z2

along any two lifts of each `j, 1 ≤ j ≤ r, under h2, and identify the edges
of the cuts crosswise leading to 2r branch points each of order 1. Denote
the resulting covering surface by (X , f). In either case, one easily sees that
f : X → Y is a normal BQ-map, η(X ) = 1, βf = p− q − 1 + 2r = b, and

g(X ) = g(Z2) + r

= p(β − 1) + p− q − n(p− q) + (b− p+ q + 1)/2

= α.

(2) n = β. Let (Z, h) be the cyclic q-covering of Y. The removal of
the canonical basis from Y leaves a simply-connected subdomain, Ω, of Y.
Let Ω1, Ω2, . . . , Ωp−q be copies of Ω. The standard cutting and pasting
procedure attaches these copies to each other yielding a simply-connected
(p − q)-fold covering, Ω̃, of Ω with only a branch point of order p − q − 1.
Attach this covering to (Z, h) by simply making a single cut in each over a
Jordan arc in Y that avoids the branch value of h, and identify the edges
of these cuts crosswise leading to a covering surface (Z1, h1) of Y so that
g(Z1) = g(Z) = q(β − 1) + 1, η(Z1) = 1, βh1 = p− q + 1 and h1 : Z1 → Y is
as above.

Observe that b−p+q−1 is a non-negative even integer, 2r. Let Z1 ≡ X and
h1 ≡ f if r = 0, else we repeat the same procedure above thus resulting in a
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covering surface (X , f) similar to the above except for βf = p−q+1+2r = b,
and

g(X ) = g(Z1) + r

= q(β − 1) + (b− p+ q − 1)/2

= α.

This completes the proof.

5. Proofs of Theorems 7 and 8.

The proof of Theorem 7 requires the following two lemmas:

Lemma 1. Let f : X → Y be a normal BQ-map. If P is a simply-connected
component of the p-set of f , then the branch points of f whose branch values
lie in P have total order at least p−q+1. Further, this bound is best possible.

Proof. Because P is simply-connected, P has only one boundary component,
G. Let γ be a Jordan curve dividing P into two connected components of
which one is a ring domain, A, belonging to G. Evidently, ∂A = γ ∪ ∂P .
Let U be a refined fattened q-set of f . It is easy to see that γ can be chosen
so that A ∪ γ is a subset of U . Each of P and A has complete lifts P̃
and Ã, respectively, under f of total multiplicity p. Obviously, each Ã is
a ring subdomain of some P̃ . By Proposition 5, there exist lifts Ã of total
multiplicity exactly p − q each belonging to a boundary component of X .
Denote these by Ã1, Ã2, . . . , Ãr. Each of the remaining lifts, Ãr+1, Ãr+2,
. . . , Ãs, must be precompact in X . For if U is the connected component of
U containing A, then by Proposition 1 U has complete lifts under f of total
multiplicity q which contain the lifts Ãj, r + 1 ≤ j ≤ s.

Suppose that P̃ contains a lift Ãj, 1 ≤ j ≤ r. Then P̃ must contain some
lift Ãj, r + 1 ≤ j ≤ s unless X = P̃ , which contradicts the fact that f is a
(p, q)-map. Denote the lifts P̃ of this kind by P̃1, P̃2, . . . , P̃t, and observe
that these have total multiplicity at least p− q + 1.

Now a form of the Riemann-Hurwitz relation gives:

χ(P̃j) = kjχ(P )− βj (1 ≤ j ≤ t)

where kj is the multiplicity of the covering (P̃j, f) and βj is the branch order
of f in P̃j. But χ(P ) = 1 since P is connected and simply-connected, and

χ(P̃j) = 2− 2g(P̃j)− η(P̃j) ≤ 0
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since g(P̃j) ≥ 0 and η(P̃j) ≥ 2. Hence βj ≥ kj(1 ≤ j ≤ t), and

Σt
j=1βj ≥ Σt

j=1kj ≥ p− q + 1.

This proves the desired inequality.
It remains to show that the inequality is sharp. Let (X1, π1) be a q-fold

covering of the surface Y, P a Jordan subdomain of Y that avoids all the
branch values of π1, and (X2, π2) a simply-connected (p− q)-fold covering of
P . By the Riemann-Hurwitz relation it follows at once that π2 has branch
order p− q − 1. Cut each surface X1 and X2 once over a segment in P that
does meet any of the branch values of π2, and adjoin the resulting surfaces in
the usual manner by identifying them crosswise along the edges of the cuts.
This yields a surface, X , and a normal BQ-map f : X → Y that coincides
with π1 and π2 in their respective subdomains in X . Note that P forms
the p-set of f , and the branch points of f with values in P have total order
exactly p− q+ 1, counting multiplicity, of which p− q−1 account for π1 and
two for π resulting from the adjoining procedure.

Lemma 2. Let f : X → Y be a normal BQ-map. Then

η(X )/(p− q) ≤ Ση(P ) ≤ η(X ),

where the summation is taken over all the connected components P of the
p-set of f . Further, the inequalities are sharp.

Proof. Fix P , and let R be a boundary component of P . Take γ, U , A, and
Ã1, Ã2, . . . , Ãr, exactly as in the proof of the previous lemma. The fact that
P has a finite number of boundary components (Proposition 2(c)) allows us
to choose the respective domains A pairwise disjoint. Let

R = {R : R is a boundary component of some domain P}

and

S = {S : S is a boundary component of X}.

Suppose A ∈ R ∈ R. Then each ring domain Ãj, 1 ≤ j ≤ r, belongs to
a unique boundary component S of X . This establishes a relation between
the sets R and S defined by R → S. Denote by ν the inverse relation. We
contend that ν is a function. This is done in the following two steps:

(i) Suppose ν(S) = R1,R2 and R1 6= R2. Then a ring subdomain of X
maps under f to disjoint subdomains of Y, and we have a contradiction.

(ii) We claim that for every S ∈ S there exists R ∈ R so that R = ν(S).
By Proposition 2(b,c), U consists of a finite number of connected components
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U each containing a finite number of ring domains A. Using Propositions 1
and 5, we conclude that f−1(U) is a disjoint union of a precompact subset
of X and the aforementioned ring domains Ã1, Ã2, . . . , Ãr, for all A. It
follows that if ν(S

o
), for some S

o
∈ S, is undefined, then there exists a ring

domain Ã
o
∈ S

o
so that f−1(U)

⋂
Ã
o

is empty. Choose y
o
∈ C(f ;S

o
). Then

y
o
∈ ∂Q ⊂ Q (Proposition 2(d)). Evidently, there exists x

o
∈ Ã

o
so that

f(x
o
) ∈ U . If f(x

o
) ∈ Q, then f−1◦f(x

o
) contains exactly q points in f−1(U)

in addition to x
o
. If f(x

o
) ∈ P, then f(x

o
) ∈ A, for some ring domain A,

and f−1 ◦ f(x
o
) contains exactly p points in f−1(U) in addition to x

o
. In

either case we have a contradiction.
Therefore, ν : S → R is a function. Note that S contains at most η(X ) el-

ements and R contains ΣPη(P ) elements. But each ν−1(R), R ∈ R, consists
of at least one and at most p − q elements in S. This yields the inequlity
whose sharpness is easy to conclude.

Proof of Theorem 7. The left-hand inequality follows at once from Theorem
2. To prove the right-hand inequality, we prove first

βf ≤ 2[(g(X )− 1)− q(g(Y)− 1)] + (p− q + 1)η(X ).

Let P be a connected component of P. Observe that χ(P ) is nonpositive
unless P is simply-connected in which case χ(P ) = 1, and P has at most
η(X ) connected components (see Proposition 5). It follows that χ(P) is at
most η(X ), and by Theorem 1 the inequality holds.

Now we prove:

βf ≤ (p− q + 1)(2[(g(X )− 1)− q(g(Y)− 1)] + (p− q)η(X )).

Again, since P has finitely many connected components

χ(P) = ΣPχ(P )

where χ(P ) = 2− 2g(P )− η(P ). Suppose P has s simply-connected compo-
nents and t planar but not simply-connected components. Then

χ(P) ≤ 2(t+ s)− ΣPη(P )

since χ(P ) is negative if g(P ) is positive. As an immediate consequence of
Lemma 1 we have (p− q + 1)s ≤ βf , or

s ≤ βf/(p− q + 1).

Note that the number of boundary components of the planar domains (in-
cluding the simply-connected ones) is at least 2t + s and at most ΣPη(P ).
Then by Lemma 2

2t+ s ≤ η(X ).
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The above two inequalities give:

2(t+ s) ≤ η(X ) + βf/(p− q + 1),

and consequently

χ(P) ≤ η(X ) + βf/(p− q + 1)− ΣPη(P ).

This gives:

η(X ) + (p− q)χ(P) ≤ (p− q)(η(X ) + βf/(p− q + 1)) +

(η(X )− (p− q)ΣPη(P )).

Using Lemma 2, again, we get:

η(X ) + (p− q)χ(P ) ≤ (p− q)(η(X ) + βf/(p− q + 1)).

Applying this with Theorem 1 we obtain:

βf ≤ 2[(g(X )− 1)− q(g(Y)− 1)]

+(p− q)(η(X ) + βf/(p− q + 1)),

which is equivalent to the desired inequality. This proves the double in-
equality. The sharpness results follow at once from Examples 2, 4 and
[14, Existence Theorem 1]. This completes the proof.

As mentioned earlier, Theorem 8 follows at once from Theorem 7. The
condition in the former theorem is also sufficient if q = p − 1. This is
the result of Srebro and Wajnryb [14, Mapping Theorem] who proved the
above theorem only under the latter assumption. The condition however, is
not sufficient in general; for instance, according to Theorem 5 there are no
normal BQ-maps f : X → Y satisfying g(X ) = 0 < 1 = g(Y), η(X ) = 1,
p = 4 and q = 2, or, g(X ) = g(Y), η(X ) = 1 and arbitrary values p and q,
for which above the inequality holds.

6. Open questions.

This section concludes the paper with a number of open questions.
Let f : X → Y be a normal (p, q)-map. Recall that P is the p-set of f .

Question 1. For fixed surfaces X and Y, what is the minimum value of the
Euler characteristic of P? This value is 1 if X is the unit disc and Y the
Riemann sphere or the torus, as can be concluded from Examples 1, 2 and
4 of [7]. Examples 1 through 5 also provide further examples for which this
value is known for specific choices of X and Y.
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Question 1 can also be reformulated as follows.
Question 2. For fixed surfaces X and Y, what will be the sharp lower
bound of βf + δf if it is not the bound concluded in Theorem 2?

A similar question regarding Theorem 3 also arises.
Question 3. Theorem 4 (or [7, Theorem 5]) gives a sharp lower bound for
βf + δf if Y is the Riemann sphere or the torus. What will be the sharp
lower bound if g(Y) ≥ 2? Is it p + q − 1 + 2sg(X ) with s = k(p − q) − p,
where k is the smallest integer for which k(p− q) ≥ p (see [7])?

Regarding BQ-maps we have:
Question 4. Does the converse of Theorem 5 hold? If not, can one relax
the hypotheses of Theorem 6?
Question 5. For fixed surfaces X and Y, if the upper bound for βf in
Theorem 7 is not sharp, then what is the sharp upper bound?

Srebro and Wajnryb [14] constructed BQ-maps, q = p− 1, with

βf = 2[(g(X )− 1)− q(g(Y)− 1)] + (p− q + 1)η(X )

and

βf = (p− q + 1)(2[(g(X )− 1)− q(g(Y)− 1)] + (p− q)η(X ))

thus proving the sharpness of the upper bound of βf in Theorem 7. For
general BQ-maps however, the author failed to construct an example that
achieves the latter equality in general. This leads to the following:
Question 6. Is there a normal BQ-map f satisfying

βf = (p− q + 1)(2[(g(X )− 1)− q(g(Y)− 1)] + (p− q)η(X ))?

With the basic theory of (p, q)-maps between orientable surfaces is now
established, it is appropiate to propose extending our results to (p, q)-maps
into non-orientable surfaces, and between manifolds of higher dimensions.
The only attempt in the direction of the latter question is Srebro’s [11]
which is restricted to (p, p − 1)-maps. Relevant to this work we ask the
following [7]:
Question 7. Are there open, continuous, locally one-to-one maps from Rn

to itself that have exactly two non-consecutive valences?
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