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EQUIVALENCE OF ANALYTIC AND SOBOLEV POINCARÉ
INEQUALITIES FOR PLANAR DOMAINS

Alexander Stanoyevitch and David A. Stegenga

For a finitely connected planar domain Ω it is shown that
the analytic-Poincaré inequality

‖f(z)− f(z0)‖Lp(Ω) ≤ Ka
p (Ω)‖f ′(z)‖Lp(Ω)

holds uniformly for all holomorphic functions f on Ω (z0 ∈ Ω
fixed, Ka

p (Ω) an absolute constant) if and only if the Sobolev-
Poincaré inequality ‖u(z)‖Lp(Ω) ≤ Kp(Ω)‖∇u(z)‖Lp(Ω) holds for
an absolute constant Kp(Ω) and for all u ∈ C1(Ω) whose integral
over Ω is zero. This paper extends a result of Hamilton (1986)
who established this equivalence when 1 < p <∞.

1. Introduction.

Let Ω ⊆ R2 be a domain, i.e., an open connected set, of finite area |Ω|.
For an exponent p, 1 ≤ p ≤ ∞ we say that Ω is an analytic p-Poincaré
domain provided that there exists a constant Ka

p (Ω) such that the analytic
p-Poincaré inequality

(1) ‖f(z)− f(z0)‖Lp(Ω) ≤ Ka
p (Ω)‖f ′(z)‖Lp(Ω)

holds for each holomorphic function f ∈ H(Ω). Here z0 is any fixed “base
point” in Ω. It is easy to check that the validity of (1) is independent of
the choice of z0, although the best constant in (1) will depend on z0. The
domain Ω is called a Sobolev p-Poincaré domain if there exists an absolute
constant Kp(Ω) such that the Sobolev p-Poincaré inequality

(2) ‖u(z)− uΩ‖Lp(Ω) ≤ Kp(Ω)‖∇u(z)‖Lp(Ω)

holds for all smooth functions u ∈ C1(Ω) ∩Lp(Ω). We are letting uΩ denote
the average value of u over Ω, i.e.,

uΩ =
1
|Ω|

∫
Ω

u(z) dA(z).

The Poincaré inequalities are useful for an assortment of applications so it
is useful to know when Poincaré inequalities hold on a given domain Ω. We
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shall see (in Section 2) that the analytic p-Poincaré inequality (1) is equiv-
alent to the validity of (2) with the functions u being restricted to be in
H(Ω) ∩ Lp(Ω). Thus, the analytic Poincaré inequalities can be viewed
as weaker versions of the corresponding Sobolev-Poincaré inequalities where
the “test functions” are assumed to be analytic. With this formulation it
is clear that if Ω is a Sobolev p-Poincaré domain then it is also an analytic
p-Poincaré domain. Hamilton [Ham] showed that the reverse implication
holds provided 1 < p < ∞. Actually his result was stated with the as-
sumptions p = 2 and Ω is simply connected but all that his proof needs is
1 < p < ∞ (no topological assumptions on Ω are required). The main tool
in his proof is the boundedness of the Hilbert and Cauchy transforms on Lp,
and since these transforms are badly unbounded on L1 and L∞ his proof
yields no information on the borderline cases p = 1 and p =∞. Making use
of more explicit constructions, we shall prove the following:

Main Theorem. If p = 1 or p =∞ and if Ω ⊆ R2 is a finitely connected
analytic p-Poincaré domain, then Ω is a Sobolev p-Poincaré domain.

In proving this theorem, the point that will allow us to pass from simply
connected to finitely connected domains is that the finitely many compo-
nents of ∂Ω cannot work together to thwart the Poincaré inequality (either
the analytic or Sobolev version) if one of them could not do the job sepa-
rately. For domains of infinite connectivity, the interrelationships of the indi-
vidual boundary components becomes pertinent and the present approach of
constructing appropriate analytic test functions does not apply. The result
should, however, still be true.

Question. Are the analytic and Sobolev p-Poincaré inequalities equivalent
for arbitrary planar domains of finite area?

The Sobolev p-Poincaré inequality (2) makes sense for n-dimensional do-
mains Ω ⊆ Rn of finite volume. These Poincaré inequalities have numerous
applications, for example, it is well known that the validity of (2) for p = 2 is
tantamount to the solvability of the Neumann problem with arbitrary data.
For details on this see §4.10 in [Maz] and §4 in [Sta]. Thus it is often re-
quired to determine if a given domain Ω supports a p-Poincaré inequality.
We have shown that in 2-dimensions (at least for finitely connected domains)
the class of test functions needed to verify (2) can be reduced from the class
of smooth functions C1(Ω) ∩ Lp(Ω) to the much smaller class of analytic
functions H(Ω) ∩ Lp(Ω). It would be interesting and useful to know if an
analogous reduction is valid in higher dimensions.

Question. For a domain Ω ⊆ Rn(n > 2) of finite volume, is it sufficient
to test the p-Poincaré inequalities (2) on the class of harmonic functions in
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Lp(Ω)? How about the class of quasiconformal functions in Lp(Ω)?

2. The Case p = 1.

The first order of business will be to observe that the analytic 1-Poincaré
inequality is equivalent to the validity of (2) with the test functions u being
restricted to lie in H(Ω) ∩ L1(Ω). Indeed for such a test function u, and a
given base point z0, the mean value property gives that

u(z0) = uB

where B ⊂ Ω is any disk centered at z0. The above equivalence is thus a
consequence of the following

Lemma. If u ∈ L1(Ω) and A ⊂ Ω is a measurable set of positive area then(
1 +
|Ω|
|A|
)−1 ∫∫

Ω

|u(x, y)− uA| dxdy ≤
∫∫
Ω

|u (x, y)− uΩ| dxdy

≤ 2
∫∫
Ω

|u (x, y)− uA| dxdy.

Proof. Using the triangle inequality, we have∫∫
Ω

|u− uΩ| ≤
∫∫
Ω

(|u− uA|+ |uA − uΩ|)

=
∫∫
Ω

|u− uA|+ |Ω||uA − uΩ|.

Now,

|uA − uΩ| =
∣∣∣∣∣∣uA − 1

|Ω|
∫∫
Ω

u (x, y) dxdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
|Ω|

∫∫
Ω

(u (x, y)− uA)

∣∣∣∣∣∣
≤ 1
|Ω|

∫∫
Ω

|u− uA|.

Combining these two estimates produces the second inequality of the Lemma.
The first inequality is obtained in a similar fashion.
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Remark. A similar argument would yield the corresponding equivalence
for p-Poincaré domains for all p ≥ 1.

Our approach to proving the Main Theorem will be to assume Ω is not
a Sobolev 1-Poincaré domain and to construct explicit analytic functions
which would force the constant Ka

1 (Ω) in the analytic 1-Poincaré inequality
(1) to be arbitrarily large. To accomplish this construction we shall need
some sort of geometric consequence of Ω failing to be a Sololev 1-Poincaré
domain. This will be provided by the following geometric characterization
of simply connected Sobolev 1-Poincaré domains which appeared as part of
Theorem A in [StSt].

Theorem. If Ω ⊆ R2 is a simply connected domain of finite area, then Ω
is a Sobolev 1-Poincaré domain if and only if L <∞ where

(3) L = sup
{ |Ωσ|
`(σ)

: σ a segmental crosscut of Ω
}
.

Here Ωσ is a subdomain of Ω\σ of minimal area and `(σ) denotes the length
of the segment σ. Moreover, the best (i.e., smallest) constant K1(Ω) that
works in (2) is comparable to L.

The construction will be separated into three stages. First we deal with Ω
being a Jordan domain with a polygonal boundary. Next we use this special
case together with a normal families argument to establish the result for
arbitrary simply connected domains. The proof will be completed by using
the simply connected case to prove the general result for finitely connected
domains. We now fix a base point z0 ∈ Ω and for convenience we assume
that |Ω| = 1.

Step 1. Ω is a polygonal Jordan domain.
Let σ be a “short” segmental crosscut of Ω with `(σ) much less than δΩ(z0),
where = dist{z0, ∂Ω} and much less than |Ωσ|. By the previously mentioned
theorem it will suffice to construct a function f ∈ H(Ω) ∩ L1(Ω) which
satisfies ∫∫

Ω

|f(z)− f(z0)| dA(z) & |Ωσ|(4)

and ∫∫
Ω

|f ′(z)| dA(z) = O (` (σ)) .(5)

The symbol “& ” means greater than or equal to modulo an absolute con-
stant. We also use the notation a ≈ b to denote a . b . a.
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By an isometric change of variables, we can write

σ = [−η, η], with η > 0.

Note that by our assumption on σ, dist{σ, z0} is much greater than η.
We let Ωσ(z0) denote the component of Ω \ σ which contains z0, and set

Γ = ∂Ωσ(z0) \ σ. Since Γ is itself a (polygonal) Jordan arc, its complement
G = Ĉ \ Γ is simply connected and it follows (from [Rud, Theorem 13.11]
along with an inversion) that there exists a holomorphic square root of the
nonvanishing analytic function z2−η2. We denote this function by

√
z2 − η2.

Consider the function

(6) f(z) =
z√

z2 − η2
∈ H(G).

Clearly

(7) dist (f (z) , {±1}) < 1
2

for |z| > Mη

where M > 0 is sufficiently large. An economical choice for M could easily
be obtained but we do not require such precision. All that is important for
our purposes is to note that a choice for M can be made which is independent
of η.

From the continuity of f on Ω, it follows that a single sign in (7) will
persist in each component of Ω \ Ball(0,Mη). For definiteness we assume
that f(z0) is close to 1 in the sense of (7) (if not, replace

√
z2 − η2 with

−√z2 − η2).
We let 〈Dj〉kj=1 denote the (finitely many) components of Ω \Ball(0,Mη).

Note that each Dj is itself a Jordan domain whose boundary ∂Dj consists
of a subset of ∂ Ball(0,Mη) together with a subset of either Γ or ∂Ω \ Γ
(but not both!). We partition the Dj’s into two categories: 〈Ai〉kAj=1, 〈Bj〉kBj=1

where each Ai satisfies ∂Ai ∩ Γ 6= ∅ and each Bj satisfies ∂Bj ∩ Γ = ∅. For
each j ∈ {1, ..., kB} we let γj denote a path in C \ Ball(0,Mη) which joins
z0 to Bj and which crosses Γ transversally a finite number, nj, of times.

We next use the fact that Γ is the natural boundary of our function√
z2 − η2 and furthermore, each time z crosses Γ (at a nonendpoint, i.e.,

at a point 6= ±η) the sign of
√
z2 − η2 reverses. Indeed, suppose that this

fails for some point w0 ∈ Γ. It follows from a routine analytic continuation
argument that our function

√
z2 − η2 would have an analytic extension to

all of C \ {±η}, and hence (as these singularities are removable) to all of C.
Thus, z2 − η2 is the square of some entire function. This is impossible since
this function has simple zeros.
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It follows that each time γj crosses Γ, the sign in (7) changes. Also since
an even number of crossings (nj) would result in landing in an Ai, it follows
that nj is odd for all j, and consequently

(8) |f(z)− f(z0)| ≥ 1 (z ∈ ∪ Bj).
We claim that

(9) | ∪ Bj| & |Ωσ|.
There are two cases depending on which of the two components of Ω \σ has
the larger area. If z0 ∈ Ωσ then | ∪ Bj| is large, at least 1/4 for small η, and
so (9) is clear. On the other hand, if z0 /∈ Ωσ, then

|Ωσ| ≤ | ∪ Bj|+ |Ball(0,Mη)|
and again (9) follows since our assumption is that η is small compared to
the area of Ωσ.

Using (8) and (9) we conclude∫∫
Ω

|f(z)− f(z0)|dA(z) ≥
∫∫
∪ Bj

|f(z)− f(z0)|dA(z)

≥ | ∪ Bj|
& |Ωσ|

which establishes (4).
Differentiating (6) yields

(10) |f ′(z)| = η2

|z − η| 32 |z + η| 32 .

To estimate the integral, we partition the domain Ω into the following four
subdomains:

Ω1 = {z ∈ Ω : |z − η| < η}
Ω2 = {z ∈ Ω : |z + η| < η}
Ω3 = {z ∈ Ω : |z| < 3η} \ {Ω1 ∪ Ω2}
Ω4 = {z ∈ Ω : |z| ≥ 3η}.

For z ∈ Ω1, |z + η| ≈ η so by (10),∫∫
Ω1

|f ′(z)|dA(z) ≈ √η
∫ 2π

0

∫ η

0

r

r
3
2
dzdθ ≈ η.
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By the same token we get ∫∫
Ω2

|f ′(z)|dA(z) ≈ η.

For z ∈ Ω3, |z ± η| ≈ η so by (10), |f ′(z)| ≈ 1
η

and since |Ω3| ≈ η2 it follows
that ∫∫

Ω3

|f ′(z)|dA(z) ≈ η.

Finally, for z ∈ Ω4, we find |z ± η| ≈ |z| so that |f ′(z)| ≈ η2

|z|3 and hence∫∫
Ω4

|f ′(z)|dA(z) . η2

∫ 2π

0

∫ ∞
3η

r

r3
drdθ

≈ η2 1
η

= η

as well, and (5) is established.
Since `(σ) ≈ η, we have shown that

(11)
|Ωσ|
`(σ)

.

∫∫
Ω

|f − f(z0)|dA(z)∫∫
Ω

|f ′(z)|dA(z)
≤ Ka

1 (Ω)

provided that `(σ) is small compared to δΩ(z0) and |Ωσ|. Hence the supre-
mum L of (3) has been shown to be finite if Ω is an analytic 1-Poincaré
domain. Step 1 is complete.

Step 2. Ω is a simply connected domain.
The approach will be the same as in Step 1: We let σ be a short segmental
crosscut of Ω and wish to construct a function f ∈ H(Ω) ∩ L1(Ω) which
satisfies (4) and (5).

Claim. There exists a sequence 〈Ωn〉∞n=1 of polygonal Jordan domains inside
Ω such that
(i) |Ωσ \ Ωn| −→ 0,Ωn ⊂⊂ Ωn+1 and

(ii) σn
DEF≡ Ωn ∩ σ is a segmental crosscut of Ωn with `(σn) −→ `(σ).

The proof of the Claim is a straightforward construction and we omit the
details.

For each n we may assume z0 ∈ Ωn, and we let Ωn(z0) denote the compo-
nent of Ωn \ σn which contains z0. We write

σn = [an, bn], σ = [a, b],
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so that an ↘ a, bn ↗ b and let

(12) fn(z) =
z√

(z − an)(z − bn)

correspond to the pair 〈Ωn, z0〉 in the construction of Step 1. Note that
|fn(z0) − 1| < 1

2
. Now for each fixed n0, the family 〈fn〉n>n0 is uniformly

bounded on Ωn and is hence a normal family. Thus (by Theorem 15, p. 224
in [Ahl]) there exists f ∈ H(Ω) such that

fn −→ f

uniformly on compact subsets of Ω. From (12) and since an −→ a, bn −→ b
we conclude

f(z) =
z√

(z − a)(z − b)
and hence the estimate (5) follows exactly as in the proof of Step 1. As for
(4) we first note on Ωn0 , |fn| . |f | for n > n0. Hence, given ε > 0, we can
find n0 such that∫

Ωσ\Ωn0

|fn(z)− fn(z0)|dA(z) < ε (all n ≥ n0).

Next choose n1 > n0 such that for all n > n1

|f(z)− fn(z)| < ε on Ωn0 .

We may now conclude that∫
Ω

|f(z)− f(z0)|dA(z)

&
∫

Ωn0\Ball( a+b
2 ,Mη)

|f(z)− f(z0)|dA(z)

≥
∫

Ωn0\Ball( a+b
2 ,Mη)

|fn(z)− fn(z0)|dA(z)− 2ε

≥
∫

Ωn\Ball( a+b
2 ,Mη)

|fn(z)− fn(z0)|dA(z)− 3ε

& |Ωσn | − 3ε.

Since this holds for all n > n0, and ε > 0 we obtain∫
Ω

|f(z)− f(z0)|dA(z) & |Ωσ|,
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as desired.

Step 3. Ω is a finitely connected domain.

Write

∂Ω = Γ0 ∪
k⋃
i=1

Γi

where Γ0 is the outer boundary component and each Γi (i ≥ 1) is an inner
boundary component. Pick points zi in Int(Γi) (i ≥ 1) – the interior of Γi
and let Γ?i denote the image of Γi under the analytic inversion z 7→ 1/(z−zi).
Put

Ωi = Int(Γ?i ) (i ≥ 1)

and

Ω0 = Int(Γ0).

Let us show that Ω0 is a 1-Poincaré domain whenever Ω is a 1-Poincaré
domain. Start by constructing a simply connected domain D ⊂ Ω0 with a
smooth boundary lying in Ω, i.e., the holes of Ω are contained in D. Since
D has a smooth boundary, it is well known to be a 1-Poincaré domain. By
the lemma, we may take averages over any disk A ⊂ Ω \ Ω0 in place of uΩ.
Given a smooth test function on Ω0, then since Ω and D are both 1-Poincaré
domains we have that∫

Ω0

|u− uA| ≤
∫
Ω

|u− uA|+
∫
D

|u− uA| .
∫
Ω0

|∇u|

and hence Ω0 is also a 1-Poincaré domain.
Since the above inversion mappings are all bilipschitz homeomorphisms

on Ω, it follows in a similar manner that the (analytic or Sobolev) Poincaré
inequality holds on Ω if and only if it holds on each Ωi(0 ≤ i ≤ k).

Hence, if Ω failed to be a Sobolev 1-Poincaré domain then so would some
Ωi and the construction in Step 2 would furnish analytic functions on Ωi

which would pull back to analytic functions on Ω (by the inversion z 7→
1/(z − zi) if i ≥ 1, and by simple restriction if i = 0) which would violate
the analytic Poincaré inequality (1) for any given constant Ka

1 (Ω).

3. The Case p =∞.

We first consider the reduction of the Main Result to the case of simply
connected domains. The argument in the previous section works equally
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well for the case p =∞ once we establish that any bounded domain with a
smooth boundary is an∞-Poincaré domain. One method for proving this is
to apply the following proposition.

Proposition. Let Ω be any domain, z0 ∈ Ω and denote the inner distance
in Ω by

dΩ(z0, z) = inf{`(γ) : γ curve in Ω from z0 to z}.
If DΩ(z0) = supz∈Ω dΩ(z0, z) <∞ then Ω is an ∞-Poincaré domain and

K∞(Ω) ≤ 2DΩ(z0).

Proof. For u ∈ C1(Ω) and z ∈ Ω we have (by Calculus) that

|u(z)− u(z0)| ≤
∫
γ

|∇u| ds ≤ ‖∇u‖L∞(Ω) · `(γ)

for any curve γ in Ω which connects z0 to z. Thus,

|u(z)− u(z0)| ≤ DΩ(z0)‖∇u‖L∞(Ω)

which yields the result since

|u(z)− uΩ| ≤ |u(z)− u(z0)|+ 1
|Ω|

∫
Ω

|u− u(z0)| ≤ 2DΩ(z0)‖∇u‖L∞(Ω).

Theorem. Let Ω be a simply connected domain with finite area and z0 ∈ Ω.
Then,

Ka
∞(Ω) ≈ K∞(Ω) ≈ DΩ(z0).

In order to prove this theorem we first observe that by the proposition
and a calculation similar to one in §2 we have that

Ka
∞(Ω) . K∞(Ω) . DΩ(z0).

and hence we must prove that DΩ(z0) . Ka
∞(Ω). This requires constructing

an analytic function and this is done in the next section.
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4. The Construction of an analytic test function.

Fix a simply connected domain Ω, with nonempty boundary and let γ be a
hyperbolic geodesic in Ω, i.e., γ is the image of a diameter of the unit disk
under a Riemann mapping function. Suppose further that {wn}∞n=−∞ is a
sequence of points on γ satisfying

ρΩ(wn, wm) = n−m −∞ < m < n <∞,
where ρΩ denote the hyperbolic distance in Ω, see [Ahl2, §1.1]. Recall that
δΩ(w) denotes the Euclidean distance to ∂Ω.

Lemma. There are apriori constants c1 > 0, c2 > 0, 0 < α < 1 and an
analytic function f on Ω satisfying
(i) If a ∈ γ precedes w−1 and b ∈ γ follows w1, then

<
 ∫
γ(a,b)

f dw

 ≥ c1`(γ(w−1, w1)).

(ii) Let w ∈ Ω and let τ be the hyperbolic geodesic through w which is
orthogonal to γ. If τ intersects γ between wn and wn+1, then

|f(w)| ≤ c2α
|n|.

Proof. Let ϕ : Ω → ∆ be the Riemann mapping function which maps Ω
to the unit disk ∆ and maps γ into the imaginary axis. This mapping is
uniquely determined by requiring that ϕ(w0) = 0 and =ϕ(w1) > 0. Let ψ
be the inverse mapping.

Choose |λ|=1 so that iλψ′(0) = |ψ′(0)|. Now it follows from the Koebe
distortion theorem, see [Pom, §1.3], that

< (iλψ′(it)) ≥ 1
2
|ψ′(0)|

for |t| < η, where η > 0 is some apriori constant. Another consequence of
the distortion theorem is that

(1− t2)3|ψ′(it)| ≤ 16|ψ′(0)| (|t| < 1).

Now fix an integer p ≥ 3, which will be chosen later, and define the
analytic function on Ω by

f(w) = λ

(
1 + ϕ(w)2

2

)p
(w ∈ Ω).
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To prove (i) let ϕ(a) = tai and ϕ(b) = tbi. By conformal invariance of the
hyperbolic metric we know that there is an apriori positive constant, which
we may as well assume is η, such that |ta| > η and |tb| > η. Combining these
estimates with the above ones from the distortion theorem yield that

2p<
∫

γ(a,b)

f dw = <
∫ tb

ta

λ
(
1 + ϕ(ψ(it))2

)p
iψ′(it) dt

=
∫ tb

ta

(1− t2)p< (iλψ′(it)) dt

≥
[∫ η

0

(1− t2)p dt− 32
∫ 1

η

(1− t2)p−3 dt

]
|ψ′(0)|.

For p sufficiently large (depending on η) the quantity in brackets is positive.
Fix such a p and set c1 equal to this quantiy divided by 2p. One more
application of the distortion theorems yields that |ψ′(0)| is comparable to
`(γ(w0, w1)). Thus, (i) follows.

To prove (ii), fix w ∈ Ω and let τ be the geodesic in the hypothesis
of (ii). For concreteness, assume that τ intersects γ at the point w′ and
that ρΩ(w0, wn) ≤ ρΩ(w0, w

′) < ρΩ(w0, wn+1). Notice that this implies that
=ϕ(w′) > 0. Since ϕ(τ) is a geodesic in ∆ which is orthogonal to the
imaginary axis it is elementary that |i− ϕ(w)| ≈ |i− ϕ(w′)| and hence

|f(w)| =
∣∣∣∣1 + ϕ(w)2

2

∣∣∣∣p ≤ |i− ϕ(w)|p

. |i− ϕ(wn)|p .
(

1− |ϕ(wn)|
1 + |ϕ(wn)|

)p
= exp(−pρ∆(0, ϕ(wn))) = exp(−pρΩ(w0, wn)) = e−np.

Hence c2, α can be chosen (depending only on p) so (ii) holds. This completes
the proof.

Theorem. DΩ(w0) . Ka
∞(Ω).

Proof. Suppose that 0 < D < DΩ(w0). Then there must be a hyperbolic
geodesic γ with `(γ) > D. Fix such a γ and let {wn}∞n=−∞ be a sequence of
points on γ satisfying the conditions in the lemma. Removing w0 from γ we
split γ into two parts γ+ and γ− based on the indices for the wn’s. We will
assume that `(γ+) ≥ D/2.

For each integer n let fn be the analytic function on Ω constructed in the
lemma with the point wn playing the role of w0 in the lemma. Next, let

gn(w) =
n∑
j=1

∫ w

w0

fj dw (w ∈ Ω, n = 1, 2, . . . )
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then since Ω is simply connected the {gn} are all analytic on Ω.
By part (ii) of the lemma we have ‖g′n‖∞ < 2c2/(1−α) = c3 for all n. On

the other hand, part (i) yields that

<gn(wn+1) =
n∑
j=1

<
∫

γ(w0,wn+1)

fj dw

≥
n∑
j=1

c1`(γ(wj−1, wj)) ≥ c1`(γ(w0, wn+1)).

The analytic Poincaré inequality now implies that

|gn(wn+1)| = |gn(wn+1)− g(w0)| ≤ Ka
∞(w0)‖g′n‖∞

and combining this with the above inequality gives

D ≤ 2`(γ+) = 2 lim
n→∞ `(γ(w0, wn)) ≤ 2c3

c1

Ka
∞(w0)

which proves the theorem.
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