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SHAPOVALOV DETERMINANT FOR RESTRICTED AND
QUANTIZED RESTRICTED ENVELOPING ALGEBRAS

Shrawan Kumar and Gail Letzter

As is well known, the Shapovalov bilinear form and its
determinant is an important tool in the representation theory
of semisimple Lie algebras over char. 0. To our knowledge,
the corresponding study of the Shapovalov bilinear form and
its determinant is not available in the literature in char. p or
the quantum case at roots of unity. The aim of this paper is
to fully determine the Shapovalov determinant for both, the
restricted enveloping algebra and its quantum analog.

More precisely, let g be a semisimple Lie algebra. Fix a
prime p 6= 2 which also satisfies p 6= 3 whenever g contains a
component of type G2. This will be our tacit assumption on p
through the paper. Let ξ be a primitive pth root of unity. This
paper is concerned with two algebras: a certain analog up of
the restricted enveloping algebra (cf. Definition 3.1) and its
quantized version uξ which is an algebra over the cyclotomic
field Qξ (cf. Definition 3.3). The main results of this paper
are complete descriptions of the Shapovalov determinant for
both the algebras up and uξ (cf. Theorems 3.2 and 3.4).

1. Introduction.

There has been tremendous interest in the representation theory of the al-
gebra up, because of its connection with the representation theory of the
associated algebraic group over char. p (via some proven conjectures of
Verma and the Steinberg Tensor Product Theorem). The quantized alge-
bra uξ seems even richer. On the one hand (as conjectured by Lusztig, and
proved for large primes by Andersen-Jantzen-Soergel [AJS]) its irreducible
modules have the same character as that of up and on the other hand (as
shown by Kazhdan-Lusztig) its representation theory parallels that of the
representation theory of the associated affine Kac-Moody Lie algebra at a
certain negative level. In the sequel, we shall refer to the case of up (resp.
uξ) as the modular (resp. the quantum) case.

Our arguments in the modular case draw and expand upon Shapovalov’s
original paper [S]. For any positive root γ and positive integer m, he con-
structed a certain element Θγ,m ∈ U(g) of weight −mγ, which when applied
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to a highest weight vector of a particular Verma module for U(g) provides
another highest weight vector. In our paper, we make a careful choice of
the elements Θγ,m with certain ‘integrality’ properties which enables us to
take their reduction mod p. The whole of our Section 5 is devoted to con-
structing these elements and proving certain properties satisfied by them
crucial for decomposing the Shapovalov determinant (cf. Propositions 5.2
and 5.6). But the Lie algebra of type G2 poses additional problems for the
root γ = 2α1 + α2, which is handled separately in Section 6. Mimicking the
arguments in [S], we calculate the highest degree term of the Shapovalov
determinant for the algebra up (cf. Lemma 8.1). Now the explicit nature of
the highest degree term shows that the factors of the Shapovalov determi-
nant in the modular case obtained from the existence of the elements Θγ,m

exhaust all the factors of the determinant, thereby completing the proof of
Theorem (3.2).

The quantum arguments are quite similar; the only added difficulty lies
in choosing various correct powers of q. We construct the q-version Θq

γ,m

of the elements Θγ,m in Section 7. Its required properties are contained
in Proposition (7.1). The proof of this proposition makes repeated use of
certain commutation relations, which we collect in Section 4. The quantum
case, however, uses two types of specialization: One from the generic q to
the root of unity ξ, and the other from ξ to char. p (cf. Definition 9.2). To
make this possible, we must work over a larger ring B ⊃ Z[q, q−1] (cf. §2).
In particular, we define a certain B-form UB of the quantized enveloping
algebra Uq(g) and prove various freeness properties (cf. Proposition 4.4),
which allow us to specialize both ways. Proofs of both the Theorems (3.2)
and (3.4) are completed in §9.

We present some applications of our Shapovalov determinant formulae:
As an immediate consequence of our Theorems (3.2) and (3.4), we deduce
the irreducibility of the Steinberg module for up (as well as uξ) (cf. Corol-
lary 3.5). This result is well known (and proved by other methods). The
second, given in Section 10, is a new proof of the character-sum formula
(cf. Theorem 10.1) for the Jantzen filtration for the algebras up and uξ,
obtained by Andersen-Jantzen-Soergel [AJS] by different methods. Finally,
as in [AJS, §6], the Strong Linkage Principle for the algebra up with p at
least the Coxeter number h of g and for uξ with arbitrary p (cf. Theorem
10.3) follows easily from Theorem (10.1). It may be recalled that the Strong
Linkage Principle in the modular case was proved for arbitrary p in general
by Andersen [A] and in the quantum case by Andersen-Polo-Wen [APW].

Acknowledgement. We thank J.E. Humphreys for some comments on
this work.
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2. Preliminaries and Notation.

Let g be the complex semisimple Lie algebra of rank n associated to a Cartan
matrix A = (aij)1≤i,j≤n. Fix a triangular decomposition

(1) g = n− ⊕ h⊕ n+.

Let ∆+ denote the set of positive roots of g (i.e., the set of roots of n+),
{α1, . . . , αn} the set of simple (positive) roots, and {fβ, eβ, Hi;β ∈ ∆+, 1 ≤
i ≤ n} a Chevalley basis for g. Here, fβ corresponds to the negative root
−β, eβ corresponds to the positive root β, and Hi is the simple coroot
corresponding to the root αi. For the simple root αi, we also denote eαi
(resp. fαi) simply by ei (resp. fi). Let r1, . . . , rn be the (simple) reflections
corresponding to the simple roots α1, . . . , αn respectively. Fix an ordering
β1, . . . , βN of the positive roots and set

(2) et = et1β1
· · · etNβN and f t = f tNβN · · · f t1β1

,

for any N -tuple of non-negative integers t = (t1, . . . , tN) (where N = |∆+|).
Let gZ be the Lie subalgebra of g generated by {fβ, eβ, Hi;β ∈ ∆+, 1 ≤

i ≤ n} over Z and set

(3) n±Z = n± ∩ gZ, hZ = h ∩ gZ.
For any prime p, let Fp be the prime field (of order p) and set gp = gZ⊗ZFp.

Note that

(4) gp = n−p ⊕ hp ⊕ n+
p ,

where n−p = Fp ⊗Z n−Z , etc.
For any Lie algebra s over a commutative ring R, we denote its universal

enveloping algebra by U(s).
Now let Uq(g) denote the quantized enveloping algebra associated to g

(rather to the Cartan matrix A) defined by V.G. Drinfeld and M. Jimbo.
Recall that Uq(g) is defined to be the associative algebra over the function
field Q(q) generated by {Ei, Fi,K±1

i }1≤i≤n and subject to the relations:

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1, for all i, j(R1)

KiEjK
−1
i = qdiaijEj, KiFjK

−1
i = q−diaijFj, for all i, j(R2)

EiFj − FjEi = δi,j
Ki −K−1

i

qdi − q−di , for all i, j, and(R3)

1−aij∑
m=0

(−1)mE(1−aij−m)
i EjE

(m)
i = 0, and(R4)
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1−aij∑
m=0

(−1)mF (1−aij−m)
i FjF

(m)
i = 0, for i 6= j,

where D = diag(d1, . . . , dn) is the unique diagonal matrix with positive
integral entries so that the matrix DA is symmetric, and the entries of D
are the smallest possible. In the above relation (R4), the following standard
notation is being used:

E
(m)
i :=

Em
i

[m]!di
, F

(m)
i :=

Fm
i

[m]!di
,(5)

[m]!di := [1]di [2]di · · · [m]di and(6)

[m]di :=
qdim − q−dim
qdi − q−di .(7)

Then Uq(g), in fact, has a Hopf algebra structure with the comultiplication
∆, counit ε, and antipode σ defined as follows:

(8) ∆Ei = Ei ⊗ 1 +Ki ⊗ Ei, ∆Fi = Fi ⊗K−1
i + 1⊗ Fi, ∆Ki = Ki ⊗Ki;

(9) εKi = 1, εEi = εFi = 0; and

(10) σEi = −K−1
i Ei, σFi = −FiKi, σKi = K−1

i .

For any Hopf algebra H, one defines an adjoint action by

(11) (ad a)b =
∑
i

a1
i bσ(a2

i ) for a, b ∈ H,

where ∆a =
∑
i a

1
i ⊗ a2

i . In particular, for a ∈ Uq(g), we have

(ad Fi)a = FiaKi − aFiKi, (ad Ei)a = Eia−KiaK
−1
i Ei,

(ad Ki)a = KiaK
−1
i .(12)

Lusztig [L1, L2] introduced certain automorphisms Ti of Uq(g) corre-
sponding to the simple roots αi. As in [DK, Remark 1.6],

TiEj = (ad−E(−aij)
i )Ej, if i 6= j and

TiEi = −FiKi.
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Any choice of a reduced expression ri1 · · · riN of the longest element wo of
the Weyl group W associated to g gives rise to an ordering of the positive
roots:

(13) β1 = αi1 , β2 = ri1αi2 , . . . , βN = ri1 · · · riN−1αiN ,

and the “root vectors” ([L1, L2]) for any 1 ≤ k ≤ N :

(14) Eβk := Ti1 · · ·Tik−1Eik , Fβk := Ti1 · · ·Tik−1Fik .

In the sequel we shall use this ordering of positive roots.
For any t = (t1, . . . , tN) ∈ ZN+ (where Z+ denotes the set of non-negative

integers), set

(15) Et = Et1
β1
· · ·EtN

βN
and F t = F tN

βN
· · ·F t1

β1
.

Let a := max{−aij}i6=j, where aij are the entries of the Cartan matrix A.
Let B be the subring

Z
[
q, q−1, ([a]!d1)−1, . . . , ([a]!dn)−1

]
of Q(q). Define the B-subalgebra UB of Uq(g) generated by {Ei, Fi,K±1

i ; 1 ≤
i ≤ n}. Set

(16) UoB = UB ∩ U o
q , U±B = UB ∩ U±q ,

where U o
q (resp. U+

q , resp. U−q ) is the Q(q)−subalgebra of Uq(g) generated
by {K±1

i }1≤i≤n (resp. {Ei; 1 ≤ i ≤ n}, resp. {Fi; 1 ≤ i ≤ n}).
Fix an odd prime p which is further assumed not to be equal to 3 if G2

is a factor of g. This will be our tacit assumption in this paper. Also fix a
primitive p-th root of unity ξ, and let Qξ be the cyclotomic field gotten by
attaching ξ to Q. Define the homomorphism fξ : B → Qξ by q 7→ ξ. It is
easy to see, by our restriction on p, that this map is well defined. Set

(17) Uξ = Qξ ⊗B UB, U±ξ = Qξ ⊗B U±B , and Uoξ = Qξ ⊗B UoB.
By Proposition 4.4(b), U0

ξ is the algebra Qξ[K±1 , . . . ,K±n ] of Laurent poly-
nomials in the variables {K1, · · · ,Kn}.

Let (, ) denote the Killing form on h∗, normalized so that

(αi, αi)
2

= di.

Set β̌ = 2β/(β, β) for β 6= 0 ∈ h∗. Let ρ denote the half sum of the positive
roots. Then (ρ, α̌i) = 1 for each 1 ≤ i ≤ n. Set h∗Z = {λ ∈ h∗; (λ, α̌i) ∈
Z for all 1 ≤ i ≤ n}. For any β ∈ ∆+, let Hβ ∈ h be the coroot defined by

(18) χ(Hβ) = (χ, β̌), for all χ ∈ h∗.
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3. The Shapovalov determinant – Statement of the main results.

Definition 3.1. The triangular decomposition of gp (cf. (4) of §2) gives
rise to the decomposition

(1) U(gp) = (n−p U(gp) + U(gp)n+
p )⊕ U(hp),

and hence gives the Harish-Chandra homomorphism (by projecting on the
second factor)

Hp : U(gp)→ U(hp).

Let ω be the Chevalley anti-automorphism gp → gp defined by ω(fi) =
ei, ω(ei) = fi, ω(Hi) = Hi, for all 1 ≤ i ≤ n; where (as in §2) ei (resp. fi)
corresponds to the simple root αi (resp. the negative root −αi). Now, define
the Shapovalov bilinear form

Sp : U(n−p )× U(n−p )→ U(hp) by

Sp(a, b) = Hp(ω(a)b).

It is easy to see that epβ and fpβ are central elements in U(gp). Let up
be the quotient algebra U(gp)/〈epβ, fpβ ;β ∈ ∆+〉, where 〈 〉 denotes the ideal
generated by the elements inside the parentheses. Similarly, let u+

p (resp.
u−p ) be the quotient algebra U(n+

p )/〈epβ;β ∈ ∆+〉(resp. U(n−p )/〈fpβ ;β ∈ ∆+〉),
and b(up) (resp. b−(up)) be the quotient algebra U(bp)/〈epβ;β ∈ ∆+〉 (resp.
U(b−p )/〈fpβ ;β ∈ ∆+〉), where bp := hp + n+

p (resp. b−p := hp + n−p ). Observe
that

(2) b(up) ' u+
p ⊗ U(hp) and b−(up) ' u−p ⊗ U(hp).

The bilinear form Sp factors through u−p . We denote the bilinear form
u−p × u−p → U(hp) thus obtained by the symbol sp.

As is well known, the algebra u+
p (resp. u−p ) has the elements {et} (resp.

{f t}) (cf. (2) of §2) as a Fp-basis, where t = (t1, . . . , tN) ranges over those
elements of ZN+ such that 0 ≤ tj < p, for all j .

Let Q :=
∑n
i=1 Zαi denote the root lattice in h∗. For any η ∈ Q, define

P(η) = {t ∈ ZN+ :| t |= η}, and(3)

Pres(η) = {t = (t1, . . . , tN) ∈ P(η) : 0 ≤ tj < p, for all j},(4)

where, for t ∈ ZN+ , | t |:=
∑N
j=1 tjβj and {βj} is the ordering as in (13) of §2.

Of course P(η) = φ, unless η ∈ Q+ :=
∑n
i=1 Z+αi. Also, for βj ∈ 4+ and

m ∈ Z+, define

(5) Pres(η,mβj) = {t ∈ ZN+ : (t1, . . . , tj−1, tj +m, tj+1, . . . , tN) ∈ Pres(η)},
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and set
(6)
P (η) = # P(η), Pres(η) = # Pres(η), and P (η,mβj) = # Pres(η,mβj).

For any η ∈ Q+, set

detη(sp) = det(sp(fϕ, fψ))ϕ,ψ∈ Pres(η) ∈ U(hp).

The following result gives the decomposition of detη(sp).

Theorem 3.2. With the notation as above, for any η ∈ Q+,

detη(sp) =
∏
β∈∆+

∏
0<m<p

[Hβ + (ρ, β̌)−m]P (η,mβ),

up to a non-zero scalar multiple in Fp, where Hβ, β̌, ρ, and the Killing form
( , ) are as in Section 2.

Definition 3.3. By virtue of Proposition 4.4(c), we get

Uξ = (I(U−ξ )Uξ + UξI(U+
ξ ))⊕ Uoξ,

where I(S) denotes the augmentation ideal of any augmented algebra S.
The above decomposition gives rise to the quantized Harish-Chandra homo-
morphism

Hξ : Uξ → Uoξ,
by projecting on the second factor.

Just as in §3.1, define the Shapovalov bilinear form

Sξ : U−ξ × U−ξ → Uoξ by

Sξ(v, w) = Hξ(Ω(v)w),

where Ω is the Q-algebra anti-automorphism of Uξ (cf. [L2, §1.1]), defined
by

Ω(Ei) = Fi, Ω(Fi) = Ei, Ω(Ki) = K−1
i , and Ω(ξ) = ξ−1.

The elements {Ep
βj
, F p

βj
; 1 ≤ j ≤ N} are central in Uξ (cf. [DK, Corollary

3.1]). Let uξ be the quotient algebra Uξ/〈Ep
βj
, F p

βj
; 1 ≤ j ≤ N〉. Similarly

define

u+
ξ = U+

ξ /〈Ep
βj

; 1 ≤ j ≤ N〉, u−ξ = U−ξ /〈F p
βj

; 1 ≤ j ≤ N〉,
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and

bξ = Bξ/〈Ep
βj

; 1 ≤ j ≤ N〉, b−ξ = B−ξ /〈F p
βj

; 1 ≤ j ≤ N〉,

where Bξ (resp. B−ξ ) is the subalgebra UoξU
+
ξ (resp. UoξU

−
ξ ) of Uξ. Observe

that

(1) bξ ' u+
ξ ⊗ Uoξ and b−ξ ' u−ξ ⊗ Uoξ.

From Proposition 4.4(a), we obtain that u+
ξ (resp. u−ξ ) is a free Qξ-module

with basis {Et} (resp. {F t}), where t = (t1, . . . , tN) ranges over those
elements of ZN+ such that 0 ≤ tj < p, for all j.

It is easy to see that the bilinear form Sξ factors through u−ξ to give rise
to the bilinear form

sξ : u−ξ × u−ξ → Uoξ.

For any η ∈ Q+, define

detη(sξ) = det(sξ(Fϕ, Fψ))ϕ,ψ∈ Pres(η) ∈ Uoξ.

Now the following is the quantized analog of Theorem (3.2) factoring
detη(sξ).

Theorem 3.4. With the notation as above,

detη(sξ) = c
∏
β∈∆+

∏
0<m<p

[
Kβ − ξ2(m−(ρ,β∨))dβK−1

β

]P (η,mβ)

,

for some non-zero c ∈ Qξ; where for β =
∑
miαi,Kβ := Km1

1 · · ·Kmn
n , and

dβ := (β,β)

2
.

The following result follows immediately from Theorems (3.2) and (3.4).
This result in the modular case is classical (cf. [H2, §5.5]) and in the quan-
tum case due to Andersen-Polo-Wen [APW, Corollary 7.6 and Theorem 9.8].

Corollary 3.5. The Steinberg module MFp((p − 1)ρ) (resp. MQξ(ξ
(p−1)ρ))

is an irreducible module for up (resp. uξ), where for any λ ∈ h∗Z, MFp(λ) and
MQξ(ξ

λ) are defined in §10.
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4. Proof of the main theorems – Some preliminary work.

The following two lemmas allow us to move one element pass another. The
first is more general and will be applied to the modular case.

Lemma 4.1. Let a, b be two elements in a ring R. Write (ad a)b for ab−ba.
We have

(1) amb =
∑

0≤j≤m

(
m
j

)((
ad a

)j
b

)
am−j.

Proof. If two elements x, y in a ring R commute, then of course (x+ y)m =∑
0≤j≤m

(
m
j

)
xjym−j. Applying this to the ring End (R) (of all Z-linear

maps of R to itself) with x = ad a and y = Ra (where Ra : R → R is given
by r 7→ ra), we get the lemma.

We need a Hopf algebra analog of the above lemma for the Hopf algebra
Uq(g). Rather than stating the result for general Hopf algebras, we will
confine ourselves to the Hopf algebra Uq(g) in the following lemma. We
remark that the definition of ad is available for any ring, in contrast to the
definition of ad given in (11) of §2 for Hopf algebras. Observe that the two
definitions do not coincide in general for Hopf algebras. Set F = Fi, K = Ki,
and α = αi in the following lemma.

Lemma 4.2. For any m ≥ 1 and any b ∈ Uq(g),

(1) Fmb =
∑

0≤j≤m

[
m
j

]
qdi

q−di(j
2−jm)

(
(ad F )jb

)
Fm−jK−j,

where

[
m
j

]
qdi

:= [m]!di
[j]!di [m−j]!di

.

Proof. By (12) of §2,

(2) Fb = bF + ((ad F )b)K−1,

which proves (1) for m = 1. Assume (1) holds for m− 1. Then using (2), we
get

F (Fm−1b)

=
∑

0≤j≤m−1

[
m− 1
j

]
q−di(j

2−j(m−1))((ad F )jb)Fm−1−jK−jF
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+
∑

0≤j≤m−1

[
m− 1
j

]
q−di(j

2−j(m−1))(ad F )(((ad F )jb)Fm−1−jK−j)K−1

=
∑

0≤j≤m−1

[
m− 1
j

]
q−di(j

2−j(m−1))((ad F )jb)Fm−jK−j

+
∑

1≤j≤m

[
m− 1
j − 1

]
q−di((j−1)2−(j−1)(m−1))+2di(m−j)((ad F )jb)Fm−jK−j,

where we have dropped the q-binomial coefficient subscript of qdi . The lemma
now follows from the identity[

m− 1
j − 1

]
v

vm−j +

[
m− 1
j

]
v

v−j =

[
m
j

]
v

.

Lemma 4.3. Let a, b1, . . . , br be elements in a ring R of char. 0. Then for
any m ≥ 0

(ad a)m

m!
(b1 . . . br) =

∑
`∈Sm

(ad a)`1

`1!
(b1)

(ad a)`2

`2!
(b2) . . .

(ad a)`r

`r!
(br) ,

where Sm is the set of r-tuples ` = (`1, . . . , `r) ∈ Zr+ such that
∑r
i=1 `i = m.

Proof. The lemma follows immediately from [H1, p. 152, Proof of Lemma
A].

Recall the definition of the subring B ⊂ Q(q) from §2. Observe that
Ω(B) = B,Ω(UB) = UB and Ω(U+

B ) = U−B (where Ω is as in §3.3). We have

Proposition 4.4.
(a) U+

B (resp. U−B ) is a free B-module with basis {Et} (resp. {F t}), where
t = (t1, . . . , tN) runs over ZN+ .

(b) U0
B is generated (as a B-algebra) by {Ki, [Ki; 1]; 1 ≤ i ≤ n}, where

[Ki; 1] := Ki−K−1
i

qdi−q−di , and moreover U0
B is a free B-module with basis

{(∏iK
δi
i )[K; 1]m}, where m runs over Zn+ and δi ∈ {0, 1}. (The nota-

tion [K; 1]m is defined below in the proof.)
(c) We have a B-module isomorphism

U−B ⊗B U0
B ⊗B U+

B ∼= UB
under the (canonical) multiplication map.
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Proof. Any Ti (cf. §2) clearly keeps UB stable. In particular, Et, F t ∈ UB.
Further [Ei, Fi] = [Ki; 1] ∈ UB. Define

ÛB =
∑
BF tKm[K; 1]m

′
Et′ ⊂ Uq(g),

where t, t′ run over ZN+ ,m′ runs over Zn+, and m runs over Zn; and where
Km := Km1

1 · · ·Kmn
n (for m = (m1, . . . ,mn)) and [K; 1]m :=

[K1; 1]m1 · · · [Kn; 1]mn . Clearly ÛB ⊂ UB. We next prove that ÛB is an al-
gebra.

It suffices to show that the following elements belong to ÛB.

(1)Et′F t (2)Et′Et (3)F t′F t (4)Et′ [K; 1]m
′

(5) [K; 1]m
′
F t.

The proof that the elements (3) belong to ÛB is similar to that for (2).
Moreover, the elements (4) and (5) belong to ÛB follows from [L2, §6.5,
Identities (a5) and (a6)]. The assertion that the elements (2) belong to ÛB
follows by repeated use of the relations [L2, §5.2] for rank-2 Lie algebras,
and the degree function d introduced in [DK, §1.7]. The elements (1) belong
to ÛB follows from the same argument as in [DK, Proof of Proposition 1.7].
This completes the proof that ÛB is an algebra.

We next show that UB ⊂ ÛB. For this it suffices to show that Ei, Fi ∈ ÛB,
for all 1 ≤ i ≤ n.

Fix a simple root αi and let 1 ≤ j ≤ N be such that βj = αi. Let
UB be the Lusztig’s B-form of Uq(g). Then since U+

B := UB ∩ U+
q is gen-

erated by E
(m)
l (1 ≤ l ≤ n,m ≥ 0), the αi-weight space Wαi (cf., e.g.,

[K, Definition 2.8] for the definition of weight) of U+
B is equal to BEi. Fur-

ther, by [L2, Theorem 6.7], Wαi = BEβj . In particular, Ei ∈ BEβj . This
proves that Ei ∈ ÛB. A similar argument gives that Fi ∈ ÛB. Hence ÛB =
UB. This, in particular, gives that U+

B =
∑
t∈ZN+ BEt,U−B =

∑
t∈ZN+ BF t, and

U0
B =

∑
m∈Zn,m′∈Zn+ BKm[K; 1]m

′
. But Et (resp. F t) are linearly independent

over Q(q) (cf. [L2, Proposition 4.2]), hence (a) follows.
By using the relation

(1) K2
i = (qdi − q−di)Ki[Ki; 1] + 1,

it is easy to see that U0
B is a free B-module with basis {(∏iK

δi
i )[K; 1]m},

where m runs over Zn+ and δi ∈ {0, 1}. This proves (b) and also proves (c),
since ÛB = UB.

The next two lemmas will allow us to do some of the necessary computa-
tions in UB. Recall the relation (12) of §2 determining ad Ei and ad Fi.

Lemma 4.5. For all m ≥ 0 and i 6= j,
(a) (ad E

(m)
i )Ej ∈ U+

B , (ad F
(m)
i )FjKj ∈ U−BKm

i Kj.
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(b) (ad E
(m)
i )Ej = (ad F

(m)
i )FjKj = 0 , for m ≥ −aij + 1.

Proof. Note that (ad E
(−aij+1)
i )Ej = 0 for i 6= j (see [L2, §§1.1 and 1.3]

or [JL1]; this is just the quantized Serre relation). Hence (to prove the
assertion regarding E′s), we need only show that

(1)
(
ad E

(m)
i

)
Ej ∈ U+

B for 1 ≤ m ≤ −aij.

Since −aij ≤ a (cf. §2 for the definition of a), we have

(2) ([m]!dl)
−1 ∈ B for each 1 ≤ m ≤ −aij and 1 ≤ l ≤ n.

Now (1) follows from (2) and [L2, §1.3]. A similar argument proves the
assertions regarding F ′s.

Lemma 4.6. Let b ∈ U+
B be a weight vector of weight

∑
mjαj. Then(

ad E
(k)
i

)
(bK−mii ) ∈ U+

BK
−mi
i ,

for all k ≥ 0 and 1 ≤ i ≤ n. Moreover, there is an integer ko ≥ 0 depending
on b such that (ad E(k)

i )(bK−mii ) = 0 for all k ≥ ko.
Similarly, if c ∈ U−B is of weight −∑mjαj, then(

ad F
(k)
i

)
(cKmK−mii ) ∈ U−BKmK−mii Kk

i ,

for all k ≥ 0 and there is an integer ko depending on c such that
(ad F

(k)
i )(cKmK−mii ) = 0 for all k ≥ ko, where Km := Km1

1 · · ·Kmn
n .

Proof. Let b1 (resp. b2) be an element of U+
B of weight α =

∑
j njαj (resp.

β =
∑
j rjαj). By [L2, §1.3] and [JL1, §2.2], we have(

ad E
(k)
i

)
(b1K

−ni
i b2K

−ri
i )

=
k∑
l=0

qdil(k−l)
(
ad E

(k−l)
i

) (
ql(αi,α)b1K

−ni
i

) (
ad E

(l)
i

)
(b2K

−ri
i ).

This calculation shows that if the lemma is true for the elements b1, b2 ∈
U+
B then it is also true for the product b1b2. So it suffices to prove that

(ad E
(k)
i )Ej ∈ U+

B for i 6= j and (ad E
(k)
i )Ej = 0 for i 6= j and for all

k � 0, and also (ad Ei)(EiK−1
i ) = 0. The first two assertions follow from

Lemma (4.5), and the third is a straightforward computation. This proves
the lemma for b ∈ U+

B . The proof for c ∈ U−B is similar.
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Definition 4.7. Given a finite subset V ⊂ b−(up) (cf. §3.1), define the
V × V - matrix

MV (sp) = (Hp(ω(v)w))v,w∈V and(1)

detV (sp) = detMV (sp).(2)

Similarly, for V ⊂ b−ξ ,

detV (sξ) = det(Hξ(Ω(v)w))v,w∈V .(3)

The next lemma will be crucial in factoring the Shapovalov determinant.
Much of the rest of this paper will be devoted to finding suitable elements
g and b1, . . . , br that satisfy the conditions of this lemma. Being a Laurent
polynomial ring, U0

ξ is a unique factorization domain.

Lemma 4.8. Fix η ∈ Q+. Let g be an irreducible polynomial in U(hp)
(resp. U0

ξ). Suppose there exist elements b1, . . . , br in b−(up) (resp. b−ξ ) of
weight −η such that
(i) The elements {bj; 1 ≤ j ≤ r} are linearly independent considered

as elements of the right U(hp)/〈g〉-module u−p ⊗ (U(hp)/〈g〉) (resp.
U0
ξ/〈g〉-module u−ξ ⊗ (U0

ξ/〈g〉)) (cf. (2) of §3.1 and (1) of §3.3),
(ii) Hp(vbj) ∈ U(hp)g (resp. Hξ(vbj) ∈ U0

ξg) for all v ∈ u+
p (resp. u+

ξ ) of
weight η.

Then gr divides detη(sp) (resp. detη(sξ)).

Proof. We prove the lemma for detη(sp). (The proof in the case of detη(sξ)
is similar.) Choose elements {br+1, . . . , bs} in u−p of weight −η such that the
set R = {b1, . . . , br, br+1, . . . , bs} is an L-basis for the −η weight space of
u−p ⊗ L, where L is the quotient field of the integral domain U(hp)/〈g〉. We
may write (for 1 ≤ j ≤ s)

bj =
∑

t∈Pres(η)

f tcjt,

where Pres(η) is as in (4) of §3.1 and cjt ∈ U(hp). Set C as the matrix [cjt].
Since C is the transformation matrix between the two bases of the −η weight
space of u−p ⊗ L (over L), we obtain

(1) detC 6∈ U(hp)g.

It is straightforward to check that

MR(sp) = CtMRo(sp)C,
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where Ro = {f t; t ∈ Pres(η)}; and hence detR(sp) = (detC)2 detη(sp). Now
assumption (ii) forces gr to divide detR(sp). Since g is irreducible, by (1),
detC and g must be relatively prime. Hence gr divides detη(sp). This proves
the lemma.

We close this section with some properties of ∆+ which will be needed for
the factorization of the Shapovalov determinant in the next sections.

Lemma 4.9. If p is an odd prime which is not equal to three if G2 is a
component of g, then the following are satisfied.
(a) If

∑
miαi and

∑
liαi are distinct elements of ∆+, then mi 6∼=

li(mod p) for at least one 1 ≤ i ≤ n.
(b) If β ∈ ∆+, then β is not zero mod p with respect to the weight lattice.
(c) No two distinct positive coroots are equal mod p (in the sense of (a)).

Proof. Assertions (a) and (c) follow from the explicit knowledge of the roots
and coroots as given in [B].

For the (b) part, write α ∈ ∆+ as α =
∑
niχi where the χi are the

fundamental weights. Thus 〈α, α̌i〉 = ni. Write α̌ =
∑
miα̌i, where mi ∈

Z. Then 〈α, α̌〉 = 2 =
∑
imini. So if α is zero mod p (i.e. every ni

is zero mod p), then 2 is divisible by p. This contradicts the choice of p
and hence proves the (b)-part. Observe that for the (b)-part, we just need
p 6= 2.

5. Special elements in U(gZ).

In [S], Shapovalov defined certain elements of U(g) (corresponding to any
positive root and a positive integer) that produced highest weight vectors
in certain Verma modules. These elements were then used to determine the
factors and multiplicities of the classical Shapovalov determinant by applying
a version of Lemma 4.8. In this section, we make a careful choice of these
elements in order to specialize them to U(gp), and in a later section, use
them to factor the modular Shapovalov determinant.
Definition 5.1. A reflection s ∈ W induces an affine automorphism s̃
of U(h) as follows. Given a simple positive root α, define s̃(Hα) = Hsα +
(ρ, sα̌)− (ρ, α̌) and extend this to an algebra homomorphism of U(h). Since
s preserves the coroot lattice (i.e., the lattice hZ =

∑
i ZHi), it follows that

s̃(U(hZ)) ⊆ U(hZ).
For γ ∈ ∆+ and m > 0 let Iγ,m denote the ideal in U(h) generated by

(Hγ + ρ(Hγ)−m).
The next proposition is a strengthened version of [S, Lemma 1] (cf. also

[F]). We write deg a to denote the total degree of a considered as an element
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of U(g) using the standard filtration. Recall the definition of n−Z from (3) of
§2.

Proposition 5.2. For any integer m > 0 and γ ∈ ∆+, there exists a
non-zero element Θγ,m ∈ U(n−Z )U(hZ) of weight −mγ such that
(i) [eβ,Θγ,m] ∈ U(n−)Iγ,m + U(g)n+, for all β ∈ ∆+, and
(ii) deg Θγ,m is precisely equal to

∑
im`i, where γ =

∑n
i=1 `iαi.

Proof. If ρ(Hγ) = 1, then γ is a simple positive root, say αi. In this case, as
in [S, Lemma 1], we may take Θγ,m = fmi ∈ U(n−Z ), which clearly satisfies
(i) and (ii).

So assume ρ(Hγ) > 1. There exists a simple root ε and γ1 ∈ ∆+ such that
γ1 = sεγ and ρ(Hγ1) < ρ(Hγ). Note that γ − γ1 = rε where r = (γ, ε̌) > 0.

Consider the hyperplane

Lγ,m = {χ ∈ h∗; χ(Hγ) = m}(1)

in h∗ and the subset

Bε := {λ ∈ h∗Z ∩ Lγ,m; (λ, ε̌) < 0}.(2)

It is easy to see that Bε is dense in Lγ,m in the Zariski topology (cf., e.g.,
[BGG]).

Fix λ ∈ Bε and set ψ = sελ. We have the following inclusions of Verma
modules

M(ψ − ρ) ⊃M(λ− ρ) ⊃M(λ−mγ − ρ),(3)

M(ψ − ρ) ⊃M(ψ −mγ1 − ρ) ⊃M(λ−mγ − ρ).(4)

Let v be a highest weight vector for M(ψ − ρ) (of weight ψ − ρ). By
induction on (ρ, γ̌), there exists Θγ1,m ∈ U(n−Z )U(hZ) which satisfies (i) and
(ii). Write Θγ1,m =

∑
t∈P(mγ1) f

tpt, where pt ∈ U(hZ). Inclusion (4) implies
that

(5) f−(λ,ε̌)+mr
ε

∑
t∈P(mγ1)

f t(ψ − ρ)(pt)

applied to v is a highest weight vector for M(λ−mγ− ρ). Now (ψ− ρ, γ̌) =
(λ− ρ, sεγ̌) + (ρ, sεγ̌)− (ρ, γ̌). Hence (ψ− ρ)pt = (λ− ρ)(s̃ε(pt)). Combined
with Lemma 4.1, this shows that (5) equals

(6)
∑
t,j

(
(ad fε)j

j!
f t
)
f−(λ,ε̌)+mr−j
ε (λ− ρ)(Pj,t),
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where t runs through the elements in P(mγ1), j runs through the integers
{0, 1, . . . ,−(λ, ε̌) + mr}, and Pj,t =

(∏
1≤`≤j(−Hε +mr − `)

)
s̃ε(pt). (Ob-

serve that for the Hopf algebra U(g), (ad X)a = (ad X)a, for any X ∈ g,
and a ∈ U(g).)

By [H1, Corollary 26.3], (ad fε)
j

j!
U(n−Z ) ⊆ U(n−Z ). Furthermore,

(ad fε)jf t = 0 for j � 0 , and so the above sum (6) has the same number of
terms for (−λ, ε̌) � 0. By assumption, pt ∈ U(hZ) and hence Pj,t ∈ U(hZ).
Set

Θ̄γ,m =
∑

t∈P(mγ1)

∑
0≤j

(
(ad fε)j

j!
f t
)
fmr−jε Pj,t.

This is a finite sum and each summand is contained in U(n−Z )[f−1
ε ]U(hZ).

(Note that Θ̄γ,m is not necessarily an element of U(n−Z )U(hZ).) Furthermore
one easily checks (using expression (6)) that for λ ∈ Bε such that (−λ, ε̌)� 0

(7) Θ̄γ,mf
−(λ,ε̌)
ε v = f−(λ,ε̌)+mr

ε Θγ1,mv.

Fix an ordering of ∆+ as in (13) of §2 such that ε is the smallest element.
Given an element a in U(n−Z )[f−1

ε ]U(hZ), write a in terms of the PBW basis
thus obtained (cf. (2) of §2), and let [a]+ε denote the sum of those terms with
non-negative powers of fε. Set

(8) Θγ,m =
∑

t∈P(mγ1)

∑
0≤j

[(
(ad fε)j

j!
f t
)
fmr−jε

]+

ε

Pj,t.

Of course, Θγ,m is an element of U(n−Z )U(hZ). We prove that for λ ∈
Bε, (−λ, ε̌)� 0

Θ̄γ,mf
−(λ,ε̌)
ε v = Θγ,mf

−(λ,ε̌)
ε v.(9)

Write

Θ̄γ,m =
∑

J,k≥(λ,ε̌)

fJfkε aJ,k,

where aJ,k ∈ U(hZ) and J = (j2, . . . , jN) is an (N − 1)-tuple of non-negative
integers. Then

(10) Θ̄γ,mf
−(λ,ε̌)
ε v =

∑
J,k≥(λ,ε̌)

fJfkε aJ,kf
−(λ,ε̌)
ε v.

Inclusion (3) (resp. (7)) implies that f−(λ,ε̌)
ε v (resp. Θ̄γ,mf

−(λ,ε̌)
ε v) is anni-

hilated by all the positive root vectors. In particular, by the uniqueness of
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the embeddings in (3) and (4), we get that there exists f =
∑
t∈P(mγ) btf

t ∈
U(n−) 6= 0 (for some bt ∈ Q) such that ff−(λ,ε̌)

ε v is a highest weight vector
of M(λ−mγ − ρ). Hence

(11) aff−(λ,ε̌)
ε v = Θ̄γ,mf

−(λ,ε̌)
ε v, for some a ∈ Q.

We have (by (10))

aff−(λ,ε̌)
ε v =

∑
J,k≥(λ,ε̌)

fJfkε aJ,kf
−(λ,ε̌)
ε v

=
∑
J,k

fJfk−(λ,ε̌)
ε (λ− ρ)(aJ,k)v.

This forces (λ− ρ)(aJ,k) = 0, unless k − (λ, ε̌) ≥ −(λ, ε̌), i.e., k ≥ 0. Hence
by (10),

(12) Θ̄γ,mf
−(λ,ε̌)
ε v =

∑
J,k≥0

fJfkε aJ,kf
−(λ,ε̌)
ε v.

But the right hand side of this equation is exactly Θγ,mf
−(λ,ε̌)
ε v. This proves

(9).
Now let vλ be a non-zero highest weight generating vector for M(λ− ρ).

We can take vλ = f−(λ,ε̌)
ε v. Then by (7) and (9), Θγ,mvλ is annihilated by all

eβ (β ∈ ∆+), for each λ ∈ Bε with −(λ, ε̌) � 0 . The density of Bε in Lγ,m
implies that Θγ,m satisfies (i).

To prove assertion (ii), recall that γ1 = sεγ = γ−rε. Hence γ =
∑n
i=1 `iαi

implies that γ1 =
∑n
i=1 `iαi − rε. By the inductive hypothesis, Θγ1,m has

degree (
∑n
i=1m`i)−mr. Note that the degree function on U(n−)U(h) may

be extended to a degree function on U(n−)[f−1
ε ]U(h) by defining deg f `ε = `

for all ` ∈ Z. Since the adjoint action and s̃ε both preserve degrees, it
follows from (8) that deg Θγ,m ≤∑n

i=1m`i. One obtains equality by showing
(using induction as in [S, Lemma 1]) that Θγ,m =

∏n
i=1 f

m`i
αi

+
∑
k akbk, where

bk ∈ U(hZ) and ak ∈ U(n−Z ) of weight −mγ and deg ak <
∑n
i=1m`i. (See

Proposition 5.6 as well.)

Observe that Θγ,m in the above proposition are not unique. We will make
a particular choice for Θγ,m in the sequel.

Definition 5.3. Let ε and β be two positive roots. The ε-string through
β is the set of those roots which are of the form β + kε, for some k ∈ Z. By
[H1, §9.4], there exist non-negative integers ` and s with `+ s ≤ 3 such that
the ε-string through β is precisely the set {β + kε; −` ≤ k ≤ s}.
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Lemma 5.4. Let α, β ∈ ∆+ and ε a simple (positive) root such that
β = sεα = α+ rε , for some r > 0. Then

(ad fε)r

r!
fα =

{
±fβ, if α− ε 6∈ ∆+

±2fβ, if α− ε ∈ ∆+.

Furthermore, the second possibility occurs only in the case where g contains
a component of type G2.

Proof. The proof follows from [H1, Theorem 25.2]. Let α− `ε, . . . , α+ sε be
the ε-string through α. Then r = s− ` and

(1)
(ad fε)r

r!
fα = ±(`+ 1)(`+ 2) . . . (`+ r)

r!
fβ.

If α − ε /∈ ∆+, then ` = 0 and the right hand side of (1) is just ±fβ. Since
` + s ≤ 3, in the case when ` 6= 0 we have ` + s = 3, ` = 1, and r = 1;
and this can only happen if g contains a component of type G2. Hence if
α− ε ∈ ∆+, then the right hand side of (1) is ±2fβ.

Definition 5.5 (A particular choice for Θγ,m). Fix γ ∈ ∆+ and
m > 0. We want to make a particular choice for Θγ,m. Let us choose simple
reflections s0, . . . , sv (corresponding to simple roots ε0, . . . , εv respectively),
and a simple (positive) root γv+1 such that s0 · · · svγv+1 = γ. Set γk =
sk · · · svγv+1, in particular, γ0 = γ. Assume further that s0, . . . , sv are
chosen so that (ρ, γ̌k) > (ρ, γ̌k+1) for 0 ≤ k ≤ v. Set rk = (γk, ε̌k). The
assumption on (ρ, γ̌k) implies that rk > 0. Note that

(1) γk = skγk+1 = γk+1 + rkεk.

We define elements Θk = Θγk,m, 0 ≤ k ≤ v+1, in U(n−Z )U(hZ) inductively
as follows. Set Θv+1 = fmγv+1

. Assume we have defined Θk+1 and that Θk+1 =∑
t∈P(mγk+1) f

tpt, where pt ∈ U(hZ). Define Θk by (cf. (8) of §5.2)

(2) Θk =
∑
t,j

[(
(ad fεk)

j

j!
f t
)
fmrk−jεk

]+

εk

 ∏
1≤`≤j

(−Hεk +mrk − `)
 s̃k(pt),

where t runs over the elements in P(mγk+1), j runs over the non-negative
integers, and [ ]+εk is as in the proof of Proposition (5.2). By the proof of
Proposition 5.2, Θk belongs to U(n−Z )U(hZ), is of weight mγk, and satisfies
(i) and (ii) of Proposition (5.2).

We now prove the following strengthened version of Proposition (5.2).
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Proposition 5.6. Assume g to be simple. Fix γ ∈ ∆+ and m > 0. Let
s0, . . . , sv; ε0, . . . , εv; and γ0, . . . , γv+1 be as in the above section. Then
there exists Θγ,m ∈ U(n−Z )U(hZ) of weight −mγ such that
(i) [eβ,Θγ,m] ∈ U(g)Iγ,m + U(g)n+, for all β ∈ ∆+.

(ii) Write Θγ,m in terms of any PBW basis for U(n−) :

Θγ,m = fmγ ⊗ aγ +
∑

fJ 6=fmγ
fJ ⊗ aJ ,

where aγ , aJ ∈ U(hZ). Then aγ ∈ U(hZ) is of degree m
∑v
`=0 r` and its

top homogeneous component is

±
∏

0≤`≤v
(Hs0...s`−1ε`)

mr` ,

with only one exception when g = G2 and γ = 2α1 + α2 . In this case
it is ±Hm

1 (H1 +H2)m (cf. §6 for the notation).
Moreover, deg(fJ ⊗ aJ) ≤ deg(fmγ ⊗ aγ) = m(1 +

∑v
`=0 r`) =

∑
imli,

where li is as in Proposition (5.2).

Proof. Note that γk = γv+1 +
∑
k≤`≤v r`ε`. Hence, by Proposition 5.2,

deg Θk = m(1+
∑
k≤`≤v r`). We prove the proposition under the assumption

that g 6= G2, in particular by Lemma (5.4), γ`+1−ε` 6∈ ∆+ for any 0 ≤ ` ≤ v.
(The next section will be devoted to handling the case g = G2.)

Fix β ∈ ∆+ and m ≥ 1. For any a 6= 0 ∈ U(n−)⊗U(h), write a = fmβ ⊗bβ+∑
fJ 6=fm

β
fJ ⊗ bJ , where bβ, bJ ∈ U(h). Let us denote the top homogeneous

component of bβ by [a]0fm
β

, if deg(fmβ ⊗ bβ) = deg a. If deg(fmβ ⊗ bβ) < deg a,
we set [a]0fm

β
= 0.

Assume, by induction, that

(1) [Θk+1]0fmγk+1
= ±

∏
k+1≤`≤v

(Hsk+1...s`−1ε`)
mr` ,

and prove (1) for Θk.
Since Θv+1 = fmγv+1

, (1) is trivially true in this case. Write

Θk+1 = ±fmγk+1
⊗

∏
k+1≤`≤v

(Hsk+1...s`−1ε`)
mr` +

∑
f t ⊗ at

+ lower degree terms,

(2)

for at ∈ U(hZ); where the summation is taken over t ∈ P(mγk+1) subject to
f t 6= fmγk+1

, and deg(f tat) = deg Θk+1. Set

zj =
[(

(ad fεk)
j

j!
fmγk+1

)
fmrk−jεk

]+

εk

(−Hεk)
j

 ∏
k+1≤`≤v

Hsk···s`−1ε`

mr`

(3)
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and

ztj =
[(

(ad fεk)
j

j!
f t
)
fmrk−jεk

]+

εk

s̃k(pt)(−Hεk)
j.

(4)

Since ad and s̃k both preserve degrees, it follows that deg zj ≤ deg Θk+1 +
mrk = deg Θk and similarly deg ztj ≤ deg Θk. Set S1 = {j ≥ 0; deg zj =
deg Θk} and S2 = {(j, t); j ≥ 0, t ∈ P(mγk+1), f t 6= fmγk+1

, and deg ztj =
deg Θk}. Then (2) of §5.5 and (2) imply that

(5) Θk = ±
∑
j∈S1

zj +
∑

(j,t)∈S2

ztj + lower degree terms.

Since γk+1 − εk 6∈ ∆+, by the proof of Lemma (5.4) and (1) of §5.5, it
follows that γk + εk 6∈ ∆+ and so (ad fεk)

rk+1fγk+1 = 0. Therefore zj = 0 for
j > mrk. Furthermore, by Lemmas (4.3) and (5.4), we have

(ad fεk)
mrk

(mrk)!
fmγk+1

= ±fmγk .

On the other hand j < mrk implies that zj ∈ U(n−)fεkU(h), and so [zj]0fmγk =
0 (when j < mrk). Let us abbreviate [a]0fmγk by [a]0 till the end of this proof.
Therefore ∑

j∈S1

[zj]0 = [zmrk ]
0 = ±

∏
k≤`≤v

(Hsk...s`−1ε`)
mr` .

To complete the proof, we argue that for any (j, t) ∈ S2 we have [ztj]
0 = 0.

We have

(6) deg

([(
(ad fεk)

j

j!
f t
)
fmrk−jεk

]+

εk

)
= deg f t +mrk − j.

Now by (4),

(7) [ztj]
0 =

[[(
(ad fεk)

j

j!
f t
)
· fmrk−jεk

]+

εk

]0

(−Hεk)
j s̃k(pt).

Assume, if possible, [ztj]
0 6= 0. Then (7) implies that

(8)
[[(

(ad fεk)
jf t
)
fmrk−jεk

]+
εk

]0 6= 0.

Hence by (6), we have

(9) deg f t +mrk − j = deg(fmγk) = m.
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Let t = (t1, . . . , tN). Then

f t = f tNβN · · · f t2β2
f t1εk = fλ1 · · · fλsf t1εk ,

where λ1 = λ2 = · · · = λtN = βN , λtN+1 = · · · = λtN+tN−1 = βN−1, . . . ,
λtN+···+t3+1 = · · · = λtN+···+t2 = β2. In particular, let s = t2 + t3 + · · · + tN .
By (8) (since εk 6= γk+1), we must have t1 = j −mrk. This forces (by (9))

(10) s = deg f t − (j −mrk) = m.

Furthermore,
[

(ad fεk )j

j!
fλ1 . . . fλs

]0
6= 0. So there exist non-negative integers

c1, . . . , cs such that λl + clεk = γk and
∑s
l=1 cl = j. Since j ≥ mrk and

γk+1−εk is not a positive root, it follows that λ1 = · · · = λs = γk+1, j = mrk
and c1 = · · · = cs = rk, i.e., f t = fmγk+1

. But, by the definition of S2,
f t 6= fmγk+1

. This contradiction shows that [ztj]
0 = 0.

This completes the proof of the proposition for any g 6= G2 . (The case of
G2 will be handled in the next section.)

6. Proof of Proposition (5.6) for g of type G2.

Throughout this section, we assume that g is of type G2.
Let α1, α2 be the positive simple roots with

(α1, α2) = −3, (α1, α1) = 2, (α2, α2) = 6.

Then ∆+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}. Let ri be the
reflection corresponding to αi. Set f1 = fα1 , f2 = fα2 , f3 = fα1+α2 , f4 =
f2α1+α2 , f5 = f3α1+α2 , f6 = f3α1+2α2 , H1 = Hα1 , and H2 = Hα2 . We can
choose f ′ks so that the following relations are satisfied.

f3 = [f1, f2],
f4 = 1

2
[f1, [f1, f2]],

f5 = 1
6
[f1, [f1, [f1, f2]]], and

f6 = 1
6
[f2, [f1, [f1, [f1, f2]]]].

A straightforward checking shows that the only positive roots α, β for
which the second possibility of Lemma (5.4) occurs is β = 2α1 + α2 and
α = α1 + α2 (and in this case, in the notation of Lemma 5.4, ε = α1

and r = 1). Now r1β = α and r2α = α1. In the notation of §5.5, take
v = 1, γ2 = α1, s0 = r1, and s1 = r2 (so that γ1 = α and γ0 = β). Fix
m > 0, and let Θ2,Θ1, and Θ0 be the associated elements in U(n−Z )U(hZ) as
in §5.5. In particular,

(1) Θ2 = fm1



144 SHRAWAN KUMAR AND GAIL LETZTER

and

(2) Θ1 =
∑

0≤j≤m

(
(ad f2)j

j!
fm1

)
fm−j2

 ∏
1≤`≤j

(−H2 +m− `)
 .

Note that (ad f2)jfm1 = 0, for j > m. By §5.5, Θ2 (resp. Θ1) is an element
of weight mα1 (resp. mα) and it satisfies the requirements of Proposition
(5.6) for γ = α1 (resp. γ = α). We now want to construct Θβ,m.

Define

(3) Θ1 =
∑

0≤j≤m
(−1)j

(
m
j

)
f j3f

m−j
1 fm−j2

 ∏
1≤`≤j

(−H2 +m− `)
 .

Then by Lemma (4.3), Θ1 and Θ1 have the same highest degree terms. Write
Θ1 =

∑
t∈P(mα) f

tpt, with pt ∈ U(hZ), and following (2) of §5.5 set

(4) Θ0 =
∑
t

∑
k≥0

[(
(ad f1)k

k!
f t
)
fm−k1

]+

α1

 ∏
1≤`≤k

(−H1 +m− `)
 r̃1(pt),

where the first sum runs over t in P(mα). Then again Θ0 and Θ0 have the
same highest degree terms. In particular,

[Θ0]0fm4 =
[
Θ0

]0
fm4

.

We now compute [Θ0]0fm4 .
Note that deg(f j3f

m−j
1 fm−j2 (−H2)j) = 2m = deg Θ1. We have r̃1(H2) =

H2 +H1 + 1. Hence by (3) and (4) we have

Θ0 =
∑

(k,j)∈S
(−1)j

(
m
j

)(
(ad f1)k

k!

(
f j3f

m−j
2 fm−j1

)
fm−k1 (−H1)k(−H1 −H2)j

)
+ lower degree terms,

(5)

where
S = {(k, j); 0 ≤ j ≤ m, k ≥ 0, 2m ≥ j + k}.

So we must compute the coefficient of fm4 in

X(k, j) := (ad f1)k
(
f j3f

m−j
2 fm−j1

)
fm−k1 (−H1)k(−H1 −H2)j,
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for (k, j) ∈ S. If 2m − j − k > 0, then X(k, j) ∈ U(n−Z )f1; and hence the
coefficient of fm4 in X(k, j) is zero. So, we may assume that 2m− j− k = 0,
i.e., j = 2m− k. Since m ≥ j ≥ 0, we must have m ≤ k ≤ 2m. Clearly,

(6)
(ad f1)k

k!
(
f2m−k

3 fk−m2 fk−m1

)
fm−k1 =

(ad f1)k

k!
(
f2m−k

3 fk−m2

)
.

By virtue of Lemma (4.3), it is easy to see that the coefficient of fm4 in
the expression (6) is equal to 22m−k. Hence

[
Θ0

]0
fm4

=
∑

m≤k≤2m

(
(−1)2m−k

(
m

2m− k

)
22m−k(−H1)k(−H1 −H2)2m−k

)
= (−H1)m(H1 + 2H2)m.

This proves Proposition (5.6) for g = G2, thereby finishing its proof for
arbitrary g.

7. Special elements in UB.

We are now ready to mimic the construction in Section 5 for the quantum
case. Given β =

∑
miαi, set Kβ = Km1

1 · · ·Kmn
n and dβ = (β, β)/2. For

γ ∈ ∆+ and m > 0, define the ideal Iqγ,m in U0
B by

Iqγ,m = U0
B ∩

(
U0
q

(
K2
γ − q2(m−(ρ,γ̌))dγ

))
where U0

q is the Q(q)-subalgebra of Uq(g) as in §2. It is easy to see that

Iqγ,m = U0
B

(
K2
γ − q2(m−(ρ,γ̌))dγ

qdγ − q−dγ
)
.

A reflection s ∈W induces a B-algebra automorphism s̃ = s̃q of U0
B defined

as follows.
s̃(Ki) = q(ρ,sαi)−(ρ,αi)Ksαi .

(Note that here we are using the assumption that [a]!−1
qdi
∈ B for each 1 ≤

i ≤ n.)
The following is a quantized version of Proposition (5.2).

Proposition 7.1. For any γ ∈ ∆+ and m ≥ 1, there exists Θq
γ,m ∈ U−BU0

B
of weight −mγ satisfying
(a) Writing Θq

γ,m =
∑
t∈ZN+ F

tat with at ∈ U0
B, there exists r ∈ Zn (not

depending upon t) such that at ∈ KrU0,even
q ,
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(b) Θq
γ,m /∈ U−B Iqγ,m,

(c) [Ei,Θq
γ,m] ∈ U−B Iqγ,m + UBI(U+

B ), for all 1 ≤ i ≤ n,
where I(U+

B ) denotes the augmentation ideal of U+
B , and U0,even

q ⊂ U 0
q is the

Q(q)-subalgebra generated by {K±2
1 , . . . ,K±2

n }.

Definition 7.2. For any λ ∈ h∗Z, define the Q(q)-algebra homomorphism
λ̂ : U 0

q → Q(q) by λ̂(Ki) = q(λ,αi).

The following lemma (which can be proved by a standard density type
argument) will be needed in the proof of the above proposition.

Lemma 7.3. Let ε be a simple root and let γ, γ1 ∈ ∆+ be such that γ =
γ1 + rε for some r 6= 0. Fix m ∈ {1, 2, 3, . . . } and let a ∈ U0

B be an element
such that λ̂− ρ(a) = 0 for all λ ∈ Lγ,m ∩ h∗Z satisfying (sign r)(λ, ε̌) � 0
(where Lγ,m is defined by (1) of Proposition (5.2) and sign r denotes the
sign of r). Assume further that Ksa ∈ U 0,even

q , for some s ∈ Zn. Then
a ∈ Iqγ,m.

Proof of Proposition 7.1. The proof is very similar to the proof of Propo-
sition 5.2. If (ρ, γ̌) = 1, then γ = αi for some 1 ≤ i ≤ n and we may take
Θq
γ,m = Fm

i . So assume (ρ, γ̌) > 1. Let ε, γ1, and r be as in the proof of
Proposition 5.2, i.e., ε is a simple root such that γ1 := sεγ belongs to ∆+

and (ρ, γ̌1) < (ρ, γ̌). Moreover γ − γ1 = rε where r := (γ, ε̌) > 0. Recall the
definition of Bε from (2) of the proof of Propostion 5.2.

For λ ∈ Bε we have the following inclusions of Verma modules for Uq(g)
(where ψ = sελ).

M
(
ψ̂ − ρ

)
⊃M

(
λ̂− ρ

)
⊃M

(
̂λ−mγ − ρ

)
(1)

M
(
ψ̂ − ρ

)
⊃M

(
̂ψ −mγ1 − ρ

)
⊃M

(
̂λ−mγ − ρ

)
.(2)

Let v be the highest weight generating vector for M(ψ̂ − ρ).
By induction on (ρ, γ̌), there exists Θq

γ1,m
∈ U−BU0

B as in the proposition.
Let {wφ} be a B-basis for the−mγ1 weight space of U−B . Writemγ1 =

∑
miαi

and set mε = mio where ε = αio . We can write

(3) Θγ1,m =
∑
t

wφpφ =
∑
φ

(
wφK

m1
1 · · ·Kmn

n K−mεε

)
K−m1

1 · · ·K−mnn Kmε
ε pφ,

where pφ ∈ U0
B. For λ ∈ Bε

(4) F−(λ,ε̌)+mr
ε

∑
φ

wφ
(
ψ̂ − ρ

)
(pφ)
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applied to v is a highest weight generating vector for M( ̂λ− ρ−mγ), or
else is 0 (see [L2, Identity (a2) on page 103]). It can be easily seen that
(ψ̂ − ρ)(a) = (λ̂− ρ)(s̃εa), for all a ∈ U0

q . We use Lemma 4.2 to construct
Θq
γ,m.
Set B = Km1

1 . . .Kmn
n K−mεε and l = mr − (λ, ε̌). By Lemma 4.2, and

[JL1, Lemma 2.2]

∑
φ

(
F l
εwφB

)
B−1

(
λ̂− ρ

)
(s̃εpφ)

=
∑
φ

∑
0≤j≤l

[
l
j

]
qdε

q−(j2−jl)dε ((ad F j
ε

)
(wφB)

)
F l−j
ε K−jε B−1

(
λ̂− ρ

)
(s̃εpφ).

(5)

By definition,

(6)
[l]!qdε

[l − j]!qdε =
l∏

t=l−j+1

qtdε − q−tdε
qdε − q−dε .

A straightforward computation shows that (6) equals q(λ−ρ,jε)(λ̂− ρ)(Cj)
where

Cj :=
∏

0≤s≤j−1

q(mr−1−s)dεK−2
ε − q−(mr−1−s)dε

qdε − q−dε .

Substituting Cj back into (5) and noting that jl − j2 + (λ − ρ, jε̌) =
jmr − j − j2, we get that (5) equals
(7)∑

φ

∑
0≤j≤l

q(jmr−j−j2)dε
((

ad F (j)
ε

)
(wφB)

)
F l−j
ε K−jε B−1

(
λ̂− ρ

)
[Cj(s̃εpφ)].

By Lemma 4.6, (ad F (j)
ε )(wφB) ∈ U−BBKj

ε and equals zero for j � 0.
It follows that the above sum has the same number of terms for different
choices of λ as long as (−λ, ε̌)� 0. Note that Cj(s̃εpφ) ∈ U0

B.
Set

Θ̄q
γ,m =

∑
φ

∑
0≤j

q(−j2+j+jmr)dεB(j, φ)K−jε B−1K2j−mr−2mε
ε Cj(s̃εpφ),

as an element of UB[F−1
ε ], where B(j, φ) = ((ad F (j)

ε )(wφB))Fmr−j
ε . Note

that the definition of Θ̄q
γ,m differs from expression (7) in the powers of q and

Kε. We now show that Θ̄q
γ,m satisfies the following identity in the Verma

module M(ψ̂ − ρ) (for λ ∈ Bε such that (λ, ε̌) << 0).

(8) q(mr+2mε)dεF−(λ,ε̌)+mr
ε Θq

γ1,m
v = Θ̄q

γ,mF
−(λ,ε̌)
ε v.
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First of all, Θ̄q
γ,mF

−(λ,ε̌)
ε v equals

(9)
∑
φ,0≤j

q(−j2+j+jmr)dεB(j, φ)B−1Kj−mr−2mε
ε F−(λ,ε̌)

ε

(
λ̂− ρ

)
(Cj s̃ε(pφ))v.

We show that

(10) B−1Kj−mr−2mε
ε F−(λ,ε̌)

ε v = q(mr+2mε−2j)dεF−(λ,ε̌)
ε K−jε B−1v.

Since F−(λ,ε̌)
ε v has weight λ−ρ, the left hand side of (10) is equal to qsF−(λ,ε̌)

ε v,
where

s = (λ− ρ,−mγ1 +mεε) + (λ− ρ, ε)(j −mr − 2mε)

= (λ− ρ,−mγ1) + dε(λ, ε̌)(j −mr −mε)− dε(j −mr −mε).

Now since v has weight ψ− ρ and ψ = sελ = λ− (λ, ε̌)ε, the right hand side
of (10) equals qs

′
F−(λ,ε̌)
ε v where

s′ = (λ− (λ, ε̌)ε− ρ,−mγ1 + (mε − j)ε) + dε(mr + 2mε − 2j)

= (λ− ρ,−mγ1)−mrdε(λ, ε̌)− dε(mε − j)(λ, ε̌)− dε(j −mr −mε).

This proves Identity (10). Expression (9) and Identity (10) imply that
Θ̄q
γ,mF

−(λ,ε̌)
ε v equals

qdε(mr+2mε)
∑
φ,j

qjdε(mr−j−1)B(j, φ)F−(λ,ε̌)
ε K−jε B−1

(
λ̂− ρ

)
(Cj s̃ε(pφ))v.

Identity (8) now follows from the fact that the left hand side of (8) is equal
to the Expression (7) applied to qdε(mr+2mε)v.

By Lemma 4.6, B(j, φ)K−jε B−1 ∈ U−B [F−1
ε ]. Set

Θq
γ,m =

∑
φ

∑
0≤j

[
q(−j2+j+jmr)dεB(j, φ)K−jε B−1

]+
ε
K2j−mr−2mε
ε Cj(s̃εpφ),

where the notation [ ]+ε is formally defined exactly as was done in the modular
case (cf. the proof of Proposition 5.2).

The same argument used in the proof of Proposition 5.2 shows that for
λ ∈ Bε with (λ, ε̌)� 0 ,

(11) Θq
γ,mF

−(λ,ε̌)
ε v = Θ̄q

γ,mF
−(λ,ε̌)
ε v.

The assertion (a) is easy to prove in view of the explicit construction of
Θq
γ,m. We now show that Θq

γ,m satisfies assertion (c) of the proposition. By
(8),

(12) EiΘ̄q
γ,mF

−(λ,ε̌)
ε v = 0,



SHAPOVALOV DETERMINANTS 149

for all i. Hence Identities (11) and (12) imply that EiΘq
γ,mF

−(λ,ε̌)
ε v = 0 =

EiF
−(λ,ε̌)
ε v, for all i. Therefore, [Ei,Θq

γ,m]F−(λ,ε̌)
ε v = 0 for all i. Write

[Ei,Θq
γ,m] = a +

∑
t F

tat for some at ∈ U0
B and a ∈ U−BU0

BI(U+
B ). Then,

we get
∑
t F

tatF
−(λ,ε̌)
ε v = 0. This implies that

∑
t F

tF−(λ,ε̌)
ε (λ̂− ρ)(at)v = 0.

Thus (λ̂− ρ)(at) = 0 for all t and for all λ ∈ Bε such that (λ, ε̌)� 0. Hence
(c) follows from Lemma 7.3.

To see that Θq
γ,m satisfies assertion (b) of the proposition, recall that (cf.

(3))

Θq
γ1,m

=
∑

wφpφ.

Write

Θq
γ,m =

∑
t

F tbt,

for some (unique) bt ∈ U0
B. Rewriting (8) (in view of (11)), we get

(13) q(mr+2mε)dεF−(λ,ε̌)+mr
ε

∑
φ

wφ
(
ψ̂ − ρ

)
(pφ)v

=
∑
t

F tF−(λ,ε̌)
ε

(
λ̂− ρ

)
(bt)v.

Now by Lemma 7.3 and induction, there exists λ ∈ Bε with (λ, ε̌) � 0
such that (ψ̂ − ρ)(pφ) 6= 0 for some φ. This gives that the left hand side of
(13) is non-zero, in particular, there exists a t0 such that (λ̂− ρ)(bt0) 6= 0.
This forces bt0 /∈ Iqγ,m. This proves assertion (b), thus completing the proof
of Proposition 7.1.

Definition 7.5 (A particular choice of Θq
γ,m). We now use the above

inductive construction to make a particular choice for Θq
γ,m (following the

modular case as in §5.5). Fix γ ∈ ∆+ and m > 0. Let sk, εk, γk, γv+1, rk; 0 ≤
k ≤ v be as in §5.5. Define elements Θq

k, 0 ≤ k ≤ v+ 1, in U−BU0
B inductively

as follows. Set Θq
v+1 = Fm

γv+1
. Assume that we have defined Θq

k+1 of weight
mγk+1. Write Θq

k+1 =
∑
t∈P(mγk+1) F

tpt, for pt ∈ U0
B.

Write mγk+1 =
∑
mk+1,iαi and set B(k) = Km1

1 · · ·Kmn
n K−mss where

mi := mk+1,i and αs is the simple root such that εk = αs. For any j ≥ 0, let

C(k, j) = Kj−mrk−2ms
εk

∏
0≤l≤j−1

q(mrk−l−1)dεkK−1
εk
− q−(mrk−l−1)dεkKεk

qdεk − q−dεk .

Now define Θq
k to be∑

t,j

q(−j2+j+jmrk)dεk

[(
adF (j)

εk

)
(F tB(k))Fmrk−j

εk
K−jεk B(k)−1

]+
εk
C(k, j)s̃εk(pt),
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where t runs through the elements in P(mγk+1), and j runs through the
non-negative integers.

8. Highest degree term.

We compute the highest degree terms of detη(sp) and detη(sξ). We consider
the two cases separately since the arguments are different.

Lemma 8.1. The highest degree term of detη(sp) is

aη
∏
β∈∆+

∏
p>m>0

H
P (η,mβ)
β ,

where aη =
∏

t=(t1,··· ,tN )∈Pres(η)

∏
1≤j≤N

tj!

Proof. By [S, Lemma 4],

detη(sp) =

 ∏
t∈Pres(η)

Hp
(
etf t

)+ lower degree terms in U(hp).

Further,

Hp
(
etf t

)
=

 ∏
1≤j≤N

Hp
(
e
tj
βj
f
tj
βj

)+ lower degree terms,

and by [H1, §26.2],

Hp
(
e
tj
βj
f
tj
βj

)
= (tj!)H

tj
βj

+ lower degree terms.

Hence the highest degree term of detη(sp) is equal to

∏
t∈Pres(η)

 ∏
1≤j≤N

(tj!)H
tj
βj

 .
Hence, to prove the lemma, we must show that

(1)
∏

t∈Pres(η)

 ∏
1≤j≤N

H
tj
βj

 =
∏
β∈∆+

∏
p>m>0

H
P (η,mβ)
β .
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Fix 1 ≤ j ≤ N . The multiplicity of Hβj in the left hand side of (1)
is
∑
t∈Pres(η) tj. We have

∑
t∈Pres(η)

tj =
p−1∑
m=1

m#̇{t ∈ Pres(η); tj = m}

=
p−1∑
m=1

#{t ∈ Pres(η); tj ≥ m}

=
p−1∑
m=1

P (η,mβj).

Now
∑p−1
m=1 P (η,mβj) is precisely the multiplicity of Hβj in the right hand

side of (1). This proves (1), thereby proving the lemma.

Recall the definition of Kη from Theorem (3.4).

Lemma 8.2. For any η ∈ Q+, (Kη)Pres(η) detη(sξ) ∈ Qξ[K1, . . . ,Kn] and
(Kη)−Pres(η) detη(sξ) ∈ Qξ[K−1

1 , . . . ,K−1
n ]. Furthermore,

(1) (Kη)Pres(η) =
∏
β∈∆+

∏
p>m>0

K
P (η,mβ)
β .

Proof. Recall that Hξ(EiFj) = δij[Ki; 1](cf. Proposition 4.4 for the notation
[Ki; 1]). Hence if a is an element in u+

ξ of weight η and b is an element of
weight −η in u−ξ , the highest possible degree term of Hξ(ab) is Kη and the
lowest is K−1

η . Since detη(sξ) is a sum of terms each a product of Pres(η)
elements of the form Hξ(ab), the first assertion of the lemma follows.

Identity (1) follows by an argument as in the proof of Lemma (8.1).

9. Factoring the Shapovalov determinant.

We are now ready to factor the Shapovalov determinants. The idea is to
combine Lemmas (4.8), (8.1), (8.2), (9.1), and (9.4) to determine the factors
and their multiplicities.

For γ ∈ ∆+ and m > 0, set Hγ,m = Hγ + ρ(Hγ) −m ∈ U(hp). We will
also think of it sometimes as an element of U(hZ).

Lemma 9.1. For each γ ∈ ∆+ and 0 < m < p, there exists bγ,m ∈ b−(up)
(cf. §3.1) of weight −mγ such that for each η ∈ Q+ with P (η,mγ) 6= 0, we
have
(i) the image of the set {f tbγ,m; t ∈ P(η,mγ)} in the right

U(hp)/〈Hγ,m〉-module u−p ⊗ (U(hp)/〈Hγ,m〉) is linearly independent.
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(ii) Hp(vf tbγ,m) ∈ U(hp)Hγ,m for all v ∈ u+
p of weight η and t ∈ P(η,mγ).

Proof. Choose Θγ,m using Proposition (5.6), and set bγ,m equal to the image
of Θγ,m in b−(up).

Introduce a new multi-degree function `-degree on u−p ⊗ U(hp) as follows.
Choose an ordering of the positive roots {β1, . . . , βN} as in (13) of §2 such
that β1 = γ. Define the lexicographic ordering on ZN+1

+ so that

(1, 0, . . . , 0) < (0, 1, 0, . . . , 0) < · · · < (0, . . . , 0, 1).

For any
∑
f t ⊗ at ∈ u−p ⊗ U(hp), set

`-deg
∑
t

f t ⊗ at = max
{t=(t1,... ,tN ) at 6=0}

(tN , . . . , t1, deg(f t ⊗ at)) ∈ ZN+1
+ .

Note that if deg a < deg b for a, b ∈ u−p ⊗ U(hp), then `-deg a < `-deg b.
By Propositions (5.6), we may write

bγ,m = fmγ ⊗ aγ +
∑

fJ ⊗ aJ ,

such that
∣∣fJ ⊗ aJ ∣∣` < ∣∣fmγ ⊗ aγ∣∣`, where

∣∣ ∣∣
`

denotes the `-degree (use the
fact that aJ = 0 unless J ∈ P(mγ)).

Consider the following equation where xt ∈ U(hp) and bφ ∈ U(hp)Hγ,m:

(1)
∑

t∈P(η,mγ)

f tbγ,mxt =
∑

φ∈Pres(η)

fφbφ.

If not all xt are zero, pick to such that xto is non-zero and moreover
∣∣f toxto ∣∣` >∣∣f txt∣∣`, for any t 6= to such that xt 6= 0. Now

∑
f tbγ,mxt = f t

o

fmγ aγxto +∑
fφyφ with yφ ∈ U(hp) and

∣∣fφyφ∣∣` < ∣∣f tofmγ aγxto∣∣` (as can easily be seen).
In view of (1), this forces aγxto+v = bφo for some v ∈ U(hp) of degree strictly
less than that of aγxto , where φo is such that fφ

o

= f t
o

fmγ . This implies that
the highest degree component of aγxto equals the highest degree component
of bφo . But (by assumption) Hγ,m divides bφo and therefore Hγ divides the
highest degree component of aγxto . Recall from Proposition 5.6 that the top
homogeneous component of aγ is coprime to Hγ , and hence Hγ divides the
highest degree component of xto . Thus we can find x′ ∈ U(hp) such that

(2) deg(xto −Hγ,mx
′) < deg xto .

We prove by induction on
∑
t deg xt that if∑

t∈P(η,mγ)

f tbγ,mxt ∈ u−p U(hp)Hγ,m,
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then xt ∈ U(hp)Hγ,m, for all t:
Clearly, ∑

t6=to∈P(η,mγ)

f tbγ,mxt + f t
o

bγ,m(xto −Hγ,mx
′) ∈ u−p U(hp)Hγ,m.

Hence by the inductive hypothesis and (2), any xt ∈ U(hp)Hγ,m. This proves
(i).

We now prove assertion (ii): For any β ∈ ∆+, writing [eβ,Θγ,m] ∈ U(gZ),
in terms of the PBW basis, we get

[eβ,Θγ,m] ∈
∑
t

f tpt + U(gZ)n+
Z

for some pt ∈ U(hZ). By Proposition (5.2), we get that pt is divisible by Hγ,m

in S(hQ), where S(hQ) is the symmetric algebra of hQ := hZ ⊗Z Q. Write
pt = Hγ,mp

′
t where p′t ∈ S(hQ). We can take an integral basis {h1, . . . , hl}

of hZ, which contains Hγ (say hl = Hγ). Write p′t = d−1
t p′′t , where p′′t is a

polynomial in {h1, . . . , hl} with integral coefficients such that the greatest
common divisor of the coefficients is 1 and dt is a non-zero integer. Then
dtpt = Hγ,mp

′′
t . Fix any t such that pt 6= 0. Reducing mod any prime ` such

that ` divides dt, we get 0 = Hγ,mp
′′
t (mod `). But both of Hγ,m and p′′t are

non-zero considered as elements of U(hF`). This is a contradiction. Hence
p′t ∈ U(hZ) and assertion (ii) follows.

We will prove a quantum analog of the above lemma. The proof uses a
certain ‘specialization’, which we explain.

Definition 9.2. Set
B̄ = B/〈q − 1〉.

(Note that q − 1 is not invertible in B.) Then B̄ = Z[(a!)−1], where a is as
in §2. A standard argument shows that (as B̄-algebras)

(1) B̄ ⊗B UB ∼= B̄K ⊗B̄ U(gB̄),

where gB̄ := B̄ ⊗Z gZ, B̄K := B̄[K̄1, . . . , K̄n]/〈K̄2
1 − 1, . . . , K̄2

n− 1〉 is the quo-
tient of the polynomial algebra B̄[K̄1, · · · , K̄n] in the variables K̄1, . . . , K̄n

by the ideal 〈K̄2
1 − 1, . . . , K̄2

n − 1〉 , and we put the tensor product algebra
structure on the right side (in particular, K̄i are central elements in this
algebra). Moreover, under the isomorphism (1), Ki goes to K̄i. Clearly
B̄K/〈K̄1 − 1, . . . , K̄n − 1〉 ∼= B̄, and hence we get

(2) (B̄ ⊗B UB)/〈K1 − 1, . . . ,Kn − 1〉 ∼= U(gB̄).
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We will refer to the above isomorphism (2) as the specialization at q = 1.
One can show that qmdiK−1

i
−q−mdiKi

qdi−q−di specializes to −Hi+m (for any 1 ≤ i ≤ n
and m ∈ Z), while s̃(a) specializes to s̃ of the specialization of a (for any
reflection s ∈ W and a ∈ U0

B). Also, for any β ∈ ∆+, Eβ (resp. Fβ)
specializes to the corresponding root vector eβ (resp. fβ) in U(gB̄). For any
γ ∈ ∆+ and m > 0, from the explicit construction of Θq

k (resp. Θk) given
in §7.5 (resp. §5.5), we see by induction that Θq

k specializes to Θk, for each
0 ≤ k ≤ v + 1.

Let Bξ := B/〈 qp−1
q−1
〉 and define UBξ = Bξ ⊗B UB. Similarly define U0

Bξ =
Bξ ⊗B U0

B. By Proposition 4.4, U0
Bξ is a subalgebra of UBξ . Recall the def-

initions of Uξ and U0
ξ from (17) of §2, and note that Uξ ∼= Qξ ⊗Bξ UBξ and

U0
ξ
∼= Qξ ⊗Bξ U0

Bξ (where Qξ is Bξ-module under the injective ring homomor-
phism Bξ ↪→ Qξ, q 7→ ξ).

There is a ring homomorphism θ : Bξ → Fp, taking q → 1. We will refer to
this homomorphism as reduction mod p. This induces a ring homomorphism
θ : UBξ → U(gp) (analogous to (2)) taking each Ki 7→ 1. In particular, on
restriction, we get a ring homomorphism θ0 : U0

Bξ → U(hp).
By Proposition (4.4), we get U0

Bξ ↪→ Qξ ⊗Bξ U0
Bξ
∼= U0

ξ. Let U0,2
ξ (resp.

U0,even
ξ ) be the Qξ-subalgebra of U0

ξ generated by {K2
1 , . . . ,K

2
n} (resp.

{K±2
1 , . . . ,K±2

n }). Consider the Bξ-subalgebra U0,2
Bξ := U0

Bξ ∩ U0,2
ξ of U0

Bξ .

Lemma 9.3. The algebra U0,2
Bξ is freely generated (as an algebra over Bξ)

by the elements
{
Zi := K2

i−1

qdi−q−di
}

1≤i≤n
.

Proof. By Proposition (4.4)(b), the elements
∏n
i=1 Z

mi
i span U0,2

Bξ as a Bξ-
module. Further, the image of

∏n
i=1 Z

mi
i in U(hp) under θ0 is precisely∏n

i=1H
mi
i . In particular, these elements are linearly independent over Bξ.

(Use the fact that given any non-zero element a ∈ Bξ, there exists r ∈ Z+

such that a = (q − 1)rb with b /∈ ker θ̄.) This proves the lemma.

Recall the definition of Iqγ,m from §7. Let Īξγ,m be the Qξ-span of the
image of Iqγ,m inside U0

ξ under the canonical map U0
B → U0

ξ. Set U0,even
Bξ =

U0
Bξ ∩ U0,even

ξ . Note that U0,even
ξ

∼= Qξ ⊗Bξ U0,even
Bξ and U0,2

ξ
∼= Qξ ⊗Bξ U0,2

Bξ .

Lemma 9.4. For any γ ∈ ∆+ and 0 < m < p, there exists bqγ,m ∈ b−ξ of
weight −mγ such that for each η ∈ Q+ with P (η,mγ) 6= 0, we have:
(1) The image of {F tbqγ,m; t ∈ P(η,mγ)} in u−ξ ⊗ (U0

ξ/Ī
ξ
γ,m) is linearly

independent over U0,even
ξ /(U0,even

ξ ∩ Īξγ,m) (under right multiplication).
(2) Hξ(vF tbqγ,m) ∈ Īξγ,m, for any v ∈ u+

ξ of weight η and t ∈ P(η,mγ).

Proof. Take for bqγ,m the image of Θq
γ,m (as in Proposition 7.1) in b−ξ . As-

sertion (2) follows from Proposition 7.1(c). For assertion (1), note that
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Θq
γ,m specializes to Θγ,m at q = 1 under the isomorphism (2) of Definition

(9.2), and moreover bγ,m (of Lemma 9.1) is the image of Θγ,m in b−(up).
Given a set {at; t ∈ P(η,mγ)} contained in U0,even

ξ , we can choose m ∈ Zn
such that (Km)2at ∈ U0,2

ξ , for each t ∈ P(η,mγ). By Proposition 7.1(a),
there exists r ∈ Zn such that bqγ,mK

r is contained in u−ξ U
0,2
ξ . Moreover,∑

F tbqγ,mat ∈ u−ξ Īξγ,m if and only if
∑
F tbqγ,mK

r(Km)2at ∈ u−ξ (U0,2
ξ ∩ Īξγ,m).

Thus, without loss of generality, we may assume that each at is in U0,2
ξ . Mul-

tiplying by an appropriate element of Qξ, we may further assume that every
at ∈ U0,2

Bξ and moreover at least for one to, θ0(ato) 6= 0 (as an element of
U(hp)), where θ0 is as defined in §9.2. The lemma now follows by reduction
mod p (using Lemma (9.1) and some arguments in its proof).

Proof of Theorem (3.2). By our assumption on the prime p and Lemma
(4.9), the factors (Hβ + ρ(Hβ) −m) are relatively prime where β runs over
the positive roots and 0 < m < p. Hence Lemmas (4.8) and (9.1) imply that

(1)
∏
β∈∆+

∏
0<m<p

(Hβ + ρ(Hβ)−m)P (η,mβ)

divides detη(sp). A comparison of highest degree terms using Lemma (8.1)
proves that (1) equals detη(sp) up to a non-zero scalar in Fp. This proves
Theorem (3.2).

Proof of Theorem (3.4). It is easy to see that

(1) θ0(detη(sξ)) = detη(sp).

In particular, detη(sξ) 6= 0.
Using Lemmas (4.8) and (9.4), it follows that (K2

β − ξ2(m−(ρ,β̌))dβ)P (η,mβ)

divides detη(sξ), for each β ∈ ∆+, 0 < m < p. (Actually we need a slight
variant of Lemma 4.8, where we replace U0

ξ by U0,even
ξ .) Observe thatKβ−ξ`dβ

and Kβ+ξ`dβ are both irreducible as elements of U0
ξ (use the automorphisms

s̃ as in the beginning of §7). By our restriction on the prime p, these factors
are relatively prime to each other. Hence

(2)
∏
β∈∆+

∏
0<m<p

(
K2
β − ξ2(m−(ρ,β̌))dβ

)P (η,mβ)

divides detη(sξ) in U0
ξ . Hence there exists R ∈ U0

ξ such that

detη(sξ) = (Kη)−Pres(η)R
∏
β∈∆+

∏
0<m<p

(
K2
β − ξ2(m−(ρ,β̌))dβ

)P (η,mβ)
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= R
∏
β∈∆+

∏
0<m<p

(
Kβ − ξ2(m−(ρ,β̌))dβK−1

β

)P (η,mβ)

,

by (1) of Lemma 8.2.
Since the constant term of expression (2) is non-zero, by Lemma (8.2), it is

easy to see that R is a (non-zero) constant. This proves the theorem.

10. The Jantzen filtration and the Linkage principle.

One of the standard applications of the Shapovalov determinant is deriving
the character-sum formula for the Jantzen filtration. In the modular and root
of unity case, Andersen-Jantzen-Soergel [AJS, Proposition 6.6] determined
this formula by different methods. In this section we derive this character-
sum formula as an easy consequence of our Theorems (3.2) and (3.4). We
first define the Jantzen filtration for the Verma modules of up and uξ, which
is fairly standard (and follows Jantzen’s original construction).

Let us consider the polynomial algebras Rξ := Qξ[S] and Rp := Fp[s]
where S and s are indeterminates. Let Dξ (resp. Dp) be the quotient field
of Rξ (resp. Rp). Recall the definition of the algebras up and uξ from §3 and
let uDp and uRp (resp. uDξ and uRξ) be obtained from them by extension
of scalars from Fp (resp. Qξ) to Dp and Rp (resp. Dξ and Rξ). Similarly,
let b(uDp) (resp. bDξ) be obtained from b(up) (resp. bξ) by extending the
scalars from Fp (resp. Qξ) to Dp (resp. Dξ).

For any fixed λ ∈ h∗Z, consider the one dimensional representation Sρξλ of
bDξ defined by (

Sρξλ
)

(Ki) = S(ρ,αi)ξ(λ,αi)

and

(
Sρξλ)(Ei

)
= 0, for any 1 ≤ i ≤ n.

This gives rise to the Verma module

MDξ = MDξ(S
ρξλ) := uDξ ⊗bDξ (Sρξλ).

Similarly, define the one dimensional representation λ+ sρ of b(uDp) by

(λ+ sρ)(Hi) = λ(Hi) + s and (λ+ sρ)(ei) = 0,

and let MDp = MDp(λ+sρ) be the associated Verma module for the algebra
uDp .
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Following Jantzen [J1, §5], define the contravariant form Fξ(λ) on MDξ

with values in Dξ (resp. Fp(λ) on MDp with values in Dp) such that

Fξ(λ)(vξ, vξ) = Fp(λ)(vp, vp) = 1,

where vξ (resp. vp) is a highest weight vector in MDξ (resp. MDp). The
determinant formulas (Theorems 3.2 and 3.4) and the definition of the Cox-
eter number h of the Lie algebra g (see, e.g., [J2, Part II, §6.2]) imply that
both of these contravariant forms are non-degenerate for p ≥ h. (In fact,
Fξ(λ) is non-degenerate for any prime p.) Define the Jantzen filtration
{Fm(ξλ);m ≥ 0} of the Verma module M(ξλ) := uξ ⊗bξ (ξλ) as follows,
where (ξλ) is the one dimensional representation of bξ satisfying

(ξλ)(Ki) = ξ(λ,αi) and (ξλ)(Ei) = 0.

First, let MRξ = MRξ(S
ρξλ) be the uRξ- submodule of MDξ generated by

the highest weight vector vξ, and define (for any m ≥ 0)

Mm
Rξ

= {v ∈MRξ : Fξ(λ)(v,MRξ) ⊂ Rξ(S − 1)m}.
Identifying MRξ ⊗Rξ Qξ with MQξ(ξ

λ) (where Rξ → Qξ is the Qξ-algebra
homomorphism which sends S to 1), we define Fm(ξλ) as the image of
Mm

Rξ
⊗Rξ Qξ in MQξ(ξ

λ).
Using the homomorphism Rp → Fp taking s 7→ 0, we can similarly de-

fine the filtration Fm(λ) of the Verma module MFp(λ) corresponding to the
algebra up.

As in the classical case, MQξ(ξ
λ)/F1(ξλ) is an irreducible uξ-module. Sim-

ilarly, MFp(λ)/F1(λ) is an irreducible up-module.
We define the formal character ch of certain submodules of the Verma

modules MQξ(ξ
λ) as an element of the group algebra Z[h∗Z] as follows. We

first define the weight of the highest weight vector vo = 1⊗z ∈M = MQξ(ξ
λ)

for z ∈ (ξλ) as λ. Now a vector v ∈ M is said to be of weight λ − η if we
can write v =

∑
atF

tvo, for some at ∈ Qξ, where the summation runs over
t = (t1, . . . , tN) ∈ ZN+ such that

∑
tjβj = η. Define the (λ − η)− weight

space of M as

Mλ−η = {v ∈M : v is of weight λ− η}.
Then it is easy to see that M = ⊕η∈RMλ−η, where R := {∑β∈∆+ rββ; 0 ≤
rβ < p} ⊂ Q+.

A submodule N ⊂ M is said to be a weight module if N = ⊕η∈RNλ−η,
where Nλ−η := Mλ−η ∩ N . In this case we define its formal character ch
N ∈ Z[h∗Z] by

ch N =
∑
η

dim Nλ−ηe
λ−η.
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An exactly parallel definition applies to MFp(λ) and its submodules. It
is easy to see that Fm(ξλ) (resp. Fm(λ)) are weight submodules of MQξ(ξ

λ)
(resp. MFp(λ)).

Given β ∈ ∆+, following [AJS] let nβ = nβ(λ) be the integer congruent
to (λ+ ρ)(Hβ) mod p which satisfies 0 ≤ nβ < p. For λ ∈ h∗Z, define

R(λ) = {β ∈ ∆+ : 0 < nβ < p}.

We derive the following result due to Andersen-Jantzen-Soergel as an
immediate consequence of our Theorems (3.2) and (3.4).

Theorem 10.1 ([AJS, Proposition 6.6]).
(a) For any λ ∈ h∗Z, and p ≥ h (where h is the Coxeter number of g)∑

m>0

ch Fm(λ)

=
∑

β∈R(λ)

∑
m≥0

chMFp(λ− (mp+ nβ)β)−
∑
m>0

chMFp(λ−mpβ)

 .
(b) Similarly, for any λ ∈ h∗Z and any odd prime p (we assume p 6= 3 if G2

is a factor of g)∑
m>0

ch Fm(ξλ)

=
∑

β∈R(λ)

∑
m≥0

ch MQξ(ξ
λ−(mp+nβ)β)−

∑
m>0

ch MQξ(ξ
λ−mpβ)

 .
Proof. Using the argument in [J1, §5.3] and the factorization of the modular
Shapovalov determinant (cf. Theorem 3.2), we get∑

m>0

ch Fm(λ) =
∑

β∈R(λ)

∑
η∈R

P (η, nββ)eλ−η.

Now for any β ∈ R(λ),∑
m≥0

ch MFp(λ− (mp+ nβ)β)−
∑
m>0

ch MFp(λ−mpβ)

=
∑
m≥0

∑
η∈R

Pres(η)eλ−(mp+nβ)β−η −
∑
m>0

∑
η∈R

Pres(η)eλ−mpβ−η

=
∑
η∈Q

∑
m≥0

Pres(η −mpβ − nββ)− Pres(η − (m+ 1)pβ)

 eλ−η.
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Thus, to prove the theorem, it suffices to show that for any β ∈ R(λ),

(1)
∑
m≥0

Pres(η −mpβ − nββ)− Pres(η − (m+ 1)pβ) = P (η, nββ) :

Set (for any integers s1 < s2)

Nβ(s1, s2) = {t = (tγ)γ∈∆+ ∈ ZN+ ; s1 ≤ tβ < s2}.
Then it is easy to see that the left hand side of (1) equals∑

m≥0

# ({t = (tγ) ∈ P(η) ; 0 ≤ tγ < p for γ 6= β} ∩Nβ(mp+ nβ, (m+ 1)p))

+ # ({t = (tγ); 0 ≤ tγ < p for γ 6= β} ∩Nβ((m+ 1)p, (m+ 1)p+ nβ))

−# ({t = (tγ); 0 ≤ tγ < p for γ 6= β} ∩Nβ((m+ 1)p, (m+ 1)p+ nβ))

−# ({t = (tγ); 0 ≤ tγ < p for γ 6= β} ∩Nβ((m+ 1)p+ nβ, (m+ 2)p)) .

Clearly, by virtue of cancellations, the above sum reduces to

(2) #{t = (tγ) ∈ P(η); 0 ≤ tγ < p for γ 6= β and nβ ≤ tβ < p}.
Now (2) equals P (η, nββ) (by its definition; cf. (6) of §3.1). This proves (1)
and hence the first part of the theorem follows. The second part follows by
exactly the same argument (using Theorem 3.4).

Remark. Even though we deduce the above character-sum formula from
our factorization of the Shapovalov determinant (Theorems 3.2 and 3.4),
Jantzen has pointed out to us that one could work backwards and deduce
our Theorems (3.2) and (3.4) by using the character-sum formula as in [AJS]
for “non-integral” weights.
Definition 10.2. Let λ, µ ∈ h∗Z be two weights. Then λ is said to be
strongly linked to µ if there exist λ1 ≤ · · · ≤ λr ∈ h∗Z;β1, . . . , βr−1 ∈ ∆+ and
n1, . . . , nr−1 ∈ Z such that

λ1 = λ, λr = µ and λj+1 = sβj (λj + ρ)− ρ+ njpβj, for all 1 ≤ j ≤ r − 1,

where sβj is the reflection throught the root βj, and ≤ denotes the Bruhat
partial order on h∗Z.

For λ =
∑
miαi ∈ Q+, let |λ| denote the sum

∑
mi.

As in [AJS, §6], the following theorem can easily be deduced from The-
orem 10.1. Recall that this result in the modular case (in fact for arbitrary
p) was proved in general by Andersen [A], and in the quantum case by
Andersen-Polo-Wen [APW].
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Theorem 10.3. Let p ≥ h be any odd prime (where h is the Coxeter number
of g). Then if LFp(λ) is a subquotient of MFp(µ) as a up-module, then λ is
strongly linked to µ, where LFp(λ) is the (unique) irreducible quotient of
MFp(λ).

Similarly, for any prime p as in (b) of Theorem (10.1), if LQξ(λ) is a
subquotient of MQξ(µ) as a uξ-module, then λ is strongly linked to µ.
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