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MATHEMATICAL INSTANTONS WITH MAXIMAL ORDER
JUMPING LINES

A. Prabhakar Rao

A mathematical instanton bundle on P3 (over an alge-
braically closed field) is a rank two vector bundle E on P3

with c1 = 0 and with H0(E) = H1(E(−2)) = 0. Let c2(E) = n.
Then n > 0. A jumping line of E of order a, (a > 0), is a
line ` in P3 on which E splits as O`(−a)⊕O`(a). It is easy
to see that the jumping lines of E all have order ≤ n. We
will say that E has a maximal order jumping line if it has
a jumping line of order n. Our goal is to show that such
an E is unobstructed in the moduli space of stable rank
two bundles, i.e., H2(E ⊗ E) = 0. The technique can be
slightly extended. We show that when c2 = 5, any E with
a jumping line of order 4 is unobstructed. We describe
at the end how mathematical instantons with maximal
order jumping lines arise and estimate the dimension of
this particular smooth locus of bundles.

It is known that every mathematical instanton bundle on P3 with c2 ≤ 4
is unobstructed ([L]). In [H], it is shown that bundles built by the Serre con-
struction from the union of n+1 skew lines and the bundles built from elliptic
curves in P3 of degree n + 4 are unobstructed (with c2 = n.) The SU(2)-
instanton bundles obtained from physics are also known to be unobstructed
using analytic arguments ([D-V]). Recently Nüßler and Trautmann [N-T]
have shown that any mathematical instanton with a section in degree 1 is
unobstructed, extending the case of bundles obtained from skew lines and
also extending a result of Hirschowitz and Narasimhan on ’t Hooft bundles
[H-N]. A preprint of Ancona and Ottaviani ([A-O]) produces a singular
point on the moduli space of stable bundles with c1 = 0, c2 = 5. This singu-
lar point is in the closure of the open set of mathematical instantons but is
not itself a mathematical instanton bundle. Still open is the general
Question: for fixed Chern classes c1 = 0, c2 = n, is the moduli space
Mmi(0, n) of mathematical instanton bundles on P3 irreducible and smooth?

A construction of stable bundles on P3 (not necessarily mathematical
instanton) with jumping lines of large order was first done by C. Peskine.
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In particular, he produced some examples of mathematical instantons with
jumping lines of maximal order. The set of all mathematical instantons with
jumping lines of maximal order turns out to be a locus of dimension 6n+ 2
(when n ≥ 3) inside an 8n − 3-dimensional component of Mmi(0, n). (In
fact, Mmi(0, n) is smooth along this locus.) By comparison ([H]), the locus
of mathematical instantons obtained from n + 1 skew lines is of dimension
5n + 4, and the locus obtained from elliptic curves of degree n + 4 has
dimension 4n+ 16 (for large n).

(Since writing an earlier version of this paper, it has been brought to my
attention that M. Skiti has also worked on this locus of mathematical instan-
tons. His results announced in [S] overlap with the calculations of the last
section and he has communicated to me that he has proved unobstructedness
for these bundles by a different method.)

§1.

Consider P3 over an algebraically closed field of characteristic not equal to 2.
A stable bundle E of rank two with c1 = 0 on P3 is called a mathematical in-
stanton (also a Yang-Mills bundle in the literature) if H1(E(−2)) = 0. Much
of the literature treats these bundles only in characteristic zero. However
results we will use (from [L] for example) are valid over characteristic not
equal to 2 even though not explicitly declared as such.

A mathematical instanton bundle E with c1 = 0, c2 = n possesses a mini-
mal monad:

0 −→ nOP3(−1) α−→ (2n+ 2)OP3
β−→ nOP3(1) −→ 0.

Then β : (2n + 2)S −→ nS(1) is a minimal presentation for H1
∗ (E) as an

S-module where S = k[X0, X1, X2, X3]. In particular, β has no column of
zeroes. G = ker(β) is a vector bundle of rank n+ 2 on P3. Since

0 −→ nOP3(−1) α−→ G −→ E −→ 0,

we get the Eagon-Northcott exact sequence

0 −→ ∧2(nOP3(−1)) −→ nOP3(−1)⊗ G −→ S2G −→ S2E −→ 0.

Hence H2(S2G(−i)) ∼= H2(S2E(−i)), i = 1, 0,−1,−2, ...
We also have (using S2(G∨) ∼= (S2G)∨ in characteristic 6= 2)

0 −→ S2G −→ S2((2n+2)OP3) −→ (2n+2)OP3⊗nOP3(1) B−→ ∧2(nOP3(1)) −→ 0.

Hence H2
∗ (S2G) = cok H0

∗ (B).
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Now 0 −→ OP3 −→ E ⊗ E −→ S2E −→ 0. Thus the cohomology modules
describing obstructions to E in the moduli space are given as follows: Con-
struct B : (2n + 2)OP3 ⊗ nOP3(1) −→ ∧2(nOP3(1)) −→ 0 out of the monad
map (2n + 2)OP3

β−→ nOP3(1) −→ 0. Let M be the module cok(H0
∗ (B)). M

has n(n− 1)/2 generators in degree −2.
H2(E ⊗ E(−2)) is a quotient of M−2.
H2(E ⊗ E(−1)) ∼= M−1.
H2(E ⊗ E) ∼= M0, etc.

This discussion essentially follows Le Potier [L] where he gives a finer
analysis of H2(E ⊗ E(−2)). Le Potier also shows that for any linear form
H on P3, the multiplication maps H2(E ⊗ E(−2)) H−→ H2(E ⊗ E(−1)) H−→
H2(E ⊗E) H−→ ... are surjective. Hence also the multiplication maps M−2

H−→
M−1

H−→M0
H−→ ... are surjective.

Suppose that (2n + 2)OP3 is split as aOP3 ⊕ bOP3 , giving β = (φ1, φ2).
This induces a splitting of B as B = (F1, F2). We have the surjective maps
of S modules

∧2(nS(1)) −→ N −→M,

where S = k[X0, X1, X2, X3] and N = cok(H0
∗ (F1)).

We will be interested in the situation when φ1 and hence F1 are matrices
involving only two variables, say X0, X1. In this case, let R be the subring of
S generated by these variables. The fact that all multiplication maps on M
by any form H are surjective tells us that when M is viewed as a graded R
module via the natural inclusion of R in S, M has no new generators; i.e., M
is a quotient of ∧2(nR(1)). Therefore the dimensions of the graded pieces of
M are bounded above by the dimensions of the graded pieces of NR, where
NR is the cokernel of F1 viewed as a map from aR⊗ nR(1) −→ ∧2(nR(1)).

To find good choices for φ1, hence F1, we look at jumping lines of E . On
any line `, the restriction of G to `, G`, splits as ⊕O`(−ai) where each ai ≥ 0
and their sum is n. If E` splits as O`(−a)⊕O`(a), (a ≥ 0), we have

0 −→ nO`(−1) α`−→ ⊕O`(−ai) −→ O`(−a)⊕O`(a) −→ 0.

Since the left hand map α` is an inclusion of vector bundles on ` , we see
that at least n of the ai’s are ≤ 1. If exactly n are ≤ 1, the sequence is split
exact, hence a = 0 and all ai’s are ≤ 1,contradicting the assumption. Hence
at least n + 1 of the ai’s are ≤ 1. If they are all ≤ 1, then clearly a ≤ 1 as
well, and in this case, we have

G` ∼= nO`(−1)⊕ 2O`.
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If say a1 ≥ 2 and of the remaining, p of the ai’s are 1’s with the rest zeroes,
then the cokernel of α` is O`(−a1)⊕O`(n−p), hence in this case a = a1 and
p = n− a. So in this case (when a ≥ 2) we get

G` ∼= O`(−a)⊕ (n− a)O`(−1)⊕ (a+ 1)O`.

The largest possible value for a is n, and in this case we say that ` is
a jumping line of maximal order for E . In any event, if ` with equations
{X0 = X1 = 0} is a jumping line for E of order a ≥ 2, from the decomposition
of G`, we see that after a change of basis, (2n + 2)OP3 can be decomposed
as (a + 1)OP3 ⊕ (2n + 1 − a)OP3 , with β = (φ1, φ2), where φ1 is a matrix
over R = k[X0, X1].

§2.

Suppose that E has a jumping line ` (with equations X0 = X1 = 0, say)
of order n. From the splitting of G, this happens if and only if we can
decompose (2n + 2)OP3 as (n + 1)OP3 ⊕ (n + 1)OP3 in such a way that
β = (φ1, φ2), where φ1 is a matrix over R = k[X0, X1]. Let P be the
mapping (n+ 1)OP1(−1) −→ nOP1 given by φ1.

Claim. The homomorphism on P1, (n+ 1)OP1(−1) P−→ nOP1 is onto.

Proof. Let D be the cokernel of P . H0(nOP1) surjects onto H0(D). Sup-
pose that D is not zero. Then D is a direct sum of line bundles on P1 of
non-negative degrees and of modules with finite support and is regular in the
sense of Castelnuovo-Mumford. We thus get the diagram (where b = h0(D)
is not zero)

0 −−−→ aOP1(−1) A−−−→ bOP1 −−−→ D −−−→ 0x x ∥∥∥
ker(P ) −−−→ (n+ 1)OP1(−1) P−−−→ nOP1 −−−→ D −−−→ 0∥∥∥ x x
ker(B) −−−→ (n+ 1− a)OP1(−1) B−−−→ (n− b)OP1 −−−→ 0,

with split exact vertical sequences, and with a ≤ b. Therefore after a change

of basis, P =

[
A 0
C B

]
. First of all b < n, for otherwise, if b = n, since

n+ 1− a > 0, then P has a column of zeroes. Going back to the matrix φ1

and to β on P3, we conclude that β has a column of zeroes which contradicts
the minimality of the monad for E .
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Now B is onto, so we may decompose it as [B1, B2] where B1 is (n− b)×
(n − b + 1) and is itself onto. The kernel of B1 is OP1(n − b + 1), the dual
map (n − b + 1)OP1 −→ OP1(n − b) is onto on the level of global sections,
hence B∨1 is just a presentation of the forms on P1 of degree n − b. Hence
for suitable bases, we may write B1 as

B1 =


X0 X1 0 . . . 0
0 X0 X1 . . . 0
. . . . . . .
. . . . . . .
0 0 0 . . . X1

 .

Clearly, by column operations, we can conclude that B2 has only multiples
of X0 appearing in it. We now claim that a = b. For if a < b, then B2 has
at least one column, which cannot be zero by the earlier argument that β
cannot have a zero column. So B2 has a column involving only X0 which is
independent from the first column of B1. Conveying these two columns back
to columns of β, we see that in the presentation of H1

∗ (E) given by β, there
are 2 linearly independent elements of H1(E(−1)) which are annihilated by
X0. Looking at the restriction sequence to the plane H = {X0 = 0},

0 −→ E(−1) X0−→ E −→ EH −→ 0,

this tells us that EH has two independent sections in degree zero and none
in lower degrees. This is not possible for a non-split bundle of first Chern
class 0 like EH .

So we must have b < n, a = b. Hence D has finite support. Without
loss of generality, let us assume that one of the points in the support of D is
X0 = 0. By the structure theorem for modules over a principal ideal domain,
there is an element of D which is annihilated by X0. Hence after a change
of basis, we may assume that A has a column with only X0 appearing in it,
and by column operations using B, we may assume this entire column of P
has only X0 appearing in it. This leads to the same contradiction as before.
Thus D must be zero.

Theorem . If E is an instanton bundle on P3 with a jumping line of
maximal order, then H2(E ⊗ E(−1)) = 0.

Proof. If E has a jumping line of maximal order n, where n = c1(E), by the
above discussion, the monad map β can be decomposed as φ1, φ2, where φ1

is a matrix over R = k[X0, X1], say, or is a map on P1 giving a surjection
(n+ 1)OP1(−1) φ1−→ nOP1 . Consider the dual sequence

0 −→ nOP1(−1)
φ∨1−→ (n+ 1)OP1 −→ OP1(n) −→ 0.
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We get the exact Eagon-Northcott sequence

0 −→ ∧2(nOP1(−1))
F∨1−→ nOP1(−1)⊗ (n+ 1)OP1

−→ S2((n+ 1)OP1) −→ OP1(2n) −→ 0.

Dually we get

0 −→ OP1(−2n) −→ S2((n+ 1)OP1)

−→ (n+ 1)OP1 ⊗ nOP1(1) F1−→ ∧2(nOP1(1)) −→ 0.

The kernel of F1 is a bundle B1 on P1 which is clearly a direct sum of OP1 ’s
and OP1(1)’s. Hence the module NR is of finite length with nonzero gradings
only in degree−2. It follows that for the moduleM as well, M−1 = 0.

§3.

Suppose that E has a jumping line ` = {X0 = X1 = 0} of order n − 1.
Then β can be decomposed as (φ1, φ2) where φ1 is an n × n matrix with
entries in R = k[X0, X1]. As in the prevous situation, we let P denote
the homomorphism on P1 given by φ1, and let D denote the cokernel of
nOP1(−1) P−→ nOP1 , (though now D 6= 0) and get a diagram

0 −−−→ aOP1(−1) A−−−→ bOP1 −−−→ D −−−→ 0x x ∥∥∥
ker(P ) −−−→ nOP1(−1) P−−−→ nOP1 −−−→ D −−−→ 0∥∥∥ x x
ker(B) −−−→ (n− a)OP1(−1) B−−−→ (n− b)OP1 −−−→ 0

,

with split exact vertical sequences, with b 6= 0 and with a ≤ b. Therefore

after a change of basis, P =

[
A 0
C B

]
.

First let’s make the following easy observation: If σ : V −→W is a vector
space mapping with kernel of dimension one, then the induced map S :
∧2V −→ V ⊗W is an injection. (S(

∑
ai ∧ bi) =

∑
(ai ⊗ σ(bi)− bi ⊗ σ(ai)).)

Case 1. b = n.
If so, since P cannot have a column of zeros, we get a = n. Then P :

nOP1(−1) −→ nOP1 is an inclusion of sheaves, with cokernel D of finite
support on P1. By the structure theorem for modules over a principal ideal
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domain, D is a direct sum of cyclic modules supported at various points of
P1. We claim that each point of P1 supports at most one such cyclic module.
For if two summands of D are supported at a point x given by say X0 = 0,
then there are two distinct elements of D, one obtained from each summand,
which are annihilated by X0. As in the previous arguments, this gives (after
a change of basis), two independent columns of P containing only X0’s, a
contradiction. Hence we may conclude that P is of corank 0 or 1 at any
point x.

Consider the dual map nOP1(−1) P∨−→ nOP1 and the associated Eagon-
Northcott complex

0 −→ ∧2(nOP1(−1)) Q1−→ nOP1(−1)⊗ nOP1
Q2−→ S2(nOP1).

This complex is exact outside of the support of D, and by the observations
made above, Q1 is a bundle injection. Hence this complex is exact at all
points of P1. Let B∨1 be the image of Q2. It is a direct sum of OP1 ’s and
OP1(−1)’s. Dually, we get the exact sequence

0 −→ B1 −→ nOP1 ⊗ nOP1(1) F1−→ ∧2(nOP1(1)) −→ 0.

Hence NR (the cokernel of F1) is zero in degrees −1 and 0. It follows that
H2(E ⊗ E(−1)) and H2(E ⊗ E) are both zero.

Case 2. 0 < b < n.
Then n−a ≥ n−b+1 and in fact if it is strictly greater, then B = (B1, B2)

and this leads to a contradiction as in the earlier argument with a jumping
line of order n. So n− a = n− b+ 1, and a = b− 1. If D has a summand of
finite support, as usual we argue that A gets a column with only, say X0 in
it and thus together with a column from B, we see that P has two columns
with only X0’s appearing, leading to a contradiction. So D is the line bundle
OP1(b− 1), and the kernel and cokernel of P can be identified as

0 −→ OP1(b− n− 1) −→ nOP1(−1) P−→ nOP1 −→ OP1(b− 1) −→ 0.

Then P has corank 1 at each point of P1. The dual sequence gives

0 −→ OP1(−b) −→ nOP1(−1) P∨−→ nOP1 −→ OP1(n− b) −→ 0,

and let A be the image of P∨. Then the top and bottom rows of the following
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commuting diagram are exact:

0→ ∧2(A) → A⊗ nOP1 → S2(nOP1) →OP1(2n− 2b)→0x x ∥∥∥∥ ∥∥∥∥
0→∧2(nOP1(−1))Q1→nOP1(−1)⊗ nOP1

Q2→ S2(nOP1) →OP1(2n− 2b)→0x x
0→ OP1(−b)⊗A → OP1(−b)⊗ nOP1 →OP1(n− 2b)→ 0.

The second row is a complex with Q1 a bundle injection, and with exactness
at S2(nOP1). As usual, let NR denote the R-module equal to the cokernel
of H0

∗ (Q
∨
1 ). A diagram chase shows that in degrees −1 and 0, the graded

pieces of NR have dimension equal to h1(OP1(2b−n−1)) and h1(OP1(2b−n))
respectively. Thus for such a bundle E ,

h2(E ⊗ E(−1)) ≤ max{n− 2b, 0}, h2(E ⊗ E) ≤ max{n− 2b− 1, 0}.

Theorem . A mathematical instanton bundle with c2 = 5 and with a
jumping line of order 4 is unobstructed.

Proof. According to Le Potier ([L, Proposition 11]), if h2(E ⊗ E) 6= 0, then
h2(E ⊗ E(−1)) ≥ 4. According to the above discussion, if b = 5, then E is
unobstructed. If h2(E ⊗ E)6= 0 then we must have 5− 2b ≥ 4. This happens
only if b = 0 which is not possible.

§4.

We will give a description of how bundles with maximal order jumping lines
arise. (However, we do not give a construction for bundles with jumping
lines of order one less than the maximal order.)

Proposition . Let C be the (n − 1)-th infinitesimal neighborhood of the
line ` : X0 = X1 = 0, defined by the ideal I(C) = (X0, X1)n. The set of
isomorphism classes of mathematical instanton bundles with c1 = 0, c2 = n
and with ` a jumping line of order n are in one-to one correspondence with
the set of surjective homomorphisms t : IC(n) −→ ωC(4 − n) modulo the
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equivalence relation that identifies t with any nonzero scalar multiple of t.

Proof. First of all we will construct one such bundle for any given line `. Let
φ, ψ be the n× (n+ 1) matrices

(†) φ =


X0 X1 0 . . . 0
0 X0 X1 . . . 0
. . . . . . .
. . . . . . .
0 0 0 . . . X1

 , ψ =


0 . . . 0 X2 X3

0 . . . X2 X3 0
. . . . . . .
. . . . . . .
X2 . . . 0 0 0

 .

Then the following is clearly a monad, giving rise to an instanton bundle
with c1 = 0, c2 = n and with ` as a jumping line of order n (and also another
jumping line X2 = X3 = 0 of order n):

0 −→ nOP3(−1)

[
−ψ∨
φ∨

]
−−−−−→ (n+ 1)OP3 ⊕ (n+ 1)OP3

[
φ ψ

]
−−−−→ nOP3(1) −→ 0.

Hence such bundles do exist. (See Remark 1.)
Now let E be any instanton bundle with c1 = 0, c2 = n and with ` as a

jumping line of order n. It has a monad which can be decomposed as

0 −→ nOP3(−1)

[
φ′

ψ′

]
−−−→ (n+ 1)OP3 ⊕ (n+ 1)OP3

[
φ ψ

]
−−−−→ nOP3(1) −→ 0,

where φ =


X0 X1 0 . . . 0
0 X0 X1 . . . 0
. . . . . . .
. . . . . . .
0 0 0 . . . X1

 . This follows from the Claim in §2. We may

write down a commuting square

nOP3(−1) ψ′−−−→ (n+ 1)OP3

−φ′
y yψ

(n+ 1)OP3
φ−−−→ nOP3(1)

.

The map φ defines the curve C by means of its maximal minors. We claim
that so does ψ′. To see this, since φ ≡ 0 modulo (X0, X1), ψ has rank n at
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each point of `. Let ψ̄ = ψmodulo(X0, X1). Then as a matrix in X2 and X3,
ψ̄ fits into the exact sequence

0 −→ OP1(−n) −→ (n+ 1)OP1
ψ̄−→ nOP1(1) −→ 0.

From the equation −φφ′ = ψψ′, we get ψψ′ ≡ 0 modulo (X0, X1). However
the kernel of ψ̄ has sections only in degree n, hence ψ′ ≡ 0 modulo (X0, X1).
Now the analysis of §2 applied to ψ′∨ in the dual monad shows that ψ′ also
defines the curve C by means of its maximal minors. Hence the commutative
diagram above can be completed to
(∗)

0 −−−→ nOP3(−1) ψ′−−−→ (n+ 1)OP3 −−−→ IC(n) −−−→ 0

−φ′
y yψ yt

OP3(−n) −−−→ (n+ 1)OP3
φ−−−→ nOP3(1) −−−→ ωC(4− n) −−−→ 0

and the homomorphism IC(n) t−→ ωC(4− n) is onto.
Now suppose Ẽ is another mathematical instanton bundle with c1 =

0, c2 = n and with the same ` as jumping line of order n. Its monad can be
split and we can assume that we get φ̃, ψ̃, φ̃′, ψ̃′ in the same way as φ, ψ, φ′, ψ′,
and in fact we may assume after change of bases that φ̃ = φ and ψ̃′ = ψ′. An
isomorphism of E with Ẽ can be lifted to an isomorphism of monads, with

matrices P,

[
A B
C D

]
, Q and with Q

[
φ ψ

]
=
[
φ ψ̃

] [A B
C D

]
. Hence we get the

equation Qφ = φA + ψ̃C. Modulo (X0, X1), this gives ψ̃C ≡ 0, and since
the kernel of ψ̃ mod(X0, X1) has sections only in degree n, we get C = 0. So
Qφ = φA. Viewed on P1, Q∨, A∨ are the unique lifts of an automorphism of
OP1(n), hence they are scalar matrices λ. Likewise, P,D are scalar matrices
µ. It follows that the nowhere vanishing sections t, t̃ given by the diagrams
(∗) and its analogue for Ẽ satisfy λt = µt̃, since B provides a homotopy of
the corresponding diagrams.

Thus if E ∼= Ẽ then the corresponding homomorphisms t, t̃ : IC(n) −→
ωC(4− n) differ by a nonzero scalar. Conversely, if E and Ẽ give rise to t, t̃
such that t = λt̃, λ 6= 0, we see from (∗) that the lifts of t and λt̃ which are
(−φ′, ψ) and (−λφ̃′, λψ̃) must differ by a homotopy B, and we can recreate
the isomorphism of monads and hence an isomorphism from E to Ẽ .

We have seen that there is one t : IC(n) −→ ωC(4− n) which is surjective,
since we showed the existence of one bundle with jumping line ` of order n.
Let V be the vector subspace of Hom((n+ 1)OP3 , nOP3(1)) consisting of all
homomorphisms which lift elements of Hom(IC(n), ωC(4− n)). Since every
element of Hom(IC(n), ωC(4 − n)) can be lifted, there is an open set in V
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consisting of elements ψ which lift surjective elements t of Hom(IC(n), ωC(4−
n)) . ψ in turn gives rise to a unique −φ′ to get the commuting diagram

nOP3(−1) φ∨−−−→ (n+ 1)OP3

−φ′
y yψ

(n+ 1)OP3
φ−−−→ nOP3(1)

(the existence and uniqueness of −φ′ arising from the fact that the kernel of

φ is OP3(−n)). Since there is one ψ for which the pair of maps (φ, ψ),

(
φ′

φ∨

)
is a monad , it follows that for the general choice of ψ ∈ V , the pair of

maps (φ, ψ),

(
φ′

φ∨

)
will also give a monad; that is to say, the map

(
φ′

φ∨

)
will also be an injection of vector bundles. Thus the general element of
Hom(IC(n), ωC(4−n)) gives rise to a rank two bundle which is the homology
of the monad thus constructed, and it is evident from the form of the monad
that this bundle is a mathematical instanton bundle with c1 = 0, c2 = n and
with ` as a jumping line of order n.

Remark 1. To the best of our knowledge, Peskine first looked at examples
of type (†). In the monad written down, one can change degrees of the matrix
entries. So one can replace the pair X0, X1 by any forms of the same degree
and the pair X2, X3 by forms of the same degree so chosen that the four forms
have no common zeros in P3, to still have a monad. In particular, keeping
X2, X3 and replacing X0, X1 by forms of degree 2n − 1, we get a monad
0 −→ nOP3(−n) −→ (n+1)OP3(−n+1)⊕(n+1)OP3(n−1) −→ nOP3(n) −→ 0.
This gives a stable bundle with X2 = X3 = 0 as a jumping line of order
2n2−1, with c2 = n2 +n−1, hence an extremal example for which the order
of the jumping line is equal to 2c2 + 2 − √4c2 + 5, the bound obtained by
Chang [C].

Remark 2. The construction described above should be called a Ferrand
construction since it is similar to the construction of Ferrand [F] on locally
complete intersection curves. In fact, looking at (∗), we see that the map
from OP3(−n) results in a section of E(n), and the zero scheme of this
section is just the curve whose ideal sheaf is given by the kernel of t. So
the construction gives a subcanonical double structure on C, where unlike
in Ferrand’s situation, C is not a locally complete intersection curve.

We can now estimate the size of the set of mathematical instanton bundles
with jumping line of order n. We will compute the dimension of the vector
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space Hom(IC(n), ωC(4−n)) and it will then suffice to see whether the same
E can be obtained through a different jumping line of order n. We will see
below that this cannot happen in general for n ≥ 3, hence the dimension
of the set of instanton bundles with jumping lines of order n equals the
dimension of the set of lines in P3+ the dimension of Hom(IC(n), ωC(4−n))
−1.

Proposition. If C is the curve with I(C) = (X0, X1)n, n > 1, then the di-
mension of Hom(IC(n), ωC(4−n)) is 6n−1, and the general homomorphism
in this space gives rise to an instanton bundle with a unique jumping line of
order n (if n ≥ 3). Hence the set of instanton bundles with c1 = 0, c2 = n ≥ 3
and with a jumping line of order n has dimension equal to 6n+ 2.

Proof. (i) Let r be an integer with 0 ≤ 1− r < n. Since there is no nonzero
map from nOP3(−1) to ker(φ), an element of Hom(IC(n), ωC(4− n− r)) is
equivalent to a homotopy equivalence class of morphisms of complexes

nOP3(−1) φ∨−−−→ (n+ 1)OP3

A

y B

y
(n+ 1)OP3(−r) φ−−−→ nOP3(1− r)

.

We start by considering the problem over P1 (insisting that A and B have
entries only involving X0, X1). Viewed as such, the diagram induces a con-
necting morphism H0(cok(φ∨)) −→ H1(ker(φ)), or after twisting down ap-
propriately, H0(OP1) −→ H1(OP1(−2n − r)). It is straightforward to verify
that homotopy classes of these complexes over P1 are in one-to-one corre-
spondence with elements of H1(OP1(−2n−r)). Now morphisms over P3 can
be obtained by combinations of morphisms over P1 using the other variables
X2, X3. Hence
dim Hom(IC(n), ωC(3− n)) = h1(OP1(−2n− 1)) = 2n and
dim Hom(IC(n), ωC(4 − n)) = h1(OP1(−2n)) + 2h1(OP1(−2n − 1)) = 2n −
1 + 2n+ 2n = 6n− 1.

(ii) Suppose a bundle E has two jumping lines `, `′ of order n. Suppose that
` and `′ are not disjoint, with the point x in common. Then if we think of
the map β in the monad for E as a map V ⊗k OP3

β−→ nOP3(1), we get two
subspaces W,W ′ of V , both of dimension n + 1, such that β restricted to
W ⊗k OP3 is a matrix with entries in the ideal of `, and likewise for W ′.
Hence β restricted to W + W ′ vanishes at x. Therefore the dimension of
W +W ′ must be ≤ n+ 2, since β is surjective at x. β restricted to W ∩W ′

has entries involving only the form H of the plane spanned by `, `′. Hence,
viewed as a map on P1, β restricted to W has kernel equal to W ∩W ′ at the
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point H = 0 of P1. But β restricted to W is the map φ1 studied in §2, which
was onto when viewed as a map on P1. Hence W ∩W ′ is one dimensional,
which is a contradiction. Therefore ` and `′ must be disjoint.

Let ` have equations X0 = X1 = 0 and `′ have equations X2 = X3 = 0.
There is a decomposition of β as (φ1, φ2) where φ1 has only X0, X1 and φ2

has only X2, X3. The induced element of Hom(IC(n), ωC(4 − n)) then has
the form X2t + X3t

′. Hence it suffices to show that the general element of
Hom(IC(n), ωC(4 − n)) cannot be written in the form X ′2u + X ′3u

′, for any
choice of u, u′ and X ′2, X

′
3 (complementing X0, X1). (In fact the element can

be a general perturbation of the section X2t+X3t
′, and since this will be a

surjective homomorphism, it gives rise to a corresponding bundle with only
` as a jumping line of order n.)

Let t, t′ be linearly independent in Hom(IC(n), ωC(3 − n)) and choose
r ∈ Hom(IC(n), ωC(4− n)) of the form X0r0 +X1r1 but which is not in the
span of multiples of t, t′ by X0, X1 (since n ≥ 3, this can be done). Then we
claim that r+X2t+X3t

′ cannot be written as X ′2u+X ′3u
′. For suppose they

are equal. Since X ′2 = a(X0, X1) + b(X2, X3), X ′3 = c(X0, X1) + d(X2, X3),
we see that

X2t+X3t
′ = b(X2, X3)u+ d(X2, X3)u′

X0r0 +X1r1 = a(X0, X1)u+ c(X0, X1)u′.

Since there are no nontrivial relationships involving only X2, X3 we see that
t, t′ are scalar combinations of u, u′, and since t, t′ span a two dimensional
space, conversely u, u′ are scalar combinations of t, t′ . Hence r is in the span
of multiples of t, t′ by X0, X1, against our assumption.
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