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ESSENTIAL TANGLE DECOMPOSITION FROM THIN
POSITION OF A LINK

Daniel J. Heath and Tsuyoshi Kobayashi

In this paper, we develop the idea of Thompson which
treats the relationship between bridge position, incompress-
ible meridianal planar surfaces, and thin position. We show
that for a link in thin position there exits a canonical depth
1 nested tangle decomposition with incompressible 2-spheres
arising from the thin position (Proposition 3.7), and we show
that there is a maximal essential tangle decomposition of the
link that is closely related to the thin position (Theorem 4.3).

1. Introduction.

The bridge number for a knot or link, introduced by Schubert [11], is a
classical and well-understood link invariant. The concept of thin position of
a knot or link was introduced by David Gabai (see [4]) in 1987, and has since
been playing an important role in 3-dimensional topology (see for example
[5], [12]). The relationship between the two was first explored by Thompson
in [15], in which it was shown that either a knot in thin position is also in
bridge position, or the knot has an incompressible meridianal planar surface
properly imbedded in its complement.

In this paper, we further develop the idea of Thompson which treats
the relationship between bridge position, incompressible meridianal planar
surfaces, and thin position. We show that for a link in thin position there
exits a canonical depth 1 nested tangle decomposition with incompressible
2-spheres arising from the thin position (Proposition 3.7), and we show that
there is a maximal essential tangle decomposition of the link that is closely
related to the thin position (Theorem 4.3).

2. Preliminaries.

We begin with some definitions.
For a submanifold H of a manifold K, N(H,K) denotes a regular neigh-

borhood of H in K.
Let L be an irreducible link in S3. A meridianal planar surface in the com-

plement of L is a planar surface properly imbedded in the link complement
with boundary components consisting only of meridians of L.
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Note that S3\{two points} = S2 ×R. We define p : S2 ×R → S2 to be
the projection onto the first factor, and h to be projection onto the second
factor. Assume that h |L is a Morse function. A meridianal 2-sphere S is
said to be bowl like if S = F1 ∪ F2 such that F1 ∩ F2 = ∂F1 = ∂F2, F1 is
a round 2-disc contained in a level plane, h |◦F2 is a Morse function with
exactly one maximum or minimum, p(F1) = p(F2), and p |F2 : F2 → p(F2) is
a homeomorphism. Further, we shall require that all punctures lie in F1. A
bowl like 2-sphere is flat face up (flat face down) if F1 is above (below) F2.

We recall the definition of thin position: Let fs, 0 ≤ s ≤ 1 be an ambient
isotopy of S3 such that h |f1(L) is a Morse function. Choose a regular value
ti between each pair of adjacent critical values of h |f1(L). Define the width
of L with respect to f to be the sum over i of the [number of intersections of
f1(L) with h−1(ti)], and denote it by wf (L). Define the width of L, w(L), to
be the minimum width of L with respect to f over all f ; L is in thin position
if it is in a position which realizes its width.

We say that S is a thin 2-sphere (thick 2-sphere) for L with respect to h if
S = h−1(t) for some t which lies between adjacent critical values x and y of
h, where x is a minimum (maximum) of L lying above t and y is a maximum
(minimum) of L lying below t, see Figure 2.1. We define thin discs (thick
discs) contained inside a bowl like 2-sphere analogously.

We say that L is in bridge position if there exists some thick 2-sphere for
L such that all maxima (minima) of L are above (below) the thick 2-sphere.
Let L′ be the part of L lying inside the bowl like 2-sphere S. We say that
L′ is in bridge position if there exists some thick 2-disc D for L′ such that
all maxima (minima) of L′ are above (below) D.

Figure 2.1.
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Let L, L′ be two links in S3. We say that L is h-equivalent to L′ if there
exists an ambient isotopy fs (0 ≤ s ≤ 1) of S3 such that f1(L) = L′ and
such that for every x ∈ L we have h(f1(x)) = h(x). We remark that if L is
h-equivalent to L′, then L and L′ are clearly the same link. Note that if L
is h-equivalent to L′, this implies that h is a Morse function on L′ and that
wid(L) = wf (L) = wid(L′). Thus if L is in thin position, then L′ is also.

Let F be a compact surface. A compression body W is a 3-manifold
obtained from F×[0, 1] by attaching 2-handles along mutually disjoint simple
closed curves in F × {1} and attaching some 3-handles so that ∂−W =
∂W − (∂+W ∪ ∂F × [0, 1]) has no 2-sphere components, where ∂+W is a
subsurface of ∂W which corresponds to F × {0}. It is known that W is
irreducible (Lemma 2.3 of [2]).

3. Canonical Depth 1 Nested 2-spheres.

In general, for a link L in S3, the exterior of L, denoted by E(L), is the
closure of S3 −N(L, S3). Let L be a link in thin position. Assume further
that L is not in bridge position. In this section, we show that there is a
canonical decompostion of the link by a system of incompressible 2-spheres
which is associated with the thin position (Proposition 3.7). Note that this
sharpens the result of Thompson [15].

Since L is not in bridge position, there is at least one thin level 2-sphere.
Let S be a member of the isotopy class of the highest such thin level 2-
spheres, and P = the corresponding planar surface in E(L). The closure of
the part of E(L) above (below) P we denote by M0 (M1).

Claim 3.1. P is incompressible above.

Proof. Since S is the highest thin 2-sphere, the critical points above S are
a number of minima followed by a number of maxima. Between the highest
such minima and the lowest such maxima we take a thick 2-sphere F . Above
F , L is just a bunch of arcs, between F and S is the same, with some vertical
segments as well. The closure of the part of M0 above (below) F we denote
byM0,1 (M0,2). We again use F to denote the surface F∩M0, slightly abusing
notation. Denote by B1 the union of closures of ∂M0\N(∂F ; ∂M0) contained
in ∂M0,1, and by B2 the closure of the component of ∂M0\N(∂F ; ∂M0)
contained in ∂M0,2. Note that M0,i is a compression body with ∂−M0,i = Bi.
Thus F is a Heegaard surface for (M0; B1, B2), see [3].

Assume that there exists a compressing disc, D, for P above. By [3] we
may assume that D has been isotoped to intersect F in one circle. We may
assume that D contains components of L inside and outside, since otherwise
D is parallel to a piece of P . Since D intersects F in a circle, note that there
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are maxima of L contained on the inside and on the outside of D. Also,
there is at least one minima of L above P by definition of thin 2-sphere.
Hence, there is a pair of maxima and minima separated by D. We push the
maxima to lie slightly below F , and at the same time push the minima above
F , see Figure 3.1. This lowers the width of the link by 4, contradicting thin
position. This contradiction proves the claim.

Figure 3.1.

Note that P may be compressible below. Let C be the maximal compres-
sion body (modulo isotopy) for (M1, P ), c.f. [2]. Then C is obtained from
N(P ;M1) = P × [0, 1] by adding 2-handles constructed from compressing
discs for P×{0}, say D1,1, . . . , D1,m1 , and capping off the 2-sphere boundary
component.

Claim 3.2. We may assume that the discs D1,1, . . . , D1,m1 are non-nested.

Proof. The following argument takes place entirely within M1. Assume
that D1,2 lies on the inside of D1,1. Now ∂D1,1 ∪ ∂D1,2 bound a (punctured)
annulus A ⊂ P×{0}; we choose some arc α lying in A joining ∂D1,1 to ∂D1,2.

Figure 3.2.
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A small regular neighborhood of α in M1 is a ball β. Using β, isotope D1,2

until it intersects D1,1 in an arc, and such that the piece inside D1,2 and
outside of D1,1 is a tiny ball lying completely inside of M1. This isotoped
D1,2 we call D′1,2. The piece of D′1,2 lying interior to D1,1 we call D. The
piece of D1,1 lying interior to D′1,2 we call E. Change D1,1 into D′1,1 by an
isotopy over D′1,2 in such a way that D′1,1 is just D1,1\E union a push off of
D, see Figure 3.2. This completes the proof of the claim.

Note that the D1,i form, together with punctured subdiscs of P × {0},
punctured 2-spheres S1,1, . . . , S1,m1 . Then we remark that C = M1 \ the
interior of the S1,i’s.

Claim 3.3. Maintaining the condition that the D1,i are non-nested, there
is an ambient isotopy fs such that the link L′ = f1(L) is h-equivalent to
L, fs |M0= idM0 ,∀s and the S1,i can be chosen to be flat face up bowl like
2-spheres.

Proof. Again, the following argument takes place entirely within M1. As-
sume the interior of D1,1 is non-convex. Take the 2-sphere S1,1 and shrink
it by ambient isotopy fs to an extremely tiny 2-sphere S′1,1, with shrinking
of the piece of L inside of it similarly. It may be necessary to “untwist” S1,1

in order to do this, but we can “retwist” it when it is very small. Note that
this may bring the link out of thin position. Choose a small circle c lying
in P × {0} such that the projection of the part of L lying inside of S1,1 lies
completely inside of c. We now construct the vertical cylinder C1,1 = c×R
in the S2×R structure (recall the Morse function inducing thin position was
really a height function on S3\{two points}) of M1. By a strictly horizontal
ambient isotopy, we may assume that the part of L lying outside of S1,1

doesn’t intersect C1,1. Now, isotope the link f1(L) so that each point lies
at the same height as the original link L, and so that it does not intersect
the cylinder C1,1. But then we can restretch S′1,1, forming S′′1,1, so that its
critical points lie on the same level as S1,1, but S′′1,1 is contained in C1,1.
Since the same critical points lie on the same level as before, thin position
has not been altered. Furthermore, since everything was done by ambient
isotopy the link remains unaltered as well; it is clear that the isotopies can
be chosen so as to form an h-equivalence. The resultant link we call L′. Now
choose in place of D1,1 the disc D′1,1 formed by taking some area of the sides
of C1,1 together with a horizontal disc lying below the lowest minimum of
L′ inside C1,1. If we alter this disc by a tiny isotopy in order to bulge the
bottom downward and slightly slope the sides, we obtain the desired disc.
Successive repetition of this procedure on each of the D1,i’s completes the
proof of the claim.
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Figure 3.3.

Claim 3.4. The S1,i are unique up to an isotopy in the link exterior.
Proof. This is a consequence of the uniqueness of the maximal compression
body C, see [2].

Claim 3.5. ∪ S1,i is incompressible in E(L).
Proof. Using the notation of Claim 3.1, F is a Heegaard surface for
E(L)\ the interior of the union of the S1,i. Now the proof is analogous
to that of Claim 1.

Remark 3.6. By the theorem in the appendix, each of the S1,i is incom-
pressible in E(L).

We summarize the results of Claims 3.1-3.4 and Remark 3.6 in the state-
ment:

Proposition 3.7. If a link L has thin position differing from bridge po-
sition, then there exists an ambient isotopy fs, such that L′ = f1(L) is
h-equivalent to L, and L′ has a tangle decomposition by a finite number of
non-trivial non-nested flat face up bowl like 2-spheres each of which is incom-
pressible in the link complement. In this decomposition we have a tangle “on
top,” (above P ) with all of the incompressible 2-spheres below it connected
by vertical strands, as per Figure 3.4.
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Figure 3.4.

4. Essential Tangle Decomposition.

In this section, we further develop the consideration in Section 3 for the
inside of the S1,i’s. We note that the main idea of this argument, in which
ST-complexity is used, is borrowed from [13].

From this point on, we make the assumption that the link L has already
been altered to satisfy the conclusion of Proposition 3.7. We now move to
consideration of the piece L1,i of the link L lying inside of S1,i.

It may be the case that L1,1 is in bridge position. If so, we move to the
consideration of S1,2. Thus we assume that L1,1 is not in bridge position.
Let P1,1 be the highest thin disc for L1,1, and denote by M1,1 the exterior of
L1,1 lying inside of S1,1 and below P1,1.

Figure 4.1.



108 DANIEL J. HEATH AND TSUYOSHI KOBAYASHI

We now have two possibilities:
1) P1,1 is compressible above (Figure 4.1(a)), and
2) P1,1 is incompressible above (Figure 4.1(b)).

In case (1), the argument of Claim 3.1 demonstrates that all maxima and
minima between P and P1,1 are contained on the inside of the compressing
disc D. In addition, by following the above argument, we see that we may
choose D in such a way as to form, together with a component of P1,1\∂D,
a flat face down bowl like 2-sphere, call it S2,0 (see Figure 4.2(a)). This
2-sphere may be compressible in M1,1.

In case (2), an argument analogous to that of Claim 3.1 shows that there
is no vertical annulus separating two critical points of L between P and P1,1,
so this piece of L1,1 looks just like Figure 4.2(b).

Figure 4.2.

In either case, P1,1 is compressible below, at least by a disc attached to
the boundary of P1,1 and encasing the piece of L1,1 below P1,1. Using the
above method, we find the maximal compression body C1,1 for M1,1. By
applying the argument of Claim 3.3, we may suppose that ∂−C1,1 consists
of a disc and a system of flat face up bowl like 2-spheres, say S2,1, . . . , S2,n2 .
Then we move to the consideration of S2,1 and so on.

Continuing in this fashion, we decompose the interior of each of the Si,j
with bowl like 2-spheres, the interior of each of which contains at most one
thick disc up to isotopy, and perhaps a collection of bowl like 2-spheres, see
Figure 4.3. The above Si,j’s we rename S1, . . . , Sn.

Let S = S1 ∪ . . . ∪ Sn be the union of bowl like 2-spheres obtained as
above. Let C0, . . . , Cn be the closure of the components of S3\S, such that
C0 lies exterior to all of the Sj, and Ci is the component lying directly inside
of Si. Then, by construction, S satisfies the following.
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Figure 4.3.

Property 1. For each Ci, i > 0, either 1) there is both a maximum and
minimum of L in Cj, or 2) there is nor a maximum and minimum of L in
Cj, and there exists a level disc Fi such that every flat face down (up) bowl
like 2-sphere directly inside Si lies above (below) Fi, and every maximum
(minimum) of L in Ci lies above (below) Fi.

We note that, if one exists, Fi is a thick 2-disc for Ci. We also note that
Fi is a Heegaard splitting surface for Ci ∩ E(L). Denote by the complexity
of Si, c(Si), the number of intersections of Fi and L. The (Scharlemann-
Thompson) ST-complexity of S, denoted by c(S), we define to be the list of
integers {c(Si)}ni=1, together with the following order.

We arrange the integers in this set in monotonically non-increasing or-
der, and compare the ordered multi-sets lexicographically. For example,
the multi-set {3, 3, 5, 3, 2, 1} is less than the multi-set {2, 2, 5, 3, 4} since
{5, 3, 3, 3, 2, 1} precedes {5, 4, 3, 2, 2} in lexicographic order.

Let Du be a disc in Ci such that ∂Du = αu ∪ βu with αu a sub-arc of L
containing a single critical point which is a maximum, and βu = Du ∩ Fi.
Similarly, let Db be a disc in Ci such that ∂Db = αb∪βb with αb a sub-arc of
L containing a single critical point which is a minimum, and βb = Db ∩ Fi.
Assume that ◦βu ∩◦ βb = ∅. Then the maximum-minimum arc pair (αu, αb)
is called a bad pair of arcs for Si.

Similarly, let αu, αb be a pair of arcs in Ci each containing a single critical
point which is a maximum (minimum) respectively, and βu, βb ⊂ Fi be two
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arcs whose interiors don’t intersect, such that ∂αu = ∂βu, ∂αb = ∂βb. We
say that αu, αb is a weakly bad pair of arcs if there exists discs Du, Db such
that ◦Du ∩◦ Db = ∅, ∂Du = αu ∪ βu, ∂Db = αb ∪ βb, N(βu, Du) is above Fi,
and N(βb, Db) is below Fi. Note that a bad pair of arcs is obviously weakly
bad.

Since L is in thin position, we have:

Property 2. There does not exist a weakly bad pair of arcs for Si.

Recall that we have decomposed L into tangles with the collection S =
S1 ∪ . . . ∪ Sn of bowl like 2-spheres.

Proposition 4.1. In general, let S = S1∪. . .∪Sn be a collection of bowl like
2-spheres satisfying Properties 1 and 2. Suppose that Si ∈ S is compressible.
Then after an ambient isotopy of L, there exists another collection S′ of bowl
like 2-spheres satisfying Property 1 and having a lower ST-complexity.

Proof. Let C1, . . . , Cn be as above. By an innermost disc argument, and
changing suffix if necessary, we may assume that D is a compressing disc
for S1 and that D ∩ S = ∂D. Since the argument is symmetric, we assume
that S1 is flat face up. By changing suffix if necessary, we may suppose that
S2, . . . , Sm lie directly inside of S1. Let Cj be the component which contains
D. Since Fj is a Heegaard surface for Cj ∩ E(L), we may assume, by the
argument of Claim 3.1, that D ∩ Fj is a circle. Again by the argument of
Claim 3.1 and Property 2, we have:

(*) All maxima and minima inside of Cj are contained on either the inside
or the outside of D.

Then we have the following cases:

Case 1. The disc D compresses S1 outside.

In this case, we note that Cj lies outside of S1, and C1 lies inside.

Case 1.1. No maxima or minima in Cj are contained on the inside of D.

Note that this contains the case when there are no maxima and minima
of L in Cj.

Case 1.1A. No flat face up bowl like 2-spheres are contained in the interior
of D.

Then D contains only a collection of flat face down 2-spheres connected
to S1 by vertical strands. In this case, we push these interior bowl like 2–
spheres into the interior of C1. This does not alter the complexity c(S1), but
does remove intersections between Fj and L, lowering the complexity c(Sj)
as per Figure 4.4. Thus the complexity of S is lowered.
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Figure 4.4.

Case 1.1B. Some flat face up bowl like 2-sphere(s) are contained in the
interior of D.

Then we first use an isotopy to pull these above the flat face of S1, see
Figure 4.5(a) & (b). We can use the argument of Claim 3.3 to assure that the
interior of D fits into a vertical cylinder. Now use D, together with a subdisc
of the flat face of S1, to form a new flat face down bowl like 2-sphere Sn+1.
Note that adding Sn+1 to our collection of 2-spheres lowers the complexity,
as per Figure 4.5(b) & (c), though it leaves S1 compressible. Then we may
use the argument of 1.1A to further reduce the complexity.

Figure 4.5.

Case 1.2. All maxima and minima fall on the inside of D.

Then the argument of either 1.1A or 1.1B suffices to lower the complexity.
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Case 2. The disc D compresses S1 inside.

Then we note that Cj = C1. We denote the component of S3\S lying
directly outside of S1 as Ck.

Case 2.1. No maxima or minima in C1 are contained on the inside of D.

Note that this contains the case when there are no maxima and minima
of L in C1.

Figure 4.6.

Case 2.1A. No flat face down bowl like 2-spheres are contained in the in-
terior of D.

Then D contains only a collection of flat face up 2-spheres connected to S1

by vertical strands. In this case, we push these interior bowl like 2-spheres
into the exterior of S1. This does not alter the complexity c(Sk), but does
remove intersections between F1 and L, lowering the complexity c(S1) as per
Figure 4.6. Thus the complexity of S is lowered.

Case 2.1B. Some flat face down bowl like 2-sphere(s) are contained in the
interior of D.

Figure 4.7.

We use the argument of Claim 3.3 to assure that the interior of D fits
into a vertical cylinder. Now use D, together with a subdisc of the flat face
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of S1, to form a new flat face up bowl like 2-sphere Sn+1. Note that adding
Sn+1 to our collection of 2-spheres lowers the complexity, as per Figure 4.7,
though it leaves S1 compressible. Then we may use the argument of 2.1A to
further reduce the complexity.

Case 2.2. All maxima and minima fall on the inside of D.

Then the argument of either 2.1A or 2.1B suffices to lower the complexity.
And, finally, it is easy to see that new system of bowl like 2-spheres above

satisfies Property 1, by Property (*).

Remark. Note that possibly some components of S′ in the conclusion of
Proposition 4.1, say S′1, S′2 might be mutually parallel, that is, the region
between S′1, S′2 contains only vertical strands.

We note that in either case, the argument may force us to pull the link
out of thin position.

Proposition 4.2. Let L(n+1) be the link and S(n+1) be the collection of bowl
like 2-spheres obtained from n applications of Proposition 4.1. Note that here
we must assume that L(i) satisfies Property 2 for each i ≤ n. If L(n+1) does
not satisfiy Property 2, then L is not in thin position.

Proof. Let Du, Db be the discs corresponding to the bad pair of arcs. We
reverse the operation of Proposition 4.1, pushing the discs Du, Db in the
process. We note that we may assume the reverse process misses a tiny
neighborhood of αu, βu, αb, and βb. Hence, this gives a weakly bad pair of
discs for the original link L, contradicting thin position.

Now we return to the link L, and the collection S = S1 ∪ . . . ∪ Sn under
consideration earlier.

Main Theorem 4.3. Let L be a link in thin position, and S as above.
Then there exists an ambient isotopy for L to a link L′ so that there exists
a collection of incompressible bowl like 2-spheres S′ for L′ such that there is
a one to one correspondence between the components of S3−S′ that contain
maximum (and minimum) of L′ and the components of S3 − S that contain
maximum (and minimum) of L.

Proof. If S is incompressible, we are done, so suppose not. Apply Proposi-
tion 4.1 to the link L and the collection S in order to obtain the collection
S(1) for the link L(1). By Proposition 4.2, we see that (L(1), S(1)) satisfies
Property 2, so that we may again apply Propositon 4.1 if necessary.

That this process ends in finitely many steps follows from the fact that the
ST-complexity decreases at each application of Proposition 4.1. Let S′ be the
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system of bowl like 2-spheres obtained in this manner. Then by Proposition
4.1 we see that S′ is incompressible. And, by the proof of Proposition 4.1,
we easily see that we have a one to to correspondence as in the statement of
Theorem 4.3.

5. Examples.

The first example is borrowed from Morimoto, [8].

Example 5.1. We consider the 816 knot K, which is pictured in Figure
5.1(a), having bridge index 3. It is elementary to check that it has an
incompressible meridianal planar surface S, as shown in 15(b). But the
width of K with respect to the height function of Figure 5.1(b) is 2 + 4 +
6 + 4 + 6 + 4 + 2 = 28. In the position pictured in 15(a), the width is
2+4+6+4+2 = 18. The only non-trivial knots having thinner position are
2-bridge knots (2 + 4 + 2 = 8) and 3-bridge knots which are the composition
of two 2-bridge knots (2 + 4 + 2 + 4 + 2 = 14). This knot is neither, so that
18 must be the width of K.

Note that this demonstrates that it is possible for a knot to have an
incompressible, meridianal planar surface whose existence is unrelated to
thin position. Thus we cannot expect to find a converse to Thompson’s
result (see [15]).

Figure 5.1.

Example 5.2. We classify thin position of prime knots up to 10 cross-
ings and prime, irreducible links up to 9 crossings. A complete table with
diagrams can be found in [10].

Note that, in the definition of thin position, ][L ∩ h−1(ti)] =
][L∩h−1(ti+1)]±2, for i = 1, . . . , n. The irreducibility condition implies that
we cannot find an i for which ][L∩h−1(ti)] = 0. The prime condition implies
that except for i = 1, n, ][L ∩ h−1(ti)] 6= 2. Thus if bridge index is 1, 2, or
3, we are already done, as the thinnest possible position is 2, 2 + 4 + 2 = 8,
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or 2 + 4 + 6 + 4 + 2 = 18 respectively. Any interesting example, therefore,
has bridge index at least 4.

It is elementary to check that all knots and links pictured in [10] are 2-
or 3-bridge with the exceptions of 93

3−4, 9
3
15−17, 8

4
1−3, and 94

1. Each of these
links is either 3-component for which one of the components is a 2-bridge
knot, or 4 component, and thus the smallest the bridge indices can be for
any of them is 4. In fact, it is easy to see from the pictures that the bridge
index in each case is 4. Hence thin position has a width of either 32 (if thin
position is determined by bridge index) or 28 (which requires the existence of
an incompressible, meridianally planar surface in the complement) for each.

In each case, it is a rather simple matter to find a meridianal incompress-
ible planar surface giving a thinner position than the bridge presentation.
Thus width for each of these links is 28.

Example 5.3. We consider the Montesinos knot K = M(0; (2, 1), (3, 1),
(3, 1), (5, 1)), pictured in 5.2(a) in 4-bridge presentation. Its branched dou-
ble cover is the Seifert manifold S(0, 0; (2,1), (3,1), (3,1), (5,1)). That this
manifold has no horizontal Heegaard splitting is easy to check using the pro-
cess of [7]. Thus any Heegaard splitting is vertical, and of genus at least 3.

Figure 5.2.
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Now we note that by [1], Lemma 3.2, K doesn’t have a 3-bridge presentation,
so b(K) = 4, and hence width is either 28 or 32. Since K is Montesinos,
we can find all meridianal incompressible surfaces using [9]. It is elementary
to check that two of these give essentially different tangle decompositions
inducing a width of 28, demonstrating that thin position need not be unique.
(See Figure 5.2(b) & (c).)

We note that we may change the constants in this example so as to produce
myriads of examples.

Appendix.

Theorem . Let Σ =
⋃n
i=1 Si ⊂ M be a union of surfaces with

(Σ, ∂Σ) ⊂ (M, ∂M), and with Σ incompressible in M \ Σ. Then Si
is incompressible in M ∀i.

Proof. Assume that S1 is compressible in M , and let D be a compressing disc
having the least number of intersections with Σ. Since Σ is incompressible,
D must intersect some Si, i 6= 1. Then D ∩ Σ is a union of simple closed
curves; consider an innermost one, α. Now α bounds a disc D′ in D. If D′ is
inessential, we can create a new disc D̃ by replacing D′ with the sub-disc of
Si bounded by α; then D̃ has less intersections with Σ, contradicting choice
of D. Thus D′ must be essential. But then D′ is a compressing disc for Si
whose interior is disjoint from Σ, that is, it is a compressing disc for Σ, a
clear contradiction.
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