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UNIQUE CONTINUATION FOR A CLASS OF HIGHER
ORDER ELLIPTIC OPERATORS

Laura De Carli

In this paper we prove a unique continuation theorem for
a class of elliptic operators of order m ≥ 2 with highly singular
potentials using the method of Carleman estimates.

Introduction.

In this paper we establish a unique continuation theorem for solutions of a
class of differential inequalities of the form:

(0.1) |P (D)U(x) | ≤ |V (x)U(x) | ,
where P is an elliptic operator with constant coefficients and V is a singular
potential.

We will prove that if n > m, P is an elliptic operator of order m ≥ 2 whose
principal part satisfies conditions that will be specified later, V ∈ L n

m (Rn),
and if U ∈ Hm,p(Rn), p = 2n

m+n
, satisfies (0.1), then U is identically zero if

its support is contained in a half space whose normal direction satisfies a
hypothesis involving the symbol of P . By Hm,p(Rn) we mean the space of
functions with m derivatives in Lp(Rn).

It is well known that the above unique continuation property, (u.c.p.
henceforth in this paper), for the solutions of the differential Inequality (0.1),
follows from the proof of a weighted inequality of the form

(0.2)
∥∥∥ eτφ(x)u

∥∥∥
p′
≤ C

∥∥∥ eτφ(x)P (D)u
∥∥∥
p
,

valid for all u ∈ Hm,p(Rn), a suitable weight φ depending on the half space,
and values of the real parameter τ which are allowed to tend to +∞. An
estimate of the form of (0.2) is called a Carleman-type inequality.

There is a lot of literature concerning Carleman-type inequalities and
unique continuation properties for solutions of partial differential equations.
See [H1], [J], [S1], just to cite a few. When m = 2, the u.c.p. for the
solutions of (0.1) has been proved in [KRS]. Moreover, the assumption
that u vanishes on a open set of Rn can be replaced by the much weaker
assumption that u vanishes of infinite order at some point in Rn. See [JK].
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In their paper the authors proved also that the hypothesis V ∈ Ln
2
loc(Rn) is

optimal, in the sense that n
2

cannot be replaced by any smaller exponent.
Let u ∈ Hm,p(Rn) be a solution of (0.1). Suppose that u is supported in

the half space {x : 〈x ν〉 ≥ 0}, ν being a unit vector of Rn. Our paper will
be devoted to the proof of (0.2), with φ(x) = −〈x ν〉. A standard argument,
that will be recalled in the next section, will prove that the u.c.p. holds in
Hm,p(Rn) for the solutions of (0.1).

To prove (0.2), and to explain the assumptions that the principal part
of P must satisfy, we shall make some standard reductions. For simplicity
we assume that P is homogeneous, since the other cases follow from easy
adaptions of this argument. If we define the conjugate operator of P as

Pτ (D)u = eτ〈x ν〉P (D)e−τ〈x ν〉 = P (D + iτν ) ,

then (0.2) will be a consequence of the following uniform inequality

(0.3) ‖u ‖p′ ≤ C ‖P (D + iτν )u ‖p .

Since the inverse Fourier transform of (P (ζ + iτν))−1 is a fundamental solu-
tion for the operator P (D+ iτν), the inequality (0.3) will be a consequence
of

(0.4)

∥∥∥∥∥
∫
Rn

ei〈ζ, x〉

P (ζ + iτν)
f̂(ζ)dζ

∥∥∥∥∥
p′
≤ C||f ||p, f ∈ S(Rn).

We now make the following important assumption:

(1) P (D) has simple complex characteristics in the direction ν, in the sense
that the polynomial τ → P (ζ + iτν), τ ∈ C, has only simple zeroes for
each fixed ζ ∈ Rn/{0}.

Without loss of generality ν = (1, 0, . . . , 0). After rescaling, we can as-
sume τ = 1. Let P (ζ) be the symbol of P (D). After perhaps a change of
coordinates,

P (ζ) = ζm1 +
m−1∑
j=0

ζj1Qj(ζ ′),

where the Qj’s are homogeneous polynomials of degree m − j, and where
we have set ζ = (ζ1, ζ

′). The roots of ζ1 → P (ζ), λ1(ζ ′) + iµ1(ζ ′), . . . ,
λm(ζ ′) + iµm(ζ ′), are smooth and homogeneous of degree 1 in Rn−1/{0}.
Since P (D) is elliptic with real coefficients, the µj’s vanish only at the origin,
and λj(ζ ′) + iµj(ζ ′) and λj(ζ ′) − iµj(ζ ′) are both roots of ζn → P (ζ ′, ζn).
Then,

P (ζ) = Π
m
2
j=1(ζ1 − λj(ζ ′)± iµj(ζ ′)),
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where µj(ζ ′) > 0, ζ ′ ∈ Rn−1/{0}, and hence

P (ζ + iν) = Π
m
2
j=1(ζ1 − λj(ζ ′)) + i(1± iµj(ζ ′)).

The factors of the form ζ1 − λj(ζ ′) + i(1 + µj(ζ ′)) are the “good” factors
which never vanish, but the “bad” factors ζ1 − λj(ζ ′) + i(1− µj(ζ ′)) vanish
on the (compact) manifolds

Sj = {ζ : ζ1 = λj(ζ ′), 1 = µj(ζ ′)}, j = 1, . . . ,
m

2
.

By (1), Si ∩ Sj = ∅ when i 6= j. Let χj(ζ) ∈ C∞0 (Rn) be a cutoff function
which is ≡ 1 in a neighborhood of Sj and is ≡ 0 on a neighborhood of Sk,
k 6= j. Let χ0(ζ) = 1 − (χ1(ζ) + · · · + χm

2
(ζ)). Since P (ζ + iν) does not

vanish on the support of χ0,
χ0(ζ)

P (ζ + iν)
is the symbol of a pseudifferential

operator of order −m, which can thus be extended to a bounded operator
from Lp to Hm,p(Rn) (see e.g. [H]). By the Sobolev embedding theorem,∥∥∥∥∥

∫
Rn

ei〈x, ζ〉f̂(ζ)
P (ζ + iν)

χ0(ζ)dζ

∥∥∥∥∥
p′
≤ C||f ||p.

We also observe that ζ → ζ1 − λj(ζ ′) + i(1− µj(ζ ′))
P (ζ + iν)

χj(ζ), j = 1, . . . , m
2

, is

a Lp Fourier multiplier for every p > 1 (see e.g. [H]). We have then reduced
matters to proving the following inequalities
(0.5)∥∥∥∥∥
∫
Rn

f̂(ζ)ei〈x, ζ〉 χj(ζ)dζ
ζ1 − λj(ζ) + i(1− µj(ζ ′))

∥∥∥∥∥
p′
≤ C ‖ f ‖p , j = 1, · · · m

2
, f ∈ S(Rn).

Our main results can now be stated as follows.

Theorem 1. Let P (D) be an elliptic operator of order m < n with
constant coefficients. Let λj and µj be defined as above. Suppose that the
assumption (1) is satisfied. Suppose also that

the cospheres {ζ ′ : µj(ζ ′) = 1} have everywhere(2)

nonvanishing Gaussian curvature.

Then, for every f ∈ C∞0 (Rn ) and for p ≤ 2n
n+2

, (0.5) holds.

Theorem 2. Let P (D) be as in Theorem 1, and let U ∈ Hm,p(Rn), p =
2n
n+m

, be a solution of the differential inequality (0.1), with V ∈ L
n
m (Rn).

Suppose that the support of U is contained on one side of a hyperplane,
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and that P (D) satisfies (1) in the direction ν of the exterior normal to the
hyperplane containing the support of U . Suppose also that (2) holds. Then
U ≡ 0.

The Assumption (1) is crucial. The counterexamples of Plis [P] show in
fact that the u.c.p. across the hyperplane {x : 〈x ν〉 = 0} can fail for solutions
of elliptic operators that do not have simple complex characteristics in the
direction ν.

The Assumption (2) might be not necessary. An early result due to
Hörmander [H2] shows in fact that the u.c.p. holds in Hm(Rn) for the solu-
tions of (0.1) when V ∈ L∞(Rn) and (1) is satisfied. The same is probably
also true in the Lp setting. However, our theorem represents a natural gen-
eralization of the case m = 2. When P (D) is the Laplacean, we can see that
the “bad factor” of the symbol of the conjugate operator P (D+i(1, 0, . . . 0))
is ζ1 + i(1− | ζ ′ |), and the Condition (2) is then satisfied.

In what follows we shall use the convention that χ denotes a smooth cutoff
function which is not necessarily the same at each occurrence. Also, we will
denote by C a constant which may change from line to line.

This paper is a part of my doctoral thesis at UCLA. I would like to thank
my teacher and adviser, Prof. C.D. Sogge for his invaluable counsel, and the
referee for his constructive comments.

Section 1.

In this section we will prove our main results. First of all, we proceed as
in [KRS] to show that Theorem 1 implies Theorem 2. Let U ∈ Hm,p(Rn)
be a solution of (0.1). For simplicity of notation, we shall assume that U is
supported in the half space {x = (x1, x

′) : x1 > 0}, since the argument for
the other cases is similar. We have shown in the Introduction that Theorem
1 implies the following special case of (0.2):

(1.1) ||e−τx1u||Lp′ (Rn) ≤ C||e−τx1P (D)u||Lp(Rn), u ∈ C∞0 (Rn ).

Since τx1 ≥ 0 on the support of U , and since C∞0 (Rn) is dense in Hm,p(Rn),
it is easy to see that U satisfies (1.1).

To prove that U ≡ 0 it is sufficient to prove that there is a ρ > 0 so that
U ≡ 0 in the strip Sρ = {x ∈ Rn : x1 ≤ ρ}. Take ρ > 0 so small that, if V is
as above and C is as in (0.2),

(1.2) C||V ||
L
n
m (Sρ)

≤ 1
2
.

If one uses Hölder’s inequality, along with (1.1) and (1.2), and the fact that
|P (D)U | ≤ |V U |, then one has the following string of inequalities for every
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τ > 0.

||e−τx1U ||Lp′ (Sρ) ≤ C||e−τx1P (D)U ||Lp(Rn)

≤ C||e−τx1V U ||Lp(Sρ) + C||e−τx1P (D)U ||Lp(Rn/Sρ)

≤ 1
2
||e−τx1U ||Lp′ (Sρ) + C||e−τx1P (D)U ||Lp(Rn/Sρ).

Hence,

||e−τx1U ||Lp′ (Sρ) ≤ 2C||e−τx1P (D)U ||Lp(Rn/Sρ),

and consequently,

||eτ(ρ−x1)U ||Lp′ (Sρ) ≤ 2C||P (D)U ||Lp(Rn).

Since the above inequality holds for every τ > 0, this forces U ≡ 0 in Sρ.

Proof of Theorem 1. Consider the operators

Tjf(x) =
∫
Rn

∫
Rn

f(y)ei〈x−y, ζ〉

(ζ1 − λj(ζ ′)) + i(1− µj(ζ ′))χ(ζ) dζ dy,

f ∈ S(Rn ), j = 1, . . . ,
m

2
.

(0.5) can thus be rewritten as

‖Tjf ‖p′ ≤ C ‖ f ‖p , f ∈ S(Rn ), j = 1, . . . ,
m

2
.

For simplicity, we will omit the subscript j from now on. The change of
variables ζ1 → ζ1 + λ(ζ ′) allows to write

Tf(x) =
∫
Rn
f(y)

(∫
Rn

ei(〈x−y, ζ〉+λ(ζ′)(x1−y1))

ζ1 + i(1− µ(ζ ′))
χ(ζ1, ζ

′) dζ

)
dy ,

and if we set ζ1 (1− µ(ζ ′))−1 = t, and we assume that χ(t(1− µ(ζ ′)), ζ ′) =
χ(t)χ(ζ ′),

Tf(x) =
∫
Rn
f(y)

∫
Rn−1

ei(〈x
′−y′, ζ′〉+λ(ζ′)(x1−y1))h((x1− y1)(1−µ(ζ ′))χ(ζ ′)) dζ ′,

where

(1.3) h(s) =
∫
R

eits

t+ i
χ(t)dt.
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Define the “frozen operator”

Tx1−y1g(x′) =
∫
Rn−1

ĝ(ζ ′)h((x1 − y1)(1− µ(ζ ′))) ei(〈x
′, ζ′〉+λ(ζ′)(x1−y1))χ(ζ ′)dζ ′.

If we prove that Tx1−y1 extends to a bounded operator from Lp(Rn−1) to
Lp
′
(Rn−1) with norm O(|x1 − y1 |−β),

(1.4) β ≥ 1 +
1
p′
− 1
p
,

then we are done. In fact, Tf(x) =
∫
R Tx1−y1f(y1, x

′)dy1, and hence

‖Tf(x1, .) ‖Lp′ (Rn−1) ≤
∫
R
‖Tx1−y1f(y1, .) ‖Lp′ (Rn−1)

dy1

≤ C
∫
R
‖ f(y1, .) ‖Lp(Rn−1) |x1 − y1 |−β dy1.(1.5)

By the Hardy-Littlewood-Sobolev inequality,

x1 →
∫
R
‖ f(y1, .) ‖Lp(Rn−1) |x1 − y1 |−β dy1 ∈ Lp′(R)

when β is as in (1.4), and∥∥∥∥ ∫
R
‖ f(y1, .) ‖Lp(Rn−1) |x1 − y1 |−β dy1

∥∥∥∥
Lp′ (R, dx1)

≤ C
(∫

R
‖ f(y1, .) ‖pLp(Rn−1) dy1

) 1
p

= C ‖ f ‖p .

By (1.5) and the above, ‖Tf ‖p′ ≤ C ‖ f ‖p.
We are thus left to estimate ‖Tx1−y1g ‖Lp′ (Rn−1)

. If we let Σ = {ζ ′ ∈
Rn−1 : µ(ζ ′) = 1}, and use polar coordinates associated to Σ,

Tx1−y1g(x′)

=
∫ +∞

0

rn−2

∫
Σ

g(rω)h((x1 − y1)(1− r))χ(rω) eir(〈x
′, ω〉+(x1−y1)λ(ω))dωdr.

Without loss of generality, rn−2χ(rω) = χ(r)χ(ω). Then,

Tx1−y1g(x′) =
∫ +∞

0

χ(r)h((x1 − y1)(1− r))Ix1−y1, rg(x′) dr,

(1.6)

where we have set

Ix1−y1, r g(x′) =
∫

Σ

ĝ(rω)eir(〈x
′, ω〉+(x1−y1)λ(ω))χ(ω)dσ(ω).

(1.7)
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By Minkowsky’s inequality,

‖Tx1−y1 g ‖Lp′ (Rn−1)
≤
∫ +∞

0

χ(r) |h((x1 − y1)(1− r)) | ‖ Ix1−y1, rg ‖Lp′ (Rn−1)
dr.

If Ix1−y1, r maps Lp(Rn−1) boundedly into Lp
′
(Rn−1), then

‖Tx1−y1g ‖Lp′ (Rn−1)
≤ C ‖ g ‖Lp(Rn−1)

∫ +∞

0

χ(r) |h((x1 − y1)(1− r)) | dr,

and, by the definition of h, ‖Tx1−y1g ‖Lp′ (Rn−1)
≤ C |x1 − y1 |−1 ‖ g ‖Lp(Rn−1),

which is even better than what we need.
Let β ∈ C∞0 (R) be an even and nonnegative function whose support is

concentrated in a neighborhood of the origin and such that
∫
R β(t)dt = 1.

Let

Iεx1−y1, r
g(x′) =

1
ε

∫
Rn−1

ĝ(η)β
( | r − µ(η) |

rε

)
ei(〈x

′, η〉+(x1−y1)λ(η))χ(η)dη.

If we prove that

(i)
∥∥∥ Iεx1−y1, r

g
∥∥∥
Lp′ (Rn−1)

≤ C ‖ g ‖Lp(Rn−1), g ∈ S(Rn−1), with C indepen-

dent of ε,
(ii) Iεx1−y1, r

g → Ix1−y1, r g in distribution sense as ε→ 0,

then ‖ Ix1−y1, r g ‖Lp′ (Rn−1)
≤ C ‖ g ‖Lp(Rn−1). Recalling that the spheres of

Lp
′
(Rn−1) are weakly sequentially compact, from (i) follows in fact that, for

every g ∈ S(Rn ), there exists a sequence {Iεjx1−y1, r(g)}j∈N which converges
in the weak topology of Lp

′
(Rn−1). By (ii), Iεjx1−y1, r g → Ix1−y1, r g, and by

(i), ‖ Ix1−y1, r g ‖Lp′ ≤ C ‖ g ‖Lp .
To prove (i) it is convenient to write Iεx1−y1, r

as the composition of two
operators, and study them separately.

Let

Gε
rg(x′) =

1√
ε

∫
Rn−1

ĝ(η)β
1
2

( | r − µ(η) |
rε

)
ei〈x

′, η〉χ(η)dη,

Qε
x1−y1, r

g(x′) =
1√
ε

∫
Rn−1

ĝ(η)β
1
2

( | r − µ(η) |
rε

)
ei(〈x

′, η〉+(x1−y1)λ(η))χ(η)dη.

Since Iεx1−y1, r
= Gε

r ◦ Qε
x1−y1, r

, for a suitable choice of the cutoff function
χ, and (Gε

r)
∗ = Gε

r, to prove that Iεx1−y1, r
: Lp(Rn−1) → Lp

′
(Rn−1) is a

bounded operator, it is enough to prove that Gε
r and Qε

x1−y1, r
map Lp(Rn−1)

boundedly into L2(Rn−1).
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Consider Qε
x1−y1, r

first. Since the function ζ ′ → eiλ(ζ′)(x1−y1) is bounded,
it is a L2 Fourier multiplier, (see e.g. [H]). Hence,∥∥∥Qε

x1−y1, r
g
∥∥∥
L2
≤ 1√

ε

∥∥∥∥ ∫
Rn−1

ĝ(η)β
1
2

( | r − µ(η) |
rε

)
ei〈x

′, η〉χ(η) dη
∥∥∥∥
L2

,

and by the Plancherel theorem,

(1.8)
∥∥∥Qε

x1−y1, r
g
∥∥∥
L2
≤
(

1
ε

∫
Rn−1
| ĝ(η) |2 β

( | r − µ(η) |
rε

)
χ2(η) dη

) 1
2

.

Let Q′εg denote the right-hand side of (1.8). In polar coordinates associated
to Σ,

Q′εg(x′) =
(

1
ε

∫ +∞

0

β

( | r − s |
rε

)∫
Σ

| ĝ(sω) |2 χ2(sω) dωds
) 1

2

.

Without loss of generality, χ2(sω) = χ(ω)χ(s). Since ĝ(sω) = s−n−1ĝs(ω),
where gs(ω) = g

(
ω
s

)
, if we let t = r−s

r
,

Q′εg(x′) =
(

1
εr2(n−1)

∫
R
β

( | t |
ε

)
χ(t)

(1− t)2(n−1)

∫
Σ

∣∣ ĝr(1−t)(ω)
∣∣2 χ(ω) dωdt

) 1
2

.

By the Assumption (2), Σ has nonvanishing Gaussian curvature on the sup-
port of χ. We can apply Theorem A in the Appendix to obtain the following
string of inequalities:

‖Q′εg ‖L2(Rn−1)

≤ C
(

1
εr2(n−1)

∫
R
β

( | t |
ε

)∥∥ gr(1−t) ∥∥2

Lp(Rn−1)

χ(t)
(1− t)2(n−1)

dt

) 1
2

= Cr
n−1
p′ ‖ g ‖p

(
1
ε

∫
R
χ(t)(1− t) 2(n−1)

p′ β

( | t |
ε

)
dt

) 1
2

.

The family of functions
{

1
ε
β
(
| t |
ε

)}
ε>0

converges to the Dirac distribution
δ0 in distribution sense. Hence,

(1.9) ‖Q′εg ‖L2(Rn−1) ≤ Cr
n−1
p′ ‖ g ‖Lp(Rn−1) .

The same technique applies to estimate ‖Gε
rg ‖L2(Rn−1). (i) is thus proved.

We now prove (ii). For φ, g ∈ S(Rn ),

〈Iεx1−y1, r
g, φ〉 =

1
ε

∫
Rn−1

ĝ(η)φ̂(η)β
( | r − µ(η) |

rε

)
ei(x1−y1)λ(η)χ(η)dη.
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If we set η = rζ ′,

〈Iεx1−y1, r
g, φ〉

=
rn−1

ε

∫
Rn−1

ĝ(rζ ′)φ̂(rζ ′)β
( | 1− µ(ζ ′) |

ε

)
eir(x1−y1)λ(ζ′)χ(rζ ′)dζ ′,

and we use polar coordinates associated to Σ,

1
ε

∫
R
χ(t)β

( | 1− t |
ε

)∫
Σ

ĝ(rtω)φ̂(rtω)eirt(x1−y1)λ(ω)χ(rtω) dωdt.

The family of functions
{

1
ε
β
(
| 1−t |
ε

)}
ε>0

converges to the Dirac distribution
δ1 in distribution sense. Hence,

lim
ε→0+

= 〈Iεx1−y1, r
g, φ〉 =

∫
Σ

ĝ(rω)φ̂(rω)eir(x1−y1)λ(ω)χ(ω) dσω

=
∫
Rn−1

Ix1−y1, rg(x′)φ(x′) dx′ = 〈Ix1−y1, rg, φ〉.

This concludes the proof of the theorem.

Remark. If Σ does not have everywhere nonvanishing Gaussian curva-
ture, but has has at least k nonvanishing principal curvatures, the thesis of
Theorem 1 holds for p ≤ 2(k+2)

k+4
. The proof of the above result is the same

as the proof of Theorem 1, where one uses Theorem B in the appendix in
place of Theorem A.

Appendix.

Let S denote a smooth hypersurface of Rn, n ≥ 3, equiped with a smooth
compactly supported measure dµ. Let J : S → SN be the usual Gauss map
taking each point on S to the outward unit normal at that point. We say
that S has everywhere nonvanishing Gaussian curvature if the differential
of the Gauss map dJ is always nonsingular. We say that S has at least k
nonvanishing principal curvatures if the rank of dJ is always ≥ k
Theorem A. If S has everywhere nonvanishing Gaussian curvature, the
following inequality holds for p ≤ 2(n+1)

n+3
:

(∫
S

∣∣∣ f̂(ξ)
∣∣∣2 dµ(s)

) 1
2

≤ C‖f‖Lp(Rn), f ∈ C∞0 (Rn ).

Proof. See e.g. [S], p. 60.
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From a theorem of Littman [L], and one of Greenleaf [G], one can prove
the following generalization of Theorem A:

Theorem B. If S has at least k nonvanishing principal curvature every-
where, the following inequality holds for p ≤ 2(k+2)

k+4
:

(∫
S

∣∣∣ f̂(ξ)
∣∣∣2 dµ(ξ)

) 1
2

≤ C‖f‖Lp(Rn), f ∈ C∞0 (Rn ).

References

[DC] L. De Carli, Unique continuation for higher order elliptic operators, Ph.D. thesis,
UCLA, 1993.

[G] A. Greenleaf, Principal curvatures in harmonic analysis, Ind. Univ. Math. J., 30
(1981), 519-537.
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