
pacific journal of mathematics
Vol. 178, No. 2, 1997

GLOBAL HEAT KERNEL ESTIMATES

Jiaping Wang

In this paper, by first deriving a global version of gradient
estimates, we obtain both upper and lower bound estimates
for the heat kernel satisfying Neumann boundary conditions
on a compact Riemannian manifold with nonconvex bound-
ary.

1. Introduction.

Let M be a compact Riemannian manifold with boundary ∂M . In their fun-
damental work [L-Y], P. Li and S.T. Yau had derived a version of gradient
estimates for the positive solutions to the heat equations on M . Using those
estimates, they then deduced a Harnack type inequality and demonstrated
how that be applied to establish various upper and lower heat kernel bounds
away from the boundary for both the Dirichlet and Neumann boundary con-
ditions. Due to the interior nature of their gradient estimates, in general the
heat kernel bounds do not extend up to the boundary. However, when the
boundary is convex or the manifold is closed, the gradient estimates are valid
globally, and so are the corresponding heat kernel bounds. In fact, in this
case the upper and lower heat kernel bounds they obtained are sharp when
the Ricci curvature of the manifold is nonnegative. One of our purposes in
this paper is to demonstrate that a global version of their gradient estimates
is also available when the boundary of M is nonconvex. This enables us to
prove a global Harnack type inequality, with which one conveniently obtains
an upper bound estimate valid up to the boundary for the heat kernel of
M satisfying Neumann boundary conditions. As an application, we show
that it together with a result of Varopoulos [V] readily gives us an estimate
of the Neumann Sobolev constant of a general compact manifold with non-
convex boundary. Turning around, we then derive a lower bound estimate
for the heat kernel. Notice that Croke [Cr] has estimated the isoperimet-
ric constants for the closed manifolds in terms of various geometric data.
The approach taken here does not allow us to estimate the isoperimetric
constants.

The method employed here to estalish the gradient estimate essentially
follows from [L-Y]. However, we shall point out that there are some technical
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complications due to the nonconvexity of the boundary as the estimates
then necessarily involve the second fundamental form of ∂M and a so-called
“interior rolling ball condition” for the boundary ∂M . The interior rolling
ball condition was used by R. Chen in [C] to give an estimate of the first
nonzero Neumann eigenvalue of M . We would also like to point out that the
argument here can be easily adapted to more general cases, for example, the
Schrödinger operators as considered in [L-Y]. But here we confine ourselves
only to consider the heat operators.

Another problem that we want to consider in this paper is to establish
the equivalence between the validity of a version of parabolic Harnack in-
equality and the existence of comparable upper and lower Gaussian bounds
on the minimal heat kernel on a general complete manifold. It had been
proved independently by Grigor’yan [G] and Saloff-Coste [SC] that a type
of parabolic Harnack inequality is characterized by the volume doubling
property and the weak-Neumann Poincaré inequality. On the other hand, it
is not difficult to see from the argument in [L-Y] that the validity of such a
parabolic Harnack inequality implies a Gaussian upper bound for the min-
imal heat kernel. Here, we first notice that such a Gaussian upper bound
together with the parabolic Harnack inequality actually implies that there
exists a comparable lower bound for the heat kernel. Then, with the help
of a result by Fabes and Stroock [F-S] and the above mentioned character-
ization of the parabolic Harnack inequality, we show that the existence of
such upper and lower bounds on the heat kernel actually implies that the
parabolic Harnack inequality holds. As a consequence, one sees that the
existence of such comparable upper and lower Gaussian bounds for the heat
kernel is an invariant property under quasi-isometries on the manifold.

The paper is organized as follows. In Section 2, we derive the global gra-
dient estimates for the positive solutions to the heat equation on a compact
manifold with boundary and satisfying the Neumann boundary conditions.
In Section 3, using the result from Section 2, we establish an upper bound
for the heat kernel of a compact manifold which satisfies Neumann boundary
conditions and as an application give an estimate of the Neumann Sobolev
constant. Finally, in Section 4, we prove the equivalence between the valid-
ity of a type of parabolic Harnack inequality and the existence of Gaussian
bounds on the heat kernel on a general complete manifold.

We would like to thank Professors Peter Li, Rick Schoen and Leon Simon
for their interest and many helpful suggestions.
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2. Global Gradient Estimates.

Let (Mn, g) be an n-dimensional compact Riemannian manifold with bound-

ary ∂M . Let
∂

∂ν
be the outward pointing unit normal vector to ∂M , and

denote the second fundamental form of ∂M with respect to
∂

∂ν
by II. Our

goal in this section is to derive estimates on the derivatives of positive solu-
tions u(x, t) on M × (0,∞) of the equation{

(∆− ∂
∂t

)u(x, t) = 0
∂u
∂ν
|∂M= 0.

(2.1)

Our estimates are of global nature and will be valid up to the boundary of
M . The corresponding interior estimates were previously established by P.
Li and S.T. Yau in their fundamental work [L-Y]. In fact, we shall use the
same method developed by them in [L-Y].
Definition 2.1. ∂M is said to satisfy the “interior rolling R-ball” condition
if for each point p ∈ ∂M there is a geodesic ball Bq(R2 ), centered at q ∈ M
with radius R

2
, such that p = Bq(R2 ) ∩ ∂M and Bq(R2 ) ⊂M .

Theorem 2.2. Let (Mn, g) be a compact Riemannian manifold with bound-
ary ∂M . Suppose that ∂M satisfies the “interior rolling R-ball” condition.
Let K and H be nonnegative constants such that the Ricci curvature RicM
of M is bounded below by −K and the second fundamental form II of ∂M
is bounded below by −H. By choosing R small, we have for any positive
solution u(x, t) of (2.1) on M × (0,∞),

|∇u|2
u2

− αut
u
≤ C1 +

C2

t
(2.2)

on M × (0,∞) for all constant

α > (H + 1)2 and 0 < β <
1
2

where

C1 =
6nα(α− 1)(1 +H)7K

(α− (1 +H)2)2
+

309n2α3(α− 1)(1 +H)10H

(α− (1 +H)2)4R2β

C2 =
nα2(α− 1)2(1 +H)4

(2− β)(1− β)(α− (1 +H)2)2
.

Proof. Following [C], we define a function on M by φ(x) = ψ

(
r(x)
R

)
,

where r(x) denotes the distance from x ∈M to ∂M and ψ(r) is a nonnegative
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C2-function defined on [0,∞) such that{
ψ(r) ≤ H if r ∈ [0, 1/2)
ψ(r) = H if r ∈ [1,∞)

with ψ(0) = 0, 0 ≤ ψ′(r) ≤ 2H, ψ′(0) = H and ψ′′(r) ≥ −H. Let
f = log u. Then (∆− ∂

∂t
)f(x, t) = −|∇f |2(x, t). Consider for every ε > 0

F (x, t) = t
{
(1 + φ(x))2(|∇f |2(x, t) + ε)− αft(x, t)

}
.

For any fixed T <∞, since F (x, t) is continuous on M̄ × [0, T ], there exists
(p, t0) ∈ M̄ × [0, T ] at which F achieves its maximum. We may assume that
F (p, t0) > 0 as otherwise (2.2) follows trivially.

Claim 1. p ∈ M̄\∂M.

In fact, if p ∈ ∂M , then
∂F

∂ν
(p, t0) ≥ 0. Let e1, e2, . . . , en be an or-

thonormal frame at p with en = ν. Notice that fn = fν =
∂u
∂ν

u
= 0 on ∂M.

Therefore, denoting ϕ(x) = (1 + φ(x))2, we have

0 ≤ ∂F

∂ν
(p, t0) = t0

(
∂ϕ

∂ν
(|∇f |2 + ε) + 2ϕ

n∑
i=1

fifiν − αfνt
)

(p, t0).

Since fν = 0 on ∂M and t0 > 0, we conclude that
∂ϕ

∂ν
· 1
ϕ

+
2
∑n−1
i=1 fifiν

|∇f |2 + ε
≥ 0

at (p, t0). By a direct computation, one shows that

n−1∑
i=1

fifiν = − II(∇f,∇f) ≤ H|∇f |2.

Thus at (p, t0), if we choose R < 1, then

∂ϕ

∂ν

1
ϕ

+
2
∑n−1
i=1 fifiν

|∇f |2 + ε

≤ −2H
R

+
2H|∇f |2
|∇f |2 + ε

< 0.

This is a contradiction and the claim follows. Thus, F (x, t) achieves its
maximum at (p, t0) ∈ (M̄\∂M)× (0, T ].
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Hence at (p, t0), ∇F = 0,
∂F

∂t
≥ 0 and ∆F ≤ 0. In the following, all

the computations are performed at the point (p, t0) and the summation con-
vention is used with indices i and j both moving between 1 and n. Direct
computation gives us

∆F = t
(
∆ϕ · (|∇f |2 + ε

)
+ ϕ∆|∇f |2 + 2∇ϕ · ∇|∇f |2 − α(∆f)t

)
= t

(
∆ϕ

(|∇f |2 + ε
)

+ 2ϕ(f2
ij + fifijj) + 2∇ϕ · ∇|∇f |2 − α(∆f)t

)
.

Since

fifijj = fifjji + Ric(∇f,∇f)

≥ ∇f · ∇(∆f)−K|∇f |2

and ∆f = ft − |∇f |2, we obtain

∆F ≥ t
{

∆ϕ
(|∇f |2 + ε

)
+ 2ϕ

(
f2
ij −K|∇f |2 +∇f · ∇(∆f)

)
+ 2∇ϕ · ∇|∇f |2 − α (ft − |∇f |2)t}.

Also Ft = ϕ(|∇f |2 +ε)−αft+ t(ϕ|∇f |2t −αftt). Thus 0 ≥ ∆F − ∂F
∂t

implies

0 ≥ t
{

∆ϕ
(|∇f |2 + ε

)
+ 2ϕf2

ij − 2Kϕ|∇f |2 + 2ϕ∇f · ∇ (ft − |∇f |2)
+ 2∇ϕ · ∇|∇f |2 + (α− ϕ)|∇f |2t

}
− ϕ (|∇f |2 + ε

)
+ αft

= t
{
ε∆ϕ+ (∆ϕ− 2Kϕ)|∇f |2 + 2ϕf2

ij

}
− F

t

+ t
{

2∇ϕ · ∇|∇f |2 − 2ϕ∇f · ∇|∇f |2 + 2α∇f · ∇ft
}
.

Using the fact that

∇F = t
{(|∇f |2 + ε

)∇ϕ+ ϕ∇|∇f |2 − α∇ft
}

= 0,

we get

0 ≥ t
{
ε∆ϕ+ (∆ϕ− 2Kϕ)|∇f |2 + 2ϕf2

ij

}
− F

t
+ 2t∇ϕ · ∇|∇f |2 + 2t

(|∇f |2 + ε
)∇ϕ · ∇f
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≥ t
{
ε∆ϕ+ (∆ϕ− 2Kϕ)|∇f |2 + 2ϕf2

ij

}
− F

t
+ 4tϕifjfij − 2t|∇ϕ||∇f |3 − 2t|∇ϕ||∇f |ε

≥ 2ϕtf2
ij + t(∆ϕ− 2Kϕ)|∇f |2 + εt∆ϕ− F

t

− 4t
β
|∇ϕ|2|∇f |2 − βtf2

ij − 2t|∇ϕ||∇f |3 − |∇ϕ|2tε− |∇f |2tε

≥ (2ϕ− β)tf2
ij + t

(
∆ϕ− 2Kϕ− 4

β
|∇ϕ|2 − ε

)
|∇f |2

− 2t|∇ϕ||∇f |3 + εt
(
∆ϕ− |∇ϕ|2)− F

t
.

Since
∑

f2
ij ≥

∑
f2
ii ≥

(
∑
fii)2

n
=

(∆f)2

n
=

(|∇f |2 − ft)2

n
,

0 ≥ (2ϕ− β)t2

n

(|∇f |2 − ft)2 − 2t2|∇ϕ||∇f |3(2.3)

+ t2
(

∆ϕ− 2Kϕ− 4
β
|∇ϕ|2 − ε

)
|∇f |2 + εt2

(
∆ϕ− |∇ϕ|2)− F.

Claim 2.

(|∇f |2 − ft)2 ≥ (1− β) (α− (1 +H)2)2

(α− 1)2(H + 1)4

(
ϕ
(|∇f |2 + ε

)− ft)2 − 2ε2

β
.

In fact, using the elementary inequality a2 ≥ (1 − β)(a + b)2 − 2
β
b2, we

conclude that

(|∇f |2 − ft)2 ≥ (1− β)
(|∇f |2 + ε− ft

)2 − 2ε2

β
.

On the other hand, F ≥ 0 at (p, t0), hence

ϕ
(|∇f |2 + ε

)− αft ≥ 0.

In other words,

ft ≤ ϕ

α

(|∇f |2 + ε
)
.(2.4)

Therefore

(1− β)
(|∇f |2 + ε− ft

)2 − (1− β) (α− (1 +H)2)2

(α− 1)2(H + 1)4

(
ϕ
(|∇f |2 + ε

)− ft)2
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= (1− β)
[(|∇f |2 + ε− ft

)
+

α− (1 +H)2

(α− 1)(H + 1)2

(
ϕ
(|∇f |2 + ε

)− ft)]
·
[(|∇f |2 + ε− ft

)− α− (1 +H)2

(α− 1)(H + 1)2

(
ϕ
(|∇f |2 + ε

)− ft)]
= (1− β)

[(
1 + ϕ

α− (1 +H)2

(α− 1)(H + 1)2

) (|∇f |2 + ε
)

−
(

1 +
α− (1 +H)2

(α− 1)(H + 1)2

)
ft

]
·
[(

1− ϕ α− (1 +H)2

(α− 1)(H + 1)2

) (|∇f |2 + ε
)− (1− α− (1 +H)2

(α− 1)(H + 1)2

)
ft

]
.

Using (2.4), one easily checks that the above expression is nonnegative and
the claim is verified. Using the claim and (2.3), we obtain

0 ≥ (2ϕ− β)t2

n
· (1− β) (α− (1 +H)2)2

(α− 1)2(1 +H)4

(
ϕ
(|∇f |2 + ε

)− ft)2(2.5)

− 2t2|∇ϕ||∇f |3 + t2
(

∆ϕ− 2Kϕ− 4
β
|∇ϕ|2 − ε

)
|∇f |2

+ εt2
(

∆ϕ− |∇ϕ|2 − 2ε(2ϕ− β)
nβ

)
− F.

Let y = ϕ(|∇f |2 + ε) and z = ft. Then

(y − z)2 =
[

1
α

(y − αz) +
α− 1
α

y

]2

(2.6)

=
1
α2

(y − αz)2 +
(
α− 1
α

)2

y2 +
2(α− 1)
α2

y(y − αz)

≥ 1
α2t2

F 2 +
(
α− 1
α

)2

y2 as y − αz =
F

t
> 0.

Combining (2.5) and (2.6), we get

0 ≥ (2ϕ− β)(1− β)(α− (1 +H)2)2

nα2(α− 1)2(1 +H)4
F 2 − F(2.7)

+
(2ϕ− β)(1− β)t2 (α− (1 +H)2)2

nα2(1 +H)4
y2 − 2t2|∇ϕ||∇f |3

+ t2
(

∆ϕ− 2Kϕ− 4
β
|∇ϕ|2 − ε

)
|∇f |2
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+ εt2
(

∆ϕ− |∇ϕ|2 − 2ε(2ϕ− β)
nβ

)
.

By [C], if we choose R sufficiently small, then

∆φ ≥ −2(n− 1)H(2H + 1)
R

− H

R2
.

Therefore,

∆ϕ = 2(1 + φ)∆φ+ 2|∇φ|2

≥ 2(1 +H)
(
−2(n− 1)H(3H + 1)

R
− H

R2

)
= −C3.

Hence

(2ϕ− β)(1− β) (α− (1 +H)2)2

nα2(1 +H)4
y2 − 2|∇ϕ||∇f |3(2.8)

+
(

∆ϕ− 2Kϕ− 4
β
|∇ϕ|2 − ε

)
|∇f |2

≥ (α− (1 +H)2)2

2nα2(1 +H)4
y2 − 8H(H + 1)y

3
2 −

(
C3 + 2K(1 +H)2

+
64
β
H2(H + 1)2 + ε

)
y.

Consider Ay2 −By 3
2 − Cy, where A,B,C all are positive. Clearly

Ay2 −By 3
2 − Cy =

A

2
y2 +

A

2
y2 −By 3

2 +
B2

2A
y −

(
C +

B2

2A

)
y(2.9)

≥ A

2
y2 −

(
C +

B2

2A

)
y =

A

2
y2 −

(
C +

B2

2A

)
y +D2 −D2

≥ −D2, where D2 =

(
C + B2

2A

)2

2A
.

Applying (2.9) to (2.8), we conclude from (2.7) that

0 ≥ (2ϕ− β)(1− β) (α− (1 +H)2)2

nα2(α− 1)2(1 +H)4
F 2 − F(2.10)
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+ εt2
(

∆ϕ− |∇ϕ|2 − 2ε(2ϕ− β)
nβ

)
−D2t2

where D2 =
(C + B2

2A
)2

2A
, and A =

(α− (1 +H)2)2

2nα2(1 +H)4
, B = 8H(H + 1) and

C = (C3 + 2K(1 +H)2 + 64
β
H2(H + 1)2 + ε). From (2.10), one easily obtains

F ≤ 1 +
√

1 + 4PQ
2P

,(2.11)

where

P =
(2ϕ− β)(1− β) (α− (1 +H)2)2

nα2(α− 1)2(1 +H)4

and

Q = D2t2 − εt2
(

∆ϕ− |∇ϕ|2 − 2ε(2ϕ− β)
nβ

)
.

But
|∇f |2 − αft ≤ ϕ

(|∇f |2 + ε
)− αft =

F

t
.

Thus by (2.11) and letting ε→ 0, we have

|∇f |2 − αft ≤ nα2(α− 1)2(1 +H)4

·1 +
√

1 + 8D2t2 (α− (1 +H)2)2
/nα2(α− 1)2(1 +H)2

2(2ϕ− β)(1− β) (α− (1 +H)2)2
t

≤
nα2(α− 1)2(1 +H)4

(
1 + 1 + 3Dt(α−(1+H)2)√

nα(α−1)(1+H)

)
2(2ϕ− β)(1− β) (α− (1 +H)2)2

t
.

In conclusion,
|∇u|2
u2

− αut
u
≤ C1 +

C2

t

where

C1 ≤ 6nα(α− 1)(1 +H)7K

(α− (1 +H2)2)2 +
309n2α3(α− 1)(1 +H)10H

(α− (1 +H)2)4
R2β

and

C2 ≤ nα2(α− 1)2(1 +H)4

(2ϕ− β)(1− β) (α− (1 +H)2)2 ≤
nα2(α− 1)2(1 +H)4

(2− β)(1− β) (α− (1 +H)2)2 .
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The proof is completed.

Corollary 2.3 ([L-Y]). Let M and u be as in Theorem 2.2. If the boundary
∂M of M is convex, i.e., H = 0, then for any α > 1,

|∇u|2
u2

− αut
u
≤ C3 +

C4

t
,

where C3 = 6nαK
α−1

and C4 = nα2

2
. If furthermore the Ricci curvature of M is

also nonnegative, then
|∇u|2
u2

− ut
u
≤ n

2t
.

Proof. In the first case that H = 0, we use Theorem 2.2 and let β approach
to 0. For the second case, since K = 0, one can also let α approach to
1.

Remark. In our estimate, R is chosen to be a positive constant less than
1 and is dependent on the upper bound of the sectional curvature of the
manifold near the boundary. The upper bound of R is explicitly determined
by

√
KR tan

(
R
√
KR

)
≤ H

2
+

1
2

and

H√
KR

tan
(
R
√
KR

)
≤ 1

2

where KR is the upper bound of the sectional curvature on the set MR =
{x ∈M | r(x) ≤ R} (see [C]).

3. Estimate of Sobolev Constants.

In this section, we shall utilize the global gradient estimate in the previous
section to derive an upper bound for the heat kernel satisfying Neumann
boundary conditions on a general compact manifold with nonconvex bound-
ary. The result is then used to estimate the Neumann Sobolev constants.
Previously, Croke [Cr] has obtained the estimates of Neumann isoperimetric
constants for the manifolds without boundary. Our approach here does not
allow us to estimate the isoperimetric constants. Thus, it is still left open to
give an estimate of the isoperimetric constants for a compact manifold with
nonconvex boundary.
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First, we establish the following Harnack inequality.

Theorem 3.1. Let M be a compact manifold with boundary ∂M . Suppose
that the Ricci curvature of M satisfies RicM ≥ −K, K ≥ 0 and the second
fundamental form of ∂M with respect to outward pointing normal ν satisfies
II ≥ −H, H ≥ 0. Suppose that ∂M also satisfies the “interior rolling R-
ball condition” with R chosen small (see the remark at the end of Section 2).
Then for any positive function u(x, t) on M × (0,∞) satisfying{

(∆− ∂
∂t

)u = 0
∂u
∂ν
|∂M= 0,

u(x1, t1) ≤ u(x2, t2)
(
t2
t1

)C5

exp
(
αr2(x1, x2)
4(t2 − t1)

+ C6(t2 − t1)
)

for any α >

(1 +H)2 and 0 < β < 1
2
, x1, x2 ∈M and 0 < t1 < t2 <∞, where

C5 =
nα(α− 1)2(1 +H)4

(2− β)(1− β) (α− (1 +H)2)2 ,

C6 =
6n(α− 1)(1 +H)7K

(α− (1 +H)2)2
+

309n2α2(α− 1)(1 +H)10H

(α− (1 +H)2)4
R2β

.

Proof. The proof uses (2.2) and proceeds as Theorem 2.1 in [L-Y]. Hence it
is omitted here.

Applying Theorem 3.1 and arguing as in [L-Y], one conveniently obtains
an estimate of heat kernel of M satisfying Neumann boundary condition.

Theorem 3.2. Let M be as in Theorem 3.1. Let H(x, y, t) be the heat kernel
of M satisfying Neumann boundary conditions. Then for any α > (1 +H)2,
0 < β < 1

2
and δ > 0, and x, y on M ,

H(x, y, t)

≤ (1 + δ)2C5 exp
(

1 + α

δ

)
V −

1
2

x

(√
t
)
V −

1
2

y

(√
t
)

exp
(
−r

2(x, y)
(4 + δ)t

+ C6δt

)
,

where C5 and C6 are given in Theorem 3.1.

In order to improve the above estimate for t large, we use a method due
to S.Y. Cheng and P. Li [C-L].

Lemma 3.3 ([C-L]). Let l1(M) be the first nonzero eigenvalue of M
satisfying Neumann boundary condition, then for any fixed t0 and all t ≥ t0,

H(x, x, t) ≤ 1
V (M)

+H(x, x, t0) exp(−l1(M)(t− t0)).
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Proof. Let H̄(x, y, t) = H(x, y, t)− 1
V (M)

. Then
∫
M H̄(x, y, t)dy = 0. But by

the semigroup property of H(x, y, t), we have

∂

∂t
H̄(x, x, t) =

∂

∂t

∫
M

H̄2

(
x, y,

t

2

)
dy

=
∫
M

H̄

(
x, y,

t

2

)
∆H̄

(
x, y,

t

2

)
dy

= −
∫
M

∣∣∇H̄∣∣2 (x, y, t
2

)
dy

≤ − l1(M)
∫
M

H̄2

(
x, y,

t

2

)
dy

= − l1(M)H̄(x, x, t).

Integrating this differential inequality from t0 to t gives

H̄(x, x, t) ≤ H̄(x, x, t0) exp(−l1(M)(t− t0)).

Now the lemma follows using the definition of H̄(x, y, t).

If we choose t0 = d2, where d is the diameter of M , then by Lemma 3.3
and Theorem 3.2 together with the estimate of l1(M) obtained by R. Chen
in [C], we obtain the following estimate for the heat kernel of M satisfying
Neumann boundary conditions.

Theorem 3.4. Let M be as in Theorem 3.1. Then for t > 0 and x, y in
M ,

H(x, y, t) ≤ 1
V (M)

+ C7V
− 1

2
x

(√
t
)
V −

1
2

y

(√
t
)

exp
(
−r

2(x, y)
5t

− C8t

)
,

where C7 and C8 are two positive constants which only depend on d, K, H,
R and n and can be explictly computed.

Finally, we want to use the above heat kernel bound to estimate the
Neumann Sobolev constant of M . Consider the following type of Sobolev
inequality

inf
k∈R

(∫
M

|f − k| 2n
n−2

)n−2
n

≤ C(S)
∫
M

|∇f |2 for all f ∈ C∞ (M̄)
.

The minimum constant C(S) is called the Neumann Sobolev constant of M .
Using a result of Varopoulos [V], we can now estimate C(S) from above in
terms of geometric data of M . But before we do that, we need the following
lemma.
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Lemma 3.5. Let M be as in Theorem 3.1. Then Vx(t) ≥ C(d,K,H, V,R)tn

for some constant C(d,K,H, V,R) > 0 and all x ∈ M and t ≤ R, where
V = V (M).

Proof. We first note that M satisfies volume doubling property by Theorem
3.1 and 3.4 (see [SC]).

Claim. For each x ∈ M and t ≤ R, there exists a geodesic ball Bp( t6) ⊂
Bx(t) such that Bp( t6) does not intersect ∂M .

In fact, the claim is trivially true if the distance d(x, ∂M) = r(x) ≥ t
2
. Thus

we consider the case r(x) < t
2
≤ R

2
. Let y ∈ ∂M be such that r(x, y) = r(x).

Clearly, we have By( t2) ⊂ Bx(t). On the other hand, by the interior rolling
R-ball condition, there exists a ball Bq(R2 ) such that it only intersects ∂M at
y. Now let γ be a minimal geodesic connecting y and q. Choose a point p on
γ such that r(p, y) = t

4
. Then it is easy to check that Bp( t6) ⊂ By( t2) ⊂ Bx(t).

Also, Bp( t6) ⊂ Bq(R2 ). Since r(p, y) > t
6
, y is not in Bp( t6). Therefore Bp( t6)

does not intersect ∂M and the claim follows.

Now we divide the proof of the lemma into two cases.

Case (i): r(x) < R
2

.
Let MR = {x ∈ M : r(x) ≤ R}. Then Bx( t2) ⊂ MR. By the claim, there

exists Bp( t
12

) ⊂ Bx( t2) and Bp( t
12

) has no intersection with ∂M . Since by the
choice of R,

√
KR tan(R

√
KR) ≤ H+1

2
, where KR is an upper bound of the

sectional curvature on MR. Therefore KR ≤ H+1
2R

. So the injectivity radius
of the set MR can be estimated from below by a constant C(V,R,H, d).
In particular, we conclude that Vp( t

12
) ≥ C(V,R,H, d)tn for some constant

C(V,R,H, d) > 0. Thus we proved the lemma for this case.

Case (ii): r(x) ≥ R
2

.
In this case, we first show Vx(r(x)) ≥ C(V,R,H, d). In fact, arguing

as in the claim, we conclude that there exists a ball Bp( R12
) ⊂ MR

3
such

that Bp( R12
) ⊂ Bx(r(x)). From case (i), we obtain Vx(r(x)) ≥ C(V,R,H, d).

Now inside the ball Bx(r(x)) we may apply the Bishop volume comparison
theorem. Notice that r(x) ≤ d. We conclude that for t ≤ R

2
,

Vx(r(x))
Vx(t)

≤ VK(r(x))
VK(t)

≤ VK(d)
VK(t)

,

where VK(r) denotes the volume of the geodesic ball of radius r in the space
form of constant curvature −K

n−1
. Putting together the preceding facts, we

see that Vx(t) ≥ C(d, V,K,H,R)tn. The lemma is proved.

Combining Theorem 3.4 and Lemma 3.5, we obtain the following corollary.
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Corollary 3.6. Let M be as in Theorem 3.1. Then for all t > 0 and x ∈M ,

H(x, x, t) ≤ 1
V (M)

+At−
n
2(3.12)

where n = dimM and A = A(d,H,R,K, V ) a positive constant which can
be computed explicitly.

The following theorem is a consequence of a result in [V] and the preceding
corollary.

Theorem 3.7. Let M be as in Theorem 3.1. Then the Neumann Sobolev
constant C(S) of M satisfies

C(S) ≤ C(n)A
2
n ,

where C(n) is a constant only depending on n and A is the constant in (3.12).
In particular, C(S) ≤ C(d,H,R,K, V ) a constant which can be explicitly
computed.

Using Theorem 3.7, we now derive a lower bound estimate for the heat
kernel H(x, y, t). The following proof is adapted from [C-L].

Theorem 3.8. Let M be as in Theorem 3.1. Then the heat kernel H(x, y, t)
of M satisfying the Neumann boundary conditions has estimates

1
V (M)

− C9t
−n/2 ≤ H(x, y, t) ≤ 1

V (M)
+ C10t

−n/2,

where C9 and C10 are two positive constants depending on d, K, H, R and
V .

Proof. Let H̄(x, y, t) = H(x, y, t)− 1
V (M)

. Then arguing as in Lemma 3.3, we
have

∂

∂t
H̄(x, x, t) = −

∫
M

∣∣∇H̄∣∣2 (x, y, t
2

)
dy.

Since
∫
M H̄(x, y, t)dy = 0, the Neumann Sobolev inequality gives

C(S)
∫
M

∣∣∇H̄∣∣2 (x, y, t
2

)
dy ≥

(∫
M

∣∣H̄∣∣ 2n
n−2

(
x, y,

t

2

)
dy

)n−2
n

≥
(∫

M

∣∣H̄∣∣2 (x, y, t
2

)
dy

)n+2
n
(∫

M

∣∣H̄∣∣ (x, y, t
2

)
dy

)− 4
n

=
(
H̄(x, x, t)

)n+2
n

(∫
M

∣∣H̄∣∣ (x, y, t
2

)
dy

)− 4
n

,
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where we have used the Hölder inequality. But∫
M

∣∣H̄∣∣ (x, y, t
2

)
dy ≤

∫
M

(
H

(
x, y,

t

2

)
+

1
V (M)

)
dy ≤ 2.

Hence ∫
M

∣∣∇H̄∣∣2 (x, y, t
2

)
dy ≥ 2−

4
nC−1(S)

(
H̄(x, x, t)

)n+2
n .

In conclusion,

∂

∂t
H̄(x, x, t) ≤ −2−

4
nC−1(S)

(
H̄(x, x, t)

)n+2
n .

Integrating this differntial inequality from ε > 0 to t gives(
H̄(x, x, t)

)− 2
n − (H̄(x, x, ε)

)− 2
n ≥ 2

n

(
2−

4
nC−1(S)

)
(t− ε).

Letting ε tend to 0 and noting that

lim
ε→0

(
H̄(x, x, ε)

)− 2
n = 0,

we obtain
H̄(x, x, t) ≤ c(n)(C(S))

n
2 t−

n
2 .

Using the semi-group property of H̄(x, y, t), we conclude

∣∣H̄(x, y, 2t)
∣∣ =

∣∣∣∣∫
M

H̄(x, z, t)H̄(z, y, t)dz
∣∣∣∣

≤
(∫

M

H̄2(x, z, t)dz
) 1

2
(∫

M

H̄2(z, y, t)dz
) 1

2

= H̄
1
2 (x, x, 2t)H̄

1
2 (y, y, 2t).

Therefore, putting the preceding inequalities together, we get∣∣H̄(x, y, t)
∣∣ ≤ c(n)(C(S))

n
2 t−

n
2 .

Now the theorem follows from Theorem 3.7 and the definition of H̄(x, y, t).

Finally, we mention a corollary on estimating the Neumann eigenvalues.
It can be easily proved by using the heat kernel estimates.
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Corollary 3.9. Let M be as in Theorem 3.1. Then the k-th Neumann
eigenvalue µk of M satisfies

µk ≥ C11(K,H, V,R, d)k
2
n

for all k = 0, 1, 2, . . . .

4. Parabolic Harnack Inequality.

In this section, we turn to consider the validity of a version of parabolic
Harnack inequality on a general complete Riemannian manifold. We shall
show the validity of such a parabolic Harnack inequality is equivalent to the
existence of Gaussian upper and lower bounds on the heat kernel. Previ-
ously, Saloff-Coste [SC] and Grigor’yan [G] had obtained another type of
characterization for the parabolic Harnack inequality. To recall their results,
let us first introduce some definitions.
Definition 4.1. Let (M, g) be a complete Riemannian manifold. Then
(M, g) is said to satisfy the parabolic Harnack inequality (PHI) on balls
of radius r0 if there exists a constant C depending only on the parameters
0 < ε < η < δ < 1, such that, for any x ∈M , and real s, and any 0 < r < r0,

any nonnegative solution u of
(

∆− ∂

∂t

)
u = 0 in Q = (s − r2, s) × Bx(r)

satisfies
sup
Q−
{u} ≤ C inf

Q+
{u}

where

Q− = [s− δr2, s− ηr2]×Bx(δr)

and

Q+ = [s− εr2, s)×Bx(δr).

Definition 4.2. M satisfies volume doubling property on balls of radius
r0 if there exists constant C such that

Vx(2r) ≤ CVx(r) for any 0 < r < r0 and x ∈M,

where Vx(r) denotes the volume of the geodesic ball Bx(r) in M .
Definition 4.3. M satisfies weak-Neumann Poincaré inequality on balls
of radius r0 if there exists a constant C such that

inf
α∈R

∫
Bx(r)

|f − α|2dµ ≤ Cr2

∫
Bx(2r)

|∇f |2dµ
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for any 0 < r < r0, x ∈M and f ∈ C∞(M).

The following theorem is a special form of the more general results proved
independently by Saloff-Coste [SC] and Grigor’yan [G].

Theorem 4.4.
(a) M satisfies (PHI) on balls of radius r0 if M satisfies both volume dou-

bling property and weak-Neumann Poincaré inequality on balls of ra-
dius 4r0.

(b) M satisfies both volume doubling property and weak-Neumann Poincaré
inequality on balls of radius r0 if M satisfies (PHI) on balls of radius
2r0.

For a general complete manifold, it is well-known that there exists a min-
imal heat kernel H(x, y, t). We have the following result.

Theorem 4.5.
(a) If M satisfies (PHI) on balls of radius r0, then there exist some con-

stants C1, C2, C3 and C4 such that

C1V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C2t

)
≤ H(x, y, t)

≤ C3V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C4t

)
for any x, y and t such that r(x, y) ≤ r1 <

r0
2

and t < r2
1, where r(x, y)

denotes the distance between x and y.
(b) If there exist some constants C1, C2, C3 and C4 such that

C1V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C2t

)
≤ H(x, y, t)

≤ C3V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C4t

)
for any x, y and t such that r(x, y) ≤ r0 and t ≤ r2

0, then M satisfies
(PHI) on balls of radius r1 for any r1 <

r0
8

.

Corollary 4.6. M satisfies (PHI) if and only if there exist some constants
C1, C2, C3 and C4 such that

C1V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C2t

)
≤ H(x, y, t) ≤ C3V

−1
x

(√
t
)

exp
(
−r

2(x, y)
C4t

)
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for any (x, y, t) ∈M×M×(0,∞), where r(x, y) denotes the distance between
x and y.

Proof of Theorem 4.5. We first show that the validity of (PHI) on balls of
radius r0 implies the heat kernel bounds. Since by Theorem 4.4, M satisfies
volume doubling property on balls of radius r0

2
, the argument of P. Li and

S.T. Yau [L-Y] then implies

H(x, y, t) ≤ C3V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C4t

)
,

for any x, y and t such that r(x, y) ≤ r1 <
r0
2

and t < r2
1, where C3 and

C4 are constants depending on r1. To establish the desired lower bound of
H(x, y, t), for any x ∈ M and r ≤ r1 < r0, we consider the function defined
by u(z, s) =

∫
Bx(r)H(y, z, s)dy when s > 0 and u(z, s) = 1 when s ≤ 0. This

function is a nonnegative solution of (4− ∂
∂t

)u = 0 on Bx(r)× (−∞,+∞).
Hence we have

1 = u(x,−r2/4) ≤ Cu(x, r2/2)

= C

∫
Bx(r)

H(y, x, r2/2)dy ≤ C2Vx(r)H(x, x, r2).

Therefore,

H(x, x, r2) ≥ CV −1
x (r).(4.13)

Using the Harnack inequality and the volume doubling property, one easily
sees from (4.13) that

H(x, y, t) ≥ CV −1
x (
√
t) for r(x, y) ≤ √t ≤ r1 < r0 and t > 0,

(4.14)

where C is a constant.

For arbitrary x, y ∈ M with r(x, y) ≤ r1 < r0/2 and t ≤ r2
1, there exists

a positive integer N ≥ 1 such that N − 1 <
4r2(x, y)

t
≤ N . Let γ(t) be a

minimal geodesic connecting x and y which is parametrized by the arclength.

Let qi = γ

(
ir(x, y)
N

)
, i = 0, . . . , N . Then by the semi-group property of

H(x, y, t), we get

H(x, y, t)
(4.15)
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=
∫
M

. . .

∫
M

H

(
x, z1,

t

N

)
H

(
z1, z2,

t

N

)
. . . H

(
zN−1, y,

t

N

)
dz1 . . . dzN−1

≥
∫
BqN−1 ( rN )

. . .

∫
Bq1 ( rN )

H

(
x, z1,

t

N

)
. . . H

(
zN−1, y,

t

N

)
dz1 . . . dzN−1.

For z1 ∈ Bq1

(
r

N

)
, r(x, z1) ≤ r(x, q1) + r(q1, z1) ≤ 2r

N
. But

4r2

t
≤ N .

Therefore r(x, z1) ≤
√
t

N
and by (4.14) H

(
x, z1,

t

N

)
≥ CV −1

x

(√
t

N

)
.

Similarly, for zi−1 ∈ Bqi−1( r
N

) and zi ∈ Bqi( rN ), we have

H

(
zi−1, zi,

t

N

)
≥ CV −1

qi−1

(
2
√
t

N

)
, i = 2, . . . , N − 1.

Hence by (4.15),

H(x, y, t) ≥ CN−1V −1
x

(√
t

N

)
V −1
q1

(
2
√
t

N

)
. . . V −1

qN−1

(
2
√
t

N

)
(4.16)

·Vq1
(
r

N

)
. . . VqN−1

(
r

N

)
.

By the volume doubling property,

Vqi(
r
N

)

Vqi

(
2
√

t
N

) ≥ Vqi(
r
N

)
Vqi(

4r
N

)
≥ C5, a constant.

Putting into (4.16), one concludes that

H(x, y, t) ≥ CN−1CN−1
5 V −1

x

(√
t

N

)
≥ CN−1

6 V −1
x

(√
t
)

≥ C7V
−1
x

(√
t
)

exp(−C8N)

≥ C9V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C10t

)
.

Therefore part (a) of the theorem is proved.

Now we come to prove part (b) of Theorem 4.5. In view of Theorem
4.4, we need only to check that M satisfies volume doubling property and



396 JIAPING WANG

weak-Neumann Poincaré inequality on balls of radius r0/2. For any x and
t ≤ r2

0/2, by the semi-group property of H(x, y, t),

C3V
−1
x

(√
2t
)
≥ H(x, x, 2t) =

∫
M

H2(x, y, t)dy

≥
∫
Bx(
√
t)

C2
1V
−2
x

(√
t
)

exp
(
− 1
C2

)
dy

≥ CV −1
x

(√
t
)

for some C > 0.

Thus Vx(
√

2t) ≤ C̃Vx(
√
t) for all 0 < t < r0/

√
2, where C̃ is a constant.

Therefore Vx(2r) ≤ C̃Vx(
√

2r) ≤ C̃2Vx(r) for all r ≤ r0/2, and M satisfies
volume doubling property on balls of radius r0/2.

To show that M satisfies weak-Neumann Poincaré inequality on balls of
radius r0/2, we first establish the following claim.

Claim. For any p ∈ M and R ≤ r0/2, there exist constants C1, C2 and C3

independent of p and R such that

HR(x, y, C1R
2) ≥ C3V

−1
p (R)

for all x and y satisfying

r(p, x) ≤ C2R, r(p, y) ≤ C2R,

where HR(x, y, t) is the heat kernel of Bp(R) satisfying the Dirichlet bound-
ary condition.

Once the claim is established, then by an argument of Fabes and Stroock
[F-S], one concludes that M satisfies the weak-Neumann Poincaré inequality
on balls of radius r0/2.

To check the claim, by the maximum principle, we have

HR(x, y, t) ≥ H(x, y, t)− max
0≤s≤t
z∈Sp(R)

H(x, z, s).

From the assumption, there exists a constant C such that for t ≤ r2
0,

max
0≤s≤t
z∈Sp(R)

H(x, z, s) ≤ max
0≤s≤t

CV −1
x

(√
s
)

exp
(
−R

2

Cs

)

for all x such that r(p, x) ≤ C2R, C2 ≤ 1
2

. Thus

max
0≤s≤t
z∈Sp(R)

H(x, z, s) ≤ CV −1
x

(√
t
)

max
0≤s≤t

Vx
(√

t
)

Vx (
√
s)

exp
(
−R

2

Cs

)
.(4.17)
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Since M satisfies volume doubling property on balls of radius r0/2, for some

constant α > 0 and constant C > 0,
Vx
(√

t
)

Vx (
√
s)
≤ C

(√
t√
s

)α
(see [G]) for all

√
s ≤ √t ≤ r0/2. In particular, (4.17) implies that

max
0≤s≤t
z∈Sp(R)

H(x, z, s)

≤ CV −1
x

(√
t
)

max
0≤s≤t

(
t

s

)α
exp

(
−R

2

Cs

)
≤ C3V

−1
x

(√
t
)

exp
(
− R

2

C4t

)

if t ≤ C5R
2 for some C5 > 0. Thus, for all t ≤ C5R

2,

HR(x, y, t)(4.18)

≥ C1V
−1
x

(√
t
)

exp
(
−r

2(x, y)
C2t

)
− C3V

−1
x

(√
t
)

exp
(
− R

2

C4t

)
.

If we choose C6 sufficiently small such that

r(p, x) ≤ C6R and r(p, y) ≤ C6R,

then r(x, y) ≤ 2C6R and

C3 exp
(
− R

2

C4t

)
≤ 1

2
C1 exp

(
−r

2(x, y)
C2t

)
for all t ≤ C5R

2.(4.19)

Together (4.18) and (4.19), we have

HR(x, y, t) ≥ CV −1
x

(√
t
)

exp
(
−r

2(x, y)
Ct

)
for some C > 0 and all t ≤ C5R

2, where r(p, x) ≤ C6R and r(p, y) ≤ C6R.
But

V −1
x

(√
t
)
≥ V −1

p

(√
t+ r(p, x)

)
≥ V −1

p (2R) ≥ CV −1
p (R)

by the volume doubling property. Therefore

HR(x, y, t) ≥ CV −1
p (R) exp

(
−r

2(x, y)
Ct

)
(4.20)

for t ≤ C5R
2 and r(p, x) ≤ C6R, r(p, y) ≤ C6R. In particular, let t = C5R

2 in
(4.20), the claim follows. This completes our proof of Theorem 4.5.
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