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SHAPOVALOV DETERMINANT FOR RESTRICTED AND
QUANTIZED RESTRICTED ENVELOPING ALGEBRAS

SHRAWAN KUMAR AND GAIL LETZTER

As is well known, the Shapovalov bilinear form and its
determinant is an important tool in the representation theory
of semisimple Lie algebras over char. 0. To our knowledge,
the corresponding study of the Shapovalov bilinear form and
its determinant is not available in the literature in char. p or
the quantum case at roots of unity. The aim of this paper is
to fully determine the Shapovalov determinant for both, the
restricted enveloping algebra and its quantum analog.

More precisely, let g be a semisimple Lie algebra. Fix a
prime p # 2 which also satisfies p # 3 whenever g contains a
component of type G>. This will be our tacit assumption on p
through the paper. Let ¢ be a primitive p'* root of unity. This
paper is concerned with two algebras: a certain analog u, of
the restricted enveloping algebra (cf. Definition 3.1) and its
quantized version u; which is an algebra over the cyclotomic
field Q¢ (cf. Definition 3.3). The main results of this paper
are complete descriptions of the Shapovalov determinant for
both the algebras u, and u¢ (cf. Theorems 3.2 and 3.4).

1. Introduction.

There has been tremendous interest in the representation theory of the al-
gebra u,, because of its connection with the representation theory of the
associated algebraic group over char. p (via some proven conjectures of
Verma and the Steinberg Tensor Product Theorem). The quantized alge-
bra ue seems even richer. On the one hand (as conjectured by Lusztig, and
proved for large primes by Andersen-Jantzen-Soergel [AJS]) its irreducible
modules have the same character as that of u, and on the other hand (as
shown by Kazhdan-Lusztig) its representation theory parallels that of the
representation theory of the associated affine Kac-Moody Lie algebra at a
certain negative level. In the sequel, we shall refer to the case of u, (resp.
u¢) as the modular (resp. the quantum) case.

Our arguments in the modular case draw and expand upon Shapovalov’s
original paper [S]. For any positive root v and positive integer m, he con-
structed a certain element O, ,, € U(g) of weight —m-y, which when applied
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to a highest weight vector of a particular Verma module for U(g) provides
another highest weight vector. In our paper, we make a careful choice of
the elements O, ,, with certain ‘integrality’ properties which enables us to
take their reduction mod p. The whole of our Section 5 is devoted to con-
structing these elements and proving certain properties satisfied by them
crucial for decomposing the Shapovalov determinant (cf. Propositions 5.2
and 5.6). But the Lie algebra of type G poses additional problems for the
root v = 2a + ae, which is handled separately in Section 6. Mimicking the
arguments in [S], we calculate the highest degree term of the Shapovalov
determinant for the algebra u, (cf. Lemma 8.1). Now the explicit nature of
the highest degree term shows that the factors of the Shapovalov determi-
nant in the modular case obtained from the existence of the elements O, ,,
exhaust all the factors of the determinant, thereby completing the proof of
Theorem (3.2).

The quantum arguments are quite similar; the only added difficulty lies
in choosing various correct powers of g. We construct the g-version 01
of the elements O, ,, in Section 7. Its required properties are contained
in Proposition (7.1). The proof of this proposition makes repeated use of
certain commutation relations, which we collect in Section 4. The quantum
case, however, uses two types of specialization: One from the generic ¢ to
the root of unity &, and the other from & to char. p (cf. Definition 9.2). To
make this possible, we must work over a larger ring B D Z[q, ¢ '] (cf. §2).
In particular, we define a certain B-form Uz of the quantized enveloping
algebra U,(g) and prove various freeness properties (cf. Proposition 4.4),
which allow us to specialize both ways. Proofs of both the Theorems (3.2)
and (3.4) are completed in §9.

We present some applications of our Shapovalov determinant formulae:
As an immediate consequence of our Theorems (3.2) and (3.4), we deduce
the irreducibility of the Steinberg module for u, (as well as ug) (cf. Corol-
lary 3.5). This result is well known (and proved by other methods). The
second, given in Section 10, is a new proof of the character-sum formula
(cf. Theorem 10.1) for the Jantzen filtration for the algebras u, and ue,
obtained by Andersen-Jantzen-Soergel [AJS] by different methods. Finally,
as in [AJS, §6], the Strong Linkage Principle for the algebra u, with p at
least the Coxeter number h of g and for u, with arbitrary p (cf. Theorem
10.3) follows easily from Theorem (10.1). It may be recalled that the Strong
Linkage Principle in the modular case was proved for arbitrary p in general
by Andersen [A] and in the quantum case by Andersen-Polo-Wen [APW].

Acknowledgement. We thank J.E. Humphreys for some comments on
this work.
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2. Preliminaries and Notation.

Let g be the complex semisimple Lie algebra of rank n associated to a Cartan
matrix A = (a;j)1<ij<n. Fix a triangular decomposition

(1) g=n dhon'.

Let AT denote the set of positive roots of g (i.e., the set of roots of n'),
{oa,...,a,} the set of simple (positive) roots, and {fs,e5, Hi; f € A1, 1 <
i < n} a Chevalley basis for g. Here, fs corresponds to the negative root
—[f3, ez corresponds to the positive root 3, and H; is the simple coroot
corresponding to the root «;. For the simple root «;, we also denote e,,
(resp. f,,) simply by e; (resp. f;). Let ry,...,r, be the (simple) reflections

corresponding to the simple roots «q,... ,«a, respectively. Fix an ordering
B1, ... ,0n of the positive roots and set
e) ¢l =clf el and SO = gy £l

for any N-tuple of non-negative integers t = (¢y,...,ty) (where N = |AT]).
Let gz be the Lie subalgebra of g generated by {fs,es, Hi; 3 € AT, 1 <
i <n} over Z and set

(3) n; =n*Ngz hz=hNgs.

For any prime p, let F, be the prime field (of order p) and set g, = gz®zF,.
Note that

(4) gp:n;@bp@n;a

where n, = F, ®zn,, etc.

For any Lie algebra s over a commutative ring R, we denote its universal
enveloping algebra by U(s).

Now let U,(g) denote the quantized enveloping algebra associated to g
(rather to the Cartan matrix A) defined by V.G. Drinfeld and M. Jimbo.
Recall that U,(g) is defined to be the associative algebra over the function
field Q(q) generated by {E;, F;, Ki*'}1<;<, and subject to the relations:
(R,l) KZK] = KJK“ KiK;1 = K;1K7 = 1, fOI' a]l Z,]

(R2) K,E;K;'=q"E;, KFK '=q%“9F, for all 4,
K, — K;!

(RB) E,LE*FJEZ :5 qdi _q*di’

i for all 4,7, and
17(1”'

(R4 > (-)mEITVEE™ =0, and

m=0
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1—a,ij

S (—pmESTTYERE™ =0, for i #7,
m=0
where D = diag(dy,...,d,) is the unique diagonal matrix with positive

integral entries so that the matrix DA is symmetric, and the entries of D
are the smallest possible. In the above relation (R4), the following standard
notation is being used:

m Ezm m Fz‘m
(5) E1( ) [m]'d7’ Fl( ) - [m]'d ’
(6) [m]lg, == [1]a,[2la; - -~ [mla,  and
B qdim _ qfd m
(7) [mla p——

Then U,(g), in fact, has a Hopf algebra structure with the comultiplication
A, counit €, and antipode o defined as follows:

(8) AEZ:EZ®1+K,L®E“ AFZ:FZ®K;1+1®FZ, AKZ:K1®K“
9) eK; =1, ¢eE;=¢F;=0; and

(10) O'Ei = —KflEi, O'Fi = _FiKi7 O'Ki = K;l
For any Hopf algebra H, one defines an adjoint action by

(11) (ad a)b = Za%ba(a?) for a,b e H,

where Aa = 3", a; ® a?. In particular, for a € U,(g), we have

(ad F))a = FaK; — aFK;, (ad E;)a = E;a — K;aK; 'E;,
(12) (ad K;)a = K;aK; .

Lusztig [L1, L2] introduced certain automorphisms 7; of U,(g) corre-
sponding to the simple roots «;. As in [DK, Remark 1.6],

T,E; = (ad —E\ ") E; if i#£j and
TE; = —F,K;.
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Any choice of a reduced expression r;, - - - r;, of the longest element w, of
the Weyl group W associated to g gives rise to an ordering of the positive
roots:

(13) Pr=au, Po="7yQy, ..., Bn=Ti Ty Qy,
and the “root vectors” ([L1, L2]) for any 1 < k < N:
(14) Eﬁk ::El”'Ti Eim Fﬁk :EIT

k—1 ip—1t ik

In the sequel we shall use this ordering of positive roots.
For any ¢t = (t1,... ,ty) € ZY (where Z, denotes the set of non-negative
integers), set

(15) E'=Ej - Ef, and F'=Fg .. Fj.

Let a := max{—a;; };»;, where a,; are the entries of the Cartan matrix A.
Let B be the subring

Z [Q7 q71’ ([a]!dl)ilv R ([a]!dn)il]

of Q(g). Define the B-subalgebra iUy of U,(g) generated by {E;, Fi, K;*';1 <
i <n}. Set

(16) r=UsNU], i%:ilgﬂqu,

where U? (resp. U, resp. U, ) is the Q(q)—subalgebra of U,(g) generated
by {Kiil}lgign (resp. {Ei; 1<i< n}7 resp. {Fi; 1<i< n})

Fix an odd prime p which is further assumed not to be equal to 3 if G5
is a factor of g. This will be our tacit assumption in this paper. Also fix a
primitive p-th root of unity ¢, and let Q, be the cyclotomic field gotten by
attaching £ to Q. Define the homomorphism fe : B — Q¢ by ¢ — £. It is

easy to see, by our restriction on p, that this map is well defined. Set
(17) ug = Qg KB ilg, ﬂgi = Qg (27 ﬂi;z, and ﬂg = @5 Rn ﬂOB

By Proposition 4.4(b), 4 is the algebra Q; [Kif, ..., K] of Laurent poly-
nomials in the variables { K, -, K, }.
Let (,) denote the Killing form on h*, normalized so that

(Oéi7ai)

2
Set 3 =28/(3,3) for 3 # 0 € h*. Let p denote the half sum of the positive
roots. Then (p,c;) = 1 for each 1 < i < n. Set b = {\ € h*;(\, &) €
Z for all 1 <i<mn}. Forany # € A", let Hs € h be the coroot defined by

(18) X(Hﬁ) = (X7ﬁ)7 for all X € b*
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3. The Shapovalov determinant — Statement of the main results.

Definition 3.1. The triangular decomposition of g, (cf. (4) of §2) gives
rise to the decomposition

(1) U(gy) = (n, Ulgy) + Ulgp)n,) @ U(hy),

and hence gives the Harish-Chandra homomorphism (by projecting on the
second factor)

9, :U(gp) — U(by).

Let w be the Chevalley anti-automorphism g, — g, defined by w(f;) =
ei,w(e;) = fi,w(H;) = H;, for all 1 < i < n; where (as in §2) e; (resp. f;)
corresponds to the simple root «; (resp. the negative root —«;). Now, define
the Shapovalov bilinear form

Sp:Um, ) xU(n,)—U(h,) by
Sp(a,b) = $H,(w(a)b).

It is easy to see that e} and f§ are central elements in U(g,). Let u,
be the quotient algebra U(g,)/(e}, f5; 8 € AT), where () denotes the ideal
generated by the elements inside the parentheses. Similarly, let w’ (resp.
u,) be the quotient algebra U(n})/(e}; 8 € AT)(resp. U(n,)/(f5; 8 € AT)),
and b(u,) (resp. b~ (u,)) be the quotient algebra U(b,)/(ej; 3 € AT) (resp.
U(b,)/(fs: 8 € AT)), where b, := b, + nl (resp. b, :=bh, +n). Observe
that

(2) b(u,) ~ u; ®U(hp) and b~ (u,) ~u, @U(h,).

The bilinear form S, factors through u; . We denote the bilinear form
u; x u; — U(h,) thus obtained by the symbol s,,.

As is well known, the algebra w! (resp. u;) has the elements {e'} (resp.
{f'}) (cf. (2) of §2) as a F,-basis, where t = (¢,... ,ty) ranges over those
elements of ZY such that 0 <¢; < p, for all j .

Let Q := Y7 | Z«; denote the root lattice in h*. For any n € @, define

3) P(n)={t€Z:|t|=n},  and
(4) Pres(n) ={t = (t1,... ,ty) € P(n) : 0 < t; <p, forall j},
where, for t € ZV, | t |:= Z;yzl t;0; and {B;} is the ordering as in (13) of §2.

Of course P(n) = ¢, unless n € QT := Y." | Z ;. Also, for 3; € AT and
m € Z,, define

(5) Pres(n,mﬂj) = {t S Zf : (tla e 7tj,1,tj +m,tj+1, e ;tN) e Pres(n)}a
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and set
(6)
P(U) = # 73(77), Pres(n) = # Pres(ﬁ)? and P(nvmﬁj) = # Pres(nvmﬁj)'

For any n € QT set

dety(s,) = det(sp(f%, f*)) e Prwtn) € Uhp)-

The following result gives the decomposition of det,(s,).

Theorem 3.2. With the notation as above, for anyn € Q7

det,(s,) = [[ I [Hs+ (p,3) —m]Prmd),

peAt 0<m<p

up to a non-zero scalar multiple in F,, where HB,B,p, and the Killing form
(, ) are as in Section 2.

Definition 3.3. By virtue of Proposition 4.4(c), we get
fhe = (T8 )8e + UT(U)) @ 412,

where Z(&) denotes the augmentation ideal of any augmented algebra &.
The above decomposition gives rise to the quantized Harish-Chandra homo-
morphism

f’jg :ng —>ﬂo,

by projecting on the second factor.
Just as in §3.1, define the Shapovalov bilinear form

Se Uy x U — U2 by
Se(v, w) = He(Qv)w),

where  is the Q-algebra anti-automorphism of ¢ (cf. [L2, §1.1]), defined
by

UE)=F, QF)=E, QUK)=K" and Q¢ =¢"
The elements {EF , Fjj ;1 < j < N} are central in ¢ (cf. [DK, Corollary

3.1]). Let u¢ be the quotient algebra ¢/(Ej . Fj; 1 < j < N). Similarly
define

ul =W/(EEI<SN), ug =4 {Ff:1<j < N),
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and
be =Be/(EF;1<j<N), b =2;/(F;;1<j<N),

where B (resp. B ) is the subalgebra UL (resp. Ugl; ) of ie. Observe
that

(1) be ~uf @ U and by ~u; @ UL

From Proposition 4.4(a), we obtain that uf (resp. ug ) is a free Q¢-module
with basis {E'} (resp. {F'}), where t = (¢i,...,ty) ranges over those
elements of ZY such that 0 < ¢; < p, for all j.

It is easy to see that the bilinear form S factors through u; to give rise
to the bilinear form

Se iUy Xug — UL
For any n € Q7 define

det,(s¢) = det(SE(FSD7F¢))w,¢E Pres(m) € 112-

Now the following is the quantized analog of Theorem (3.2) factoring
det,, (s¢).

Theorem 3.4. With the notation as above,

v P(n,mB)
det,(se) =c [[ I {Kﬁ — g2m=(p8"))ds g )

BeA+ 0<m<p

for sor(rﬁbeﬁ)non-zero c € Qg¢; where for =3 mia;, Kg := K{" --- K", and
dﬁ = .
2

The following result follows immediately from Theorems (3.2) and (3.4).
This result in the modular case is classical (cf. [H2, §5.5]) and in the quan-
tum case due to Andersen-Polo-Wen [APW, Corollary 7.6 and Theorem 9.8].

Corollary 3.5. The Steinberg module Mg, ((p — 1)p) (resp. Mg, (£P~17))
is an irreducible module for w, (resp. u¢), where for any X € by, Mg, () and
Mg, (&) are defined in §10.
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4. Proof of the main theorems — Some preliminary work.

The following two lemmas allow us to move one element pass another. The
first is more general and will be applied to the modular case.

Lemma 4.1. Let a,b be two elements in a ring R. Write (ad a)b for ab—ba.
We have

" e 3 () (e )

0<j<m

Proof. If two elements z,y in a ring R commute, then of course (z + y)™ =
o<j<m (7) xly™=J. Applying this to the ring End (R) (of all Z-linear
maps of R to itself) with z = ada and y = R, (where R, : R — R is given
by 7 +— ra), we get the lemma. u

We need a Hopf algebra analog of the above lemma for the Hopf algebra
U,(g). Rather than stating the result for general Hopf algebras, we will
confine ourselves to the Hopf algebra U,(g) in the following lemma. We
remark that the definition of ad is available for any ring, in contrast to the
definition of ad given in (11) of §2 for Hopf algebras. Observe that the two
definitions do not coincide in general for Hopf algebras. Set F' = F;, K = K,
and a = «a; in the following lemma.

Lemma 4.2. For any m > 1 and any b € U,(g),

(1) F'b= > [m] g~ 4G I ((ad F)b) F I K9,
0<jzm L ] qa:
where | = %
Jl ., [71'a; [m—3]'a,
q k2
Proof. By (12) of §2,
(2) Fb=0bF + ((ad F)b)K ™,

which proves (1) for m = 1. Assume (1) holds for m — 1. Then using (2), we
get

F(F™ 1)

- 3 [m._ll g I (ad FYIB) P I KIF

o<j<m-1L J
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S [m‘_ll g B (ad F)(((ad F)b)F™ 'K I) K~

o<j<m-1L 7

= Z [m - 1] q_di(jz_j(m_l))((ad F)jb)Fm_jK_j

0<j<m-1 J
+ Z [7‘7:11] q_di((j_1)2_(j_l)(m'_l))'i‘Qdi(m_j)((ad F)jb)Fm_jK_j,
1<j<m

where we have dropped the g-binomial coefficient subscript of ¢%. The lemma,
now follows from the identity

U
Lemma 4.3. Let a,by,... b, be elements in a ring R of char. 0. Then for
any m >0
(ada)™ C « @a)t,  (@da)t, (o)
T(b1 b =) N (b)) X (bs) ... T(b,,) :

LESm
where S,, is the set of r-tuples ¢ = (¢1,... ,¢,) € Z', such that >;_, {; = m.

Proof. The lemma follows immediately from [H1, p. 152, Proof of Lemma
Al [l

Recall the definition of the subring B C Q(q) from §2. Observe that
Q(B) = B, Q(U5) = Us and QL) = Uz (where Q is as in §3.3). We have

Proposition 4.4.
(a) U5 (resp. Uyz) is a free B-module with basis {E'} (resp. {F'}), where

t=(t1,...,tn) runs over ZY.
(b) U% is generated (as a B-algebra) by {K;, [K;;1];1 < i < n}, where
[Ki;1] = %, and moreover U is a free B-module with basis

a%i—q
{(I1, K2)[K; 1)™}, where m runs over 7% and 6; € {0,1}. (The nota-
tion [K;1])™ is defined below in the proof.)

(¢c) We have a B-module isomorphism
Uy @p Ug @p U = Up

under the (canonical) multiplication map.
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Proof. Any T; (cf. §2) clearly keeps 4z stable. In particular, E*, F* € Ug.
Further [E;, F;] = [K;; 1] € Up. Define

s =Y BFK™[K; 1™ EY € U,(g),

where t,t' run over ZY.m’' runs over Z7. and m runs over Z"; and where
) +5 +9 )

K™ = K™..-K" (for m = (my,...,m,)) and [K;1]" :=
[Kq;1)™ - [K,; 1]™. Clearly s C s, We next prove that £z is an al-
gebra.

It suffices to show that the following elements belong to Us.

(HWE'F* (2)E'E' (3)F'F' (4)E'[K;1™ (5)[K;1]™ F".

The proof that the elements (3) belong to iz is similar to that for (2).
Moreover, the elements (4) and (5) belong to s follows from [L2, §6.5,
Identities (ab) and (a6)]. The assertion that the elements (2) belong to iz
follows by repeated use of the relations [L2, §5.2] for rank-2 Lie algebras,
and the degree function d introduced in [DK, §1.7]. The elements (1) belong
to Uy follows from the same argument as in [DK, Proof of Proposition 1.7].
This completes the proof that ﬂ; is an algebra.

We next show that Uz C 5./1;. For this it suffices to show that E;, F; € i/l;,
forall1 <i<n.

Fix a simple root a; and let 1 < j < N be such that 8; = a;. Let
Us be the Lusztig’s B-form of Uy(g). Then since Uy := Ug N U, is gen-
erated by El(m) (1 <1 < n,m > 0), the a;-weight space W,,, (cf., e.g.,
[K, Definition 2.8] for the definition of weight) of UZ is equal to BE;. Fur-
ther, by [L2, Theorem 6.7], W,, = BEjg,. In particular, E; € BEg,. This
proves that F; € i/ll\g. A similar argument gives that F; € 1/1;. Hence 1/1\3 =
{p. This, in particular, gives that i} = Yezy BE', U = 3% cpn BF', and
U = Lomezn mrezn BK™ [K;1]™. But E* (resp. F*) are linearly independent
over Q(q) (cf. [L2, Proposition 4.2]), hence (a) follows.

By using the relation

(1) K} = (¢" —q~")Ki[Ki;1] + 1,

it is easy to see that % is a free B-module with basis {(I, K?))[K;1]™},
where m runs over Z" and ¢; € {0,1}. This proves (b) and also proves (c),

since Uz = Upg. O

The next two lemmas will allow us to do some of the necessary computa-
tions in Uz. Recall the relation (12) of §2 determining ad F; and ad F;.

Lemma 4.5. For allm >0 and i # j,
(a) (ad E{™)E; €4, (ad F™)FK; € Uz K" K;.
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(b) (ad EM)E; = (ad F"™)F,K; =0, for m > —a;; + 1.

Proof. Note that (ad Ei(*a”ﬂ))Ej = 0 for i # j (see [L2, §§1.1 and 1.3]
or [JL1]J; this is just the quantized Serre relation). Hence (to prove the
assertion regarding E's), we need only show that

(1) (ad Ei(m)) E; € 4 for 1 <m < —ay;.
Since —a;; < a (cf. §2 for the definition of a), we have
(2) ([m]le,) ' €B foreach 1 <m < —a;; and 1<[<n.

Now (1) follows from (2) and [L2, §1.3]. A similar argument proves the
assertions regarding F's. [l

Lemma 4.6. Let b € 3L be a weight vector of weight " m;a;. Then
(ad E") bK;™) € UK,

for allk >0 and 1 < i <n. Moreover, there is an integer k, > 0 depending
on b such that (ad EM)(OK; ™) =0 for all k > k,.
Similarly, if c € Uz is of weight — > mja;, then

(ad EY) (K™K ™) € U K™ K™ KE,

for all k > 0 and there is an integer k, depending on c such that
(ad FM)(cK™K; ™) =0 for all k > k,, where K™ := K" ... K™

Proof. Let b; (resp. by) be an element of {5 of weight a = > jnja; (resp.
B =>,r;a;). By [L2, §1.3] and [JL1, §2.2], we have
(ad B (b Kb K
k
= >0 (ad BEY) (¢ b K ™) (ad BY) (bKT),
1=0
This calculation shows that if the lemma, is true for the elements by, b, €
0 then it is also true for the product biby. So it suffices to prove that
(ad EMVE; € W) for i # j and (ad EM)E; = 0 for i # j and for all
k> 0, and also (ad E;)(E;K; ') = 0. The first two assertions follow from

Lemma (4.5), and the third is a straightforward computation. This proves
the lemma for b € $4f. The proof for ¢ € 5 is similar. u
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Definition 4.7. Given a finite subset V' C b~ (u,) (cf. §3.1), define the
V' x V- matrix

(1) My (sp) = (9p(w(v)w))owev  and
(2) dety (s,) = det My (sp).

Similarly, for V' C b, ,

(3) dety (s¢) = det(He(Q(v)w))y wev -

The next lemma will be crucial in factoring the Shapovalov determinant.
Much of the rest of this paper will be devoted to finding suitable elements
g and by, ... ,b, that satisfy the conditions of this lemma. Being a Laurent
polynomial ring, ilg is a unique factorization domain.

Lemma 4.8. Fizn € Qt. Let g be an irreducible polynomial in U(b,)

(resp. U2). Suppose there exist elements by, ... b, in b~ (w,) (resp. bg) of

weight —n such that

(i) The elements {b;; 1 < j < r} are linearly independent considered
as elements of the right U(b,)/(g)-module u,; @ (U(b,)/(g)) (resp.
U2/ (g)-module u; @ (42/(g))) (cf. (2) of §3.1 and (1) of §3.3),

(i) $,(vb;) € U(bp)g (resp. He(vb;) € Ulg) for all v € wf (resp. uf) of
weight 7.

Then g divides det,(s,) (resp. det,(s¢)).

Proof. We prove the lemma for det,(s,). (The proof in the case of det,(s¢)
is similar.) Choose elements {b,,1,...,bs} in u of weight —n such that the
set R = {by,...,b.,b.y1,...,bs} is an L-basis for the —n weight space of
u, ® L, where L is the quotient field of the integral domain U(h,)/(g). We
may write (for 1 < j <)

bj = Z ftht,

tEPres(n)

where Poes(n) is as in (4) of §3.1 and ¢;; € U(h,). Set C as the matrix [c;].
Since C'is the transformation matrix between the two bases of the —n weight
space of u; ® L (over L), we obtain

(1) det C' ¢ U(h,)g.
It is straightforward to check that

Mpg(s,) = C* Mg, (s,)C,
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where R, = {f*;t € Pus(n)}; and hence detg(s,) = (det C)*det,(s,). Now
assumption (ii) forces ¢ to divide detg(s,). Since g is irreducible, by (1),
det C and g must be relatively prime. Hence g" divides det,,(s,). This proves
the lemma. u

We close this section with some properties of A™ which will be needed for
the factorization of the Shapovalov determinant in the next sections.

Lemma 4.9. If p is an odd prime which is not equal to three if Gy is a

component of g, then the following are satisfied.

(a) If Y mya; and Y Lo, are distinct elements of A%Y, then m; %
l;(mod p) for at least one 1 < i < n.

(b) If B € A*, then [ is not zero mod p with respect to the weight lattice.

(¢c) No two distinct positive coroots are equal mod p (in the sense of (a)).

Proof. Assertions (a) and (c) follow from the explicit knowledge of the roots
and coroots as given in [B].

For the (b) part, write @« € A" as @ = Y n;x; where the x; are the
fundamental weights. Thus («a, &;) = n,. Write & = Y m;d&;, where m; €
Z. Then (a,a) = 2 = Y, mn,. So if a is zero mod p (i.e. every n;
is zero mod p), then 2 is divisible by p. This contradicts the choice of p
and hence proves the (b)-part. Observe that for the (b)-part, we just need

p#2. O

5. Special elements in U(gy).

In [S], Shapovalov defined certain elements of U(g) (corresponding to any
positive root and a positive integer) that produced highest weight vectors
in certain Verma modules. These elements were then used to determine the
factors and multiplicities of the classical Shapovalov determinant by applying
a version of Lemma 4.8. In this section, we make a careful choice of these
elements in order to specialize them to U(g,), and in a later section, use
them to factor the modular Shapovalov determinant.

Definition 5.1. A reflection s € W induces an affine automorphism §
of U(h) as follows. Given a simple positive root «, define 5(H,) = H,, +
(p, s&) — (p, &) and extend this to an algebra homomorphism of U(h). Since
s preserves the coroot lattice (i.e., the lattice hz = >, ZH,), it follows that
5(U(hz)) <€ U(bz).

For v € A" and m > 0 let I, ,, denote the ideal in U(h) generated by
(Hy + p(H,) —m).

The next proposition is a strengthened version of [S, Lemma 1] (cf. also
[F]). We write dega to denote the total degree of a considered as an element
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of U(g) using the standard filtration. Recall the definition of n; from (3) of
§2.

Proposition 5.2.  For any integer m > 0 and v € A*, there exists a
non-zero element ©.,,, € U(ny)U(hz) of weight —m~y such that
(i) [es; Oy ml € UM ), .+ U(g)n™, for all B € AT, and

(ii) deg ©, ., is precisely equal to ", ml;, where v =37, {;;.

Proof. If p(H,) = 1, then ~ is a simple positive root, say «;. In this case, as
in [S, Lemma 1], we may take O, ,, = f* € U(n), which clearly satisfies
(i) and (ii).
So assume p(H.,,) > 1. There exists a simple root € and v; € A™ such that
7 = sy and p(H,,) < p(H,). Note that v — v, = re where r = (v, ¢€) > 0.
Consider the hyperplane

(1) Lw={x€b" x(H,) =m}
in h* and the subset

(2) B.:={Xeb;NL,.;(\é <0}

It is easy to see that B, is dense in L., in the Zariski topology (cf., e.g.,
[BGG)).

Fix A € B, and set ¢ = s, A. We have the following inclusions of Verma
modules

(3) My —p) D M(A—p) D M(A—my—p),
(4) M —p) D M) —my, — p) D M(A—m~y —p).

Let v be a highest weight vector for M (¢ — p) (of weight ¢» — p). By
induction on (p, %), there exists ©., , € U(ng)U(hz) which satisfies (i) and
(ii). Write ©4, 1 = 3, cp(mm) [ Pi; Where p, € U(hz). Inclusion (4) implies
that

(5) JoOTmr N — p) (pr)

teP(my1)

applied to v is a highest weight vector for M (A —m~y — p). Now (¢ — p,5) =

(A= p,53) + (91 5.9) — (9, 7). Henee (4 — p)pi = (A— p)(5.(p.)). Combined
with Lemma 4.1, this shows that (5) equals

) 5 (BLEY ) grsoremsnpy(p),

|
tJ J:
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where ¢t runs through the elements in P(m~,;), j runs through the integers
{0,1,...,—(\,é) + mr}, and P;, = (nggj(—HE +mr — E)) 5¢(p¢). (Ob-
serve that for the Hopf algebra U(g), (ad X)a = (ad X)a, for any X € g,
and a € U(g).) »

By [H1, Corollary 26.3], (ad]%)]U(ni) C U(ny). Furthermore,
(ad f.)? f =0 for 5 > 0, and so the above sum (6) has the same number of
terms for (—\,€) > 0. By assumption, p, € U(hz) and hence P;; € U(hz).

Set afy
= a € mr—j
Oy = Z Z ( . ) frrip,.
teP(mvy1) 0<j J:
This is a finite sum and each summand is contained in U(n;)[f- U (bhz).

(Note that ©., ,, is not necessarily an element of U(n;)U(hz).) Furthermore
one easily checks (using expression (6)) that for A € B, such that (=X, €) > 0

(7) (:)'y,mfei()\’é)v = f;()\’é)ﬂnr@’n,mv'

Fix an ordering of A" as in (13) of §2 such that € is the smallest element.
Given an element a in U(ng)[f7'|U(hz), write a in terms of the PBW basis
thus obtained (cf. (2) of §2), and let [a] denote the sum of those terms with
non-negative powers of f.. Set

‘ +
(8) o= ¥ % (B ad f) 7) e e

Of course, ©,,, is an element of U(n;)U(hz). We prove that for \ €
B., ()& >0

(9) Oy mfr X =0, 7 N0
Write
Z fJffaJ,ka
Jk>(X8)

where a; ) € U(hz) and J = (ja,... ,jn) is an (N — 1)-tuple of non-negative
integers. Then

(10) (:)'y,mfe_()\7é)v = Z fJfgkaJ,kfe_()Hé)U'

Jk=>(X,€)

Inclusion (3) (resp. (7)) implies that f=*9v (resp. O, f~*9v) is anni-
hilated by all the positive root vectors. In particular, by the uniqueness of
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the embeddings in (3) and (4), we get that there exists f =32, p(,,,) b f' €
U(n~) # 0 (for some b, € Q) such that ff-*9v is a highest weight vector
of M(A —m~y — p). Hence

(11) aff- X =0, ,f- M, for some a € Q.
We have (by (10))

af fF2 = > ffragfm M

T k>(X8)

=Y RO = p)(asw)v.
Tk

This forces (A — p)(ayx) = 0, unless k — (X, €) > —(\, €), i.e., K > 0. Hence
by (10),

(12) Oy fr M= > f/ frasf .

J,k>0

But the right hand side of this equation is exactly O, ,, f~*9v. This proves
(9).

Now let v, be a non-zero highest weight generating vector for M (A — p).
We can take vy = f~*9v. Then by (7) and (9), O, ,,v, is annihilated by all
eg (B € AT), for each X € B, with —(\,€) > 0. The density of B, in L.,
implies that ©., ,, satisfies (i).

To prove assertion (ii), recall that v, = s.y =y —re. Hence vy = Y1 | lia
implies that v; = >°;", f;a; — re. By the inductive hypothesis, ©., ,, has
degree (37, ml;) — mr. Note that the degree function on U(n™)U(fh) may
be extended to a degree function on U(n~)[f 1]U(h) by defining deg f* = ¢
for all £ € Z. Since the adjoint action and s, both preserve degrees, it
follows from (8) that deg©, ., < > ; mf;. One obtains equality by showing
(using induction as in [S, Lemma 1]) that ©.,,, = [T/_, f7"“/ 4+, axbk, where
by € U(hz) and a;, € U(ny) of weight —m~y and dega, < Y., ml;. (See
Proposition 5.6 as well.) u

Observe that ©, ,,, in the above proposition are not unique. We will make
a particular choice for ©, ,, in the sequel.

Definition 5.3. Let € and 8 be two positive roots. The e-string through
0 is the set of those roots which are of the form 3 + ke, for some k € Z. By
[H1, §9.4], there exist non-negative integers ¢ and s with £+ s < 3 such that
the e-string through [ is precisely the set {3 + ke; —¢ < k < s}.
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Lemma 5.4. Let o, € A" and € a simple (positive) root such that
B8 =sa=a+re, for somer >0. Then

(adfe)”f IR EIT if a—edg AT
rl T 21, if a—ee AT,

Furthermore, the second possibility occurs only in the case where g contains
a component of type G.

Proof. The proof follows from [H1, Theorem 25.2]. Let o — le, ..., + se be
the e-string through «. Then r = s — ¢ and

(ad £.)" (C+1)(C+2)...(0+7)

r! r!

(1)

If « —e ¢ AT, then £ = 0 and the right hand side of (1) is just +fz. Since
£+ s < 3, in the case when £ # 0 we have { + s =3, £ =1, and r = 1;
and this can only happen if g contains a component of type G,. Hence if
a —e € A*, then the right hand side of (1) is £2f5. O

fa::l: f,@"

Definition 5.5 (A particular choice for O, ,,). Fix v € A" and
m > 0. We want to make a particular choice for ©, ,,. Let us choose simple

reflections s, ... , s, (corresponding to simple roots €, ... , €, respectively),
and a simple (positive) root 7,1 such that so -+ s,7,01 = 7. Set 1 =
Sk -+ SyYos1, In particular, 79 = . Assume further that sg,...,s, are

chosen so that (p,5x) > (p,Jk41) for 0 < k& < v. Set 1, = (Y, €x). The
assumption on (p, ;) implies that r, > 0. Note that

(1) Yk = SkVk+1 = Vi+1 T Tk€k-

We define elements O, = ©,, ,,,, 0 < k <wv+1,in U(n;)U(hz) inductively
as follows. Set ©,,; = f;’jﬂ. Assume we have defined O, and that O, =
D teP(mr i) f'pe, where p, € U(hz). Define O, by (cf. (8) of §5.2)

2 e,=Y K@Ldfek)jft) ’”‘]r ( I1 (-H., +mr —e)) 5 (1),

]
0] J: 1<0<j

where t runs over the elements in P(m~yx,1), j runs over the non-negative
integers, and [ | is as in the proof of Proposition (5.2). By the proof of

Proposition 5.2, ©,, belongs to U(n;)U(bz), is of weight m~y;, and satisfies
(i) and (ii) of Proposition (5.2).

We now prove the following strengthened version of Proposition (5.2).
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Proposition 5.6. Assume g to be simple. Fix v € At and m > 0. Let
S0y -+« y Sy €0y.-- s €p; GNA Yo, ... ,Yor1 be as in the above section. Then
there ezists ©., ,,, € U(n;)U(bz) of weight —m~y such that
(i) [es,Oym] €U(Q)L, m +U(g)n™, for all f € AT.
(ii) Write ©,,, in terms of any PBW basis for U(n~) :
Ovm=fl®a,+ > [/ ®ay,
FIAL
where a.,a; € U(hz). Then a, € U(hz) is of degree mYy_,_,r, and its
top homogeneous component is
:l: H S0...Sp— 16/ mwy
0<t<v

with only one exception when g = G and v = 2a1 + ap . In this case
it is £H"(Hy + Hy)™ (cf. 86 for the notation).

Moreover, deg(f’ ® a;) < deg(f' ® ay) = m(1 + X2)_o7e) = >, mls,
where l; is as in Proposition (5.2).

Proof. Note that v, = vY,41 + X p<p<, Te€e. Hence, by Proposition 5.2,
deg©) =m(1+> <oy 7e). We prove the proposition under the assumption
that g # G, in particular by Lemma (5.4), 41 —€, € AT for any 0 < ¢ < v.
(The next section will be devoted to handling the case g = G>.)

Fix 3 € AT andm > 1. Forany a # 0 € U(n™)®@U(h), write a = f5'@bs+
Zf-J#gz 7 @b, , where bs,b; € U(h). Let us denote the top homogeneous
component of bg by [a]?gl, if deg(f}' ® bg) = dega. If deg(f5' ® bg) < dega,
we set [a ]fm =0.

Assume by induction, that
(1) Or)fm = H Hopiyoosore)™™,

1<¢

<v

and prove (1) for ©.
Since ©,11 = fI, , (1) is trivially true in this case. Write

(2) @k-‘rl = :I:f';::_,_l ® H (H8k+1~-32716€)m” + Z ft ® ay

k+1<£<v

+ lower degree terms,

for a;, € U(bhz); where the summation is taken over ¢t € P(my,41) subject to
ft# .., and deg(fta;) = deg©y, 1. Set

3) mr
(ad fek)j m mri—j ! J
E T Yet1 | Jex (_Hek) H e —
. €k k+1<t<v
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and

(4)

o+

ad €k J mri—j i =~ j
= K(f‘;)ft) e g} Se(p)(—H., ).
Since ad and §;, both preserve degrees, it follows that degz; < deg©y i +
mry = deg©y and similarly degzf < deg©;. Set Sy = {j > 0; degz; =
deg©4} and S, = {(jot); j > 0, ¢ € P(myss), f* # [, and degz! —
deg©,}. Then (2) of §5.5 and (2) imply that

(5) Op ==+ Z zj + Z z, + lower degree terms.
JjESL (4,t)ES2
Since Y41 — €x & AT, by the proof of Lemma (5.4) and (1) of §5.5, it
follows that 7y, + ¢, € AT and so (ad f, )™ f,,,, = 0. Therefore z; = 0 for
j > mrg. Furthermore, by Lemmas (4.3) and (5.4), we have

(a‘dfﬂc) m _i m

(mrk)! TYE+1 Tk *

On the other hand j < mr), implies that z; € U(n™) f, U(h), and so []},. =
Tk

0 (when j < mry). Let us abbreviate [a]%,. by [a]® till the end of this proof.

Therefore

Z [Zj]o = [me]o =+ H (Hsk---szfléz)mw'

JEST k<t<wv

To complete the proof, we argue that for any (j,t) € S, we have [2/] = 0.
We have

j ) +
©)  de ([((adf” ) g >=degft+mrk—j.
Now by (4),
o A .
o= {[(Se ) ) | s,
Assume, if possible, [2]]° # 0. Then (7) implies that
®) ([((ad g,y 1) gzt ] 0.

Hence by (6), we have

9) deg f* 4+ mr, — j = deg( o) =m.



SHAPOVALOV DETERMINANTS 143

Let t = (tl,... ,tN) Then
Fr=f fR L0 = o S f

Where )\1 = )\2 = = )\t]\] = ﬁN))\tN+1 = = )\tN+tN_1 = /8N717"' )
)‘tN+~-~+t3+1 == )\tN+.H+t2 = ,82. In particular, let s = tg -+ t3 + -+ ty.
By (8) (since €; # Yry1), we must have t; = j — mr,. This forces (by (9))

(10) s =deg f' — (j —mry) =m.
Y 0

Furthermore, {(a ;.(!‘k) Fag - f,\s} # 0. So there exist non-negative integers
C1,y...,¢s such that A\, + e, = v, and Y], ¢, = j. Since j > mr; and
Ye+1 — €k 18 NOt a positive root, it follows that Ay = -+ = A, = Y41, J = mry
and ¢, = -+ = ¢, = 13, le., fl = for.,- But, by the definition of S,
fr# f7 . This contradiction shows that [2}]° = 0.

This completes the proof of the proposition for any g # G . (The case of
G+ will be handled in the next section.) L

6. Proof of Proposition (5.6) for g of type Gb.

Throughout this section, we assume that g is of type Gs.
Let oy, as be the positive simple roots with

(Ol17042) = -3, (alaal) =2, (042,042) = 6.

Then AT = {ay, g, 1 + a2, 20 + a2, 3a; + g, 31 + 2a2}. Let r; be the
reflection corresponding to «;. Set fi = fo,, fo = fass f3 = fortans 2 =
f2a1+a27 fS = f3a1+a27 fG = f3a1+2a2a Hl = Hoqa and H2 = Haz- We can
choose f] s so that the following relations are satisfied.

fs =111, fa,

f4 = %[fb [flvaH?

5= %[fla [f1, [f1, f2]]]; and

f6 = %[f% [flv [fla [flva]H]

A straightforward checking shows that the only positive roots «, 8 for
which the second possibility of Lemma (5.4) occurs is f = 2a; + ay and
a = a3 + ay (and in this case, in the notation of Lemma 5.4, ¢ = oy
and r = 1). Now mf = a and ra = «;. In the notation of §5.5, take
v=1,7 = ay, s =11, and s; = 7 (so that vy = a and 79 = (). Fix
m > 0, and let ©,, 01, and O be the associated elements in U(n;)U(hz) as
in §5.5. In particular,

(1) ©, = fi"
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and

(2) 0= Y ((ad.ﬁ)jff@) 2 ( II (—Hz+m—€)>-

4!
0<j<m 1<0<j

Note that (ad f5)? fi* = 0, for j > m. By §5.5, O, (resp. O;) is an element
of weight ma; (resp. ma) and it satisfies the requirements of Proposition

(5.6) for v = a; (resp. v = a). We now want to construct Og,.
Define

3 8= <—1>ﬂ‘<?>f§fr—j ;"'—j(H<—H2+m_e>).

1<e<j

Then by Lemma (4.3), ©; and ©; have the same highest degree terms. Write
0, = > tep(may I P, With p, € U(hz), and following (2) of §5.5 set

ar \1<(<k
where the first sum runs over ¢ in P(ma). Then again O, and O, have the
same highest degree terms. In particular,

0

[@0](};" = {@0} e

We now compute [Oo].
Note that deg(fif" ™ f" 7 (—H,)) = 2m = deg®,. We have 7 (H,) =
H, + H, + 1. Hence by (3) and (4) we have

(5)
@0 = Z (—1)j <m> ((adk{l) (fgfﬁn_jff"_j) {nfk(_Hl)k(_Hl _Hz)j>

(k)eS J

+ lower degree terms,

where
S={(k,j); 0<j<m, k>0, 2m>j+k}.

So we must compute the coefficient of f;" in

X (k,j) = (ad ) (A7) S (= H)H(=Hy — H)Y,
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for (k,j) € S. If 2m — j — k > 0, then X(k,j) € U(n;)f1; and hence the
coefficient of f7* in X (k, j) is zero. So, we may assume that 2m —j — k = 0,
i.e., j =2m — k. Since m > j > 0, we must have m < k < 2m. Clearly,

(ad f1)*

ad f)*
k' ( gm—kfzk—m 1k—m) 1m—k — ( fl) ( 2m—k k—m) .

(6) S

By virtue of Lemma (4.3), it is easy to see that the coefficient of f;* in
the expression (6) is equal to 22™~*. Hence

{90}; - m<;2m <(1)2m—k <2mm— k:) 22m—h(_H\)*(—H, — H2)2m—k>

= (=H,)™(H, + 2H,)™.

This proves Proposition (5.6) for g = G5, thereby finishing its proof for
arbitrary g. |

7. Special elements in z.

We are now ready to mimic the construction in Section 5 for the quantum
case. Given f = > ma;, set Kg = K{" --- K" and dg = (f,3)/2. For
v € AT and m > 0, define the ideal 7, in L} by
0 0 (72 _  2(m—(p,7))d,
I, =4gn (Uq (K7 — =) ))

where U] is the Q(g)-subalgebra of U,(g) as in §2. It is easy to see that

K2 — g2m=(p:)d,
I, =4 ( x :

qt —q

A reflection s € W induces a B-algebra automorphism § = §, of U} defined
as follows.
3(K;) = q(p,sai)—(pm)Km”

(Note that here we are using the assumption that [a]!q_dli € B for each 1 <

i <n.)
The following is a quantized version of Proposition (5.2).

Proposition 7.1. For any v € A% and m > 1, there exists ©% , € Uzl

of weight —myy satisfying

(a) Writing ©F ,, = Ztezf Fta, with a, € UY, there exists r € Z™ (not
depending upon t) such that a;, € KTUS’even,
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(b) O, U513,

(c) [E;,©1,]€Ugll +UgZ(Lhf), for alll <i<n,

where Z(4f) denotes the augmentation ideal of 3Lf;, and Uuyever c U is the
Q(q)-subalgebra generated by {KF2, ... K2},

]?eﬁnition 7.2. AFor any A € bz, define the Q(g)-algebra homomorphism
A Ug — Q(q) by MK;) = g™,

The following lemma (which can be proved by a standard density type
argument) will be needed in the proof of the above proposition.

Lemma 7.3. Let € be a simple root and let v,v, € AT be such that v =
Y1 + re for some r #0. Fixm € {1,2,3,...} and let a € U} be an element
such that )\/—\p(a) = 0 for all X € L, ,, Nb} satisfying (sign r)(X,€) < 0
(where L., is defined by (1) of Proposition (5.2) and sign r denotes the
sign of r). Assume further that K°a € U,107eve“, for some s € Z". Then
a€ll,.

Proof of Proposition 7.1. The proof is very similar to the proof of Propo-
sition 5.2. If (p,%) = 1, then v = «; for some 1 < i < n and we may take
o1, = F/". So assume (p,5) > 1. Let €,71, and r be as in the proof of
Proposition 5.2, i.e., € is a simple root such that v, := s.y belongs to A™
and (p,%1) < (p,7). Moreover v — v, = re where r := (v,€) > 0. Recall the
definition of B, from (2) of the proof of Propostion 5.2.

For A € B, we have the following inclusions of Verma modules for U,(g)
(where 1) = s.\).

(1) M (w/—\p) > M ()\/—\p) S M (A ey — p)
(2) M (9 =p) > M (v=mn—p)>M(A=my—p).

Let v be the highest weight generating vector for M (w/—\p)

By induction on (p,¥), there exists ©2 € Uz} as in the proposition.
Let {wg} be a B-basis for the —m~y; weight space of Uz. Write my; = > m;ay
and set m. = m,;, where € = «;,. We can write

(3) @’71,771 = Zw¢p¢ — Z (w¢KTll e K:LnnKe—mg) Kl—ml . K’I’:mnKZnEp(z)’
t ¢

where p, € U%. For A\ € B,

o —

(4) FZO00m S, (V=) (po)

¢
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applied to v is a highest weight generating vector for M (A —/p?m’y), or

else is 0 (see [L2, Identity (as) on page 103]). It can be easily seen that

(¥ —p)(a) = (A = p)(8ca), for all a € U). We use Lemma 4.2 to construct

e, ..
y,m

Set B = K{"...K™ K ™ and | = mr — (\,é). By Lemma 4.2, and

[JL1, Lemma 2.2

(5) -
> (FlwyB) B~ <)\ - P) (5epg)

¢
=X 3 [ ) o) R (59) G
o 0<j<i /] gac
By definition,
Bl _ oy dt—a
(6) T Tl | =
j 'qdf t=l—j+1 q q

A straightforward computation shows that (6) equals q(A‘p*jE)()\/—\p)(Cj)

where
Cj = H

. _ —d
0<s<j—1 q q

Substituting C; back into (5) and noting that jl — j* + (A — p, jé) =
Jjmr —j — j2, we get that (5) equals

q(mrflfs)dEK;2 _ qf(n’wflfs)dE

7)

>0 g ((ad F9) (w,B)) FIVK 7B (N =) [C5(5.,)]

¢ 0<y<I

By Lemma 4.6, (ad FY)(wsB) € Uz BK? and equals zero for j > 0.
It follows that the above sum has the same number of terms for different
choices of X as long as (—A\, €) > 0. Note that C;(5.p,) € Up.

Set

= qu(*szerrjmr)dsB(j ¢)K T BT Km0 (5.p,),

¢ 0<j

as an element of Usz[F '], where B(j,¢) = ((ad FW)(wyB))F™ . Note
that the definition of @q differs from expression (7) in the powers of ¢ and
K.. We now show that @q .m satisfies the following identity in the Verma

module M(¢/—\p) (for A € B, such that (), €) << 0).

(8) q(mr+2m€)d F (A, 6)+mr@q v = @q E),U

Y1,m
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First of all, 07 F~(*y equals

y,m= €
(9) > g B (G 6) BT FZO) (X2 ) (Ciselpy))o.
$,0<

We show that
(10> BflKjfmr72mEF7()\,é),U — q(mr+2m572j)d5Ff(/\,é)Kijfl,U.

Since F~*9y has weight A—p, the left hand side of (10) is equal to ¢* F.~ 9o,
where

s=(A—=p,—my +mee) + (A= p,e)(j —mr —2m,)
=N=p,—my)+d.(\&)(F—mr—m.) —d.(j —mr—m,).

Now since v has weight ¢ — p and ¥ = s A = XA — (), €)¢, the right hand side
of (10) equals ¢* F~*9v where

==\ &e—p,—my + (me —j)e) + dc(mr + 2m, — 27)
=(N=p,—my) —mrd. (A €) —d.(m. — J)(\, €) —d.(j — mr —m,).

This proves Identity (10). Expression (9) and Identity (10) imply that
01 F-*9y equals

qde(m'r‘Jere) Z qjde(m'rfjfl)‘B(j7 ¢>F67(A’E)K;jB71 ()\ o p) (ngs(p¢))v
)
Identity (8) now follows from the fact that the left hand side of (8) is equal

to the Expression (7) applied to g% (mr+2may,
By Lemma 4.6, B(j,¢)K7B~' € Uz[F . Set

0, =Yy [q(fj’-’+j+jmr)deB(j’ ¢)K;j371r K2m2me 0 (5.p,),

¢ 0<j

where the notation [ ]I is formally defined exactly as was done in the modular
case (cf. the proof of Proposition 5.2).

The same argument used in the proof of Proposition 5.2 shows that for
A € B, with (\,€) <0,

€

(11) 0!, F My =07, F- My

The assertion (a) is easy to prove in view of the explicit construction of
©17 ,,- We now show that ©7  satisfies assertion (c) of the proposition. By

(8),
(12) E01 F-X9y =0,

¥,m" €
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for all i. Hence Identities (11) and (12) imply that E,07, F-*9y =0 =
E;F-*9y, for all i. Therefore, [E;, 01 F-*9y = 0 for all i. Write
[E;,07,.] = a+ Y, Fla, for some a, € U} and a € UgUZT(8Lf). Then,
we get >, Fta, F,- M9y = 0. This implies that 3, FtF;(’\’é)()\/—\p)(at)v =0.
Thus ()\/—\p)(at) = 0 for all ¢ and for all A € B, such that (), €) < 0. Hence
(c) follows from Lemma 7.3.

To see that ©F ,, satisfies assertion (b) of the proposition, recall that (cf.

(3))
O m Z WePg-

Write
=) F'b,
t

for some (unique) b; € U%. Rewriting (8) (in view of (11)), we get

—

(13) gt pZ OO Ty (6= p) (po)u
¢

=) FF, 9 (X=7) (b

Now by Lemma 7.3 and induction, there exists A € B, with (\,é) < 0
such that (¢ — p)(ps) # 0 for some ¢. This gives that the left hand side of

(13) is non-zero, in particular, there exists a ¢, such that ()\/—\p)(bto) # 0.
This forces by, ¢ I7,,. This proves assertion (b), thus completing the proof
of Proposition 7.1. [l

Definition 7.5 (A particular choice of ©7, ). We now use the above
inductive construction to make a particular ch01ce for ©F ,, (following the
modular case as in §5.5). Fix v € AT and m > 0. Let sy, ek,fyk,’yvﬂ,rk; 0<
k < wv be as in §5.5. Define elements ©F, 0 < k < v+ 1, in Uz4% inductively
as follows. Set ©f ; = F" . Assume that we have defined O, of weight
MYpr1. Write OF 1 = 35 cp(ma, ) D1, for pr € Up.

Write mygr1 = Y mis1.0q and set B(k) = K{"'--- K™ K™ where
m; := my41,; and «, is the simple root such that ¢, = a,. For any j > 0, let

q(mrkflfl)dek K;l _ qf(mrkflfl)dng

€k

C(k,]) — Kg’k—mrk—Qms H

0<i<j—1 g+ —4q

Now define ©f to be

S gt (ad FY) (FUBR0) K B Ok )5 ()

€k
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where ¢ runs through the elements in P(m~y;,1), and j runs through the
non-negative integers.

8. Highest degree term.

We compute the highest degree terms of det,(s,) and det,(s¢). We consider
the two cases separately since the arguments are different.

Lemma 8.1. The highest degree term of det,(s,) is

ay H H Hg(n;m@)’

BeA+ p>m>0

where a,) = H H t;!

t=(t1," ,tN)EPres(n) 1<j<N

Proof. By [S, Lemma 4],

det,(s,) = II 9, (e'f) | + lower degree terms in U(b,).
tE€Pres(n)
Further,
9, (e f!) = H 9y (etﬁjj féj) + lower degree terms,
1<G<N

and by [H1, §26.2],

9y (egjj f;f]) = (tj!)H;j_ + lower degree terms.

Hence the highest degree term of det,(s,) is equal to

H H (t;HH Zj] .
tEPres(n) 1<j<N
Hence, to prove the lemma, we must show that

(1) 11 I a5 |=1 TII #i.

tEPres(n) \1SJ<SN BEAT p>m>0
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Fix 1 < j < N. The multiplicity of Hg, in the left hand side of (1)
18 X tepro(n) ti- We have

p—1
Z t; = Z m#{t € Pres(n);t; = m}
tE€Pres (1) m=1

= Z #{t € Pres(n); tj Z m}
m=1

= Z P(nvmﬂj)
m=1

Now an;ll P(n,mp;) is precisely the multiplicity of Hps, in the right hand
side of (1). This proves (1), thereby proving the lemma. u

Recall the definition of K, from Theorem (3.4).

Lemma 8.2. For any n € Q*, (K,) = det,(s:) € Q¢[Ki,...,K,] and
(K,) T det, (s¢) € Q¢[K; ", ..., K; . Furthermore,

M) ()" = I I1 w5

peA+ p>m>0

Proof. Recall that 9¢(E;F;) = 0;;{K;; 1](cf. Proposition 4.4 for the notation
[K;;1]). Hence if a is an element in u/ of weight 7 and b is an element of
weight —7 in u;, the highest possible degree term of §¢(ab) is K, and the
lowest is K, '. Since det,(s¢) is a sum of terms each a product of Pe(7)
elements of the form $¢(ab), the first assertion of the lemma follows.
Identity (1) follows by an argument as in the proof of Lemma (8.1).

O

9. Factoring the Shapovalov determinant.

We are now ready to factor the Shapovalov determinants. The idea is to
combine Lemmas (4.8), (8.1), (8.2), (9.1), and (9.4) to determine the factors
and their multiplicities.

For v € AT and m > 0, set H,,, = H, + p(H,) —m € U(h,). We will
also think of it sometimes as an element of U(bhz).

Lemma 9.1. For each v € At and 0 < m < p, there exists b, ,,, € b~ (u,)
(¢f. §3.1) of weight —m~ such that for each n € QT with P(n,my) # 0, we
have
(i) the image of the set {f'bym;t € P(n,my)} in the right
U(by)/(Hy m)-module u; @ (U(bh,)/(H,m)) is linearly independent.
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(i) 9p(vf'bym) € U(hp)Hy pm for all v € wl of weight n and t € P(n, my).

Proof. Choose 0., ,, using Proposition (5.6), and set b, ,, equal to the image
of ©,,, in b~ (u,).

Introduce a new multi-degree function /-degree on u; ® U(h,) as follows.
Choose an ordering of the positive roots {i,...,Sx} as in (13) of §2 such
that 3, = 7. Define the lexicographic ordering on Z} ™' so that

(1,0,...,0) < (0,1,0,...,0) < --- < (0,...,0,1).
For any > f* ® a, € u, ® U(bh,), set

tny ... t1, deg(f* YT
{t:(tl,.r..n,ta]i() aﬁéo}( Nyooo s tr, deg(ff ®ay)) € Zy

(-deg th ®a; =
t

Note that if dega < degb for a,b € u; @ U(h,,), then (-deg a < (-deg b.
By Propositions (5.6), we may write

b'y,m:f;n@a'y‘f'z:fJ@aJ,

such that |f’ ® a,|, < |f)* ® a,|,, where | |, denotes the {-degree (use the
fact that a; = 0 unless J € P(m)).
Consider the following equation where x; € U(h,) and b, € U(h,)H., m:

(1) S foymre= > [y

teP(n,mv) $EPres(n)

If not all x; are zero, pick t° such that z;. is non-zero and moreover ] ¥ 240 ) >
| f'a|,, for any t # t° such that z; # 0. Now 3 f'by mz; = S frasae +
> fPys with y, € U(by) and |f2y,], < Y an e , (as can easily be seen).
In view of (1), this forces a,z o +v = byo for some v € U(h,) of degree strictly
less than that of a,z;., where ¢° is such that f¢° = f*’ J7'. This implies that
the highest degree component of a.x;. equals the highest degree component
of bye. But (by assumption) H, ,, divides bs. and therefore H., divides the
highest degree component of a,x;.. Recall from Proposition 5.6 that the top
homogeneous component of a, is coprime to H.,, and hence H., divides the
highest degree component of z,.. Thus we can find 2’ € U(h,) such that

(2) deg(zio — H, ;') < deg 0.
We prove by induction on ), deg x; that if

> Sy €W, U, Hy,

teP(n,my)
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then z, € U(b,)H., ,,, for all t:
Clearly,

S oyt [y (e — Hy ') € w U () H, .

t#t°€P(n,mv)

Hence by the inductive hypothesis and (2), any z; € U(h,)H., . This proves
(1).

We now prove assertion (ii): For any 8 € A*, writing [eg, ©,.,] € U(gz),
in terms of the PBW basis, we get

[e5,©rm] € D f'pe+ Ulgz)n}
t

for some p, € U(hz). By Proposition (5.2), we get that p; is divisible by H., ,,
in S(hg), where S(hg) is the symmetric algebra of hg := hz ®z Q. Write
pe = H., ,,p, where p, € S(hg). We can take an integral basis {hq,...,h}
of bz, which contains H, (say h = H,). Write p, = d; 'p}/, where p] is a
polynomial in {hy,... ,h;} with integral coefficients such that the greatest
common divisor of the coefficients is 1 and d; is a non-zero integer. Then
dip = H, ,,p;. Fix any ¢ such that p, # 0. Reducing mod any prime ¢ such
that ¢ divides d;, we get 0 = H, ,,p; (mod ). But both of H, ,, and p} are
non-zero considered as elements of U(hg,). This is a contradiction. Hence
p, € U(hz) and assertion (ii) follows. u

We will prove a quantum analog of the above lemma. The proof uses a
certain ‘specialization’, which we explain.
Definition 9.2. Set
B=B/lq-1).

(Note that ¢ — 1 is not invertible in B.) Then B = Z[(a!)~], where a is as
in §2. A standard argument shows that (as B-algebras)

(1) B ®p Up = Bk @5 U(gs),

where gg := B®y gz, Br := B[K,...,K,]/(K?—1,... ,K?—1) is the quo-
tient of the polynomial algebra B[K,--- , K,] in the variables K,,..., K,
by the ideal (K2 —1,... ,K2 — 1) , and we put the tensor product algebra
structure on the right side (in particular, K; are central elements in this
algebra). Moreover, under the isomorphism (1), K; goes to K;. Clearly
Bi/(K;—1,...,K, —1) = B, and hence we get

(2) (B ®B LlB)/<K—1 - 17 s 7Kn - 1> = U(QB)'
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We will refer to the above isomorphism (2) as the specialization at ¢ = 1.
md; pr—1_ _—md; g~

One can show that 2 I;:;qu_di K specializes to —H;+m (forany 1 <i <mn
and m € Z), while 5(a) specializes to § of the specialization of a (for any
reflection s € W and a € U%). Also, for any 8 € AT, E; (resp. Fj)
specializes to the corresponding root vector eg (resp. fz) in U(gp). For any
v € AT and m > 0, from the explicit construction of O} (resp. ©;) given
in §7.5 (resp. §5.5), we see by induction that ©f specializes to ©y, for each
0<k<wv+1.

Let B¢ := B/ <qqp:11) and define U, = Be ®p Up. Similarly define Uy =
B: @5 U4%. By Proposition 4.4, ﬂ%s is a subalgebra of Uz,. Recall the def-
initions of i and U from (17) of §2, and note that U, = Q¢ ®pz, Up, and
U = Qe ®p, U, (Where Q¢ is Be-module under the injective ring homomor-
phism Be — Q¢, g — &). B

There is a ring homomorphism 0 : B — F,, taking ¢ — 1. We will refer to
this homomorphism as reduction mod p. This induces a ring homomorphism
0 : Up, — U(g,) (analogous to (2)) taking each K; — 1. In particular, on
restriction, we get a ring homomorphism 6° : 4z — U(h,).

By Proposition (4.4), we get U — Q¢ ®p, Up = UL, Let * (resp.
ilg’even) be the Qc-subalgebra of U7 generated by {K7,...,K]} (resp.
{Ki{?,... ,K;**}). Consider the B¢-subalgebra ﬂ%’f =, N UP? of U,

Lemma 9.3. The algebra 2103’52 is freely generated (as an algebra over By)

K-
by the elements {Zi = ate }1§ign'

Proof. By Proposition (4.4)(b), the elements [[;_, Z/"* span ﬂ%’f as a Be-
module. Further, the image of [[;, Z/™" in U(h,) under 6° is precisely
[T, H™. In particular, these elements are linearly independent over Bg.
(Use the fact that given any non-zero element a € B, there exists r € Z
such that a = (¢ — 1)"b with b ¢ ker #.) This proves the lemma. u

Recall the definition of I?  from §7. Let I_éym be the Q¢-span of the

image of 19, inside 4 under the canonical map U} — 2. Set il%’fve“ =

v,m

4%, NUPT". Note that U™ = Q¢ ®p, Ug™™" and U = Q¢ ®p, U

Lemma 9.4. For any v € AT and 0 < m < p, there exists bi,, € b of
weight —myy such that for each n € QT with P(n,m~y) # 0, we have:
(1) The image of {F'b¢,; t € P(n,my)} in u; @ (WQ/I5,)) is linearly

independent over ilg’even/(ilgeve" NI¢,,) (under right multiplication).

v,m

(2) He(WF'D ) € I8, for any v € uf of weight n and t € P(n, m~).

Proof. Take for b? , the image of ©f , (as in Proposition 7.1) in b, . As-
sertion (2) follows from Proposition 7.1(c). For assertion (1), note that
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©1 ,, specializes to ©, ,, at ¢ = 1 under the isomorphism (2) of Definition
(9.2), and moreover b, ,, (of Lemma 9.1) is the image of ©,,, in b~ (u,).
Given a set {a;; t € P(n,my)} contained in ng’even, we can choose m € Z"
such that (K™)?%a; € ilg’z, for each t € P(n,m~v). By Proposition 7.1(a),
there exists r € Z” such that b?, K" is contained in ugilg’z. Moreover,
Y F' a0 € ug IS if and only if 37 F'b¢  K"(K™)%a, € ug(ilg’z NI,
Thus, without loss of generality, we may assume that each a; is in ﬂg’z. Mul-
tiplying by an appropriate element of (Q¢, we may further assume that every
a; € 1103’5 and moreover at least for one t°, #°(a,) # 0 (as an element of
U(h,)), where 6° is as defined in §9.2. The lemma now follows by reduction

mod p (using Lemma (9.1) and some arguments in its proof). ]

m y¥,m

Proof of Theorem (3.2). By our assumption on the prime p and Lemma
(4.9), the factors (Hs + p(Hg) — m) are relatively prime where § runs over
the positive roots and 0 < m < p. Hence Lemmas (4.8) and (9.1) imply that

@ [T II (Hs+p(Hz) =)™

peA+ 0<m<p

divides det, (s,). A comparison of highest degree terms using Lemma (8.1)
proves that (1) equals det, (s,) up to a non-zero scalar in F,. This proves
Theorem (3.2). u

Proof of Theorem (3.4). It is easy to see that
(1) Ho(detn(sg)) = det,(sp).

In particular, det,(s¢) # 0.

Using Lemmas (4.8) and (9.4), it follows that (K2 — £20m=(»)da)Pn:ms)
divides det,(s¢), for each § € A*, 0 < m < p. (Actually we need a slight
variant of Lemma 4.8, where we replace U by ng’eve“.) Observe that K;—&*»
and K +£"% are both irreducible as elements of 4 (use the automorphisms
5 as in the beginning of §7). By our restriction on the prime p, these factors
are relatively prime to each other. Hence

) I 11 ( K2 ¢20m(0) da)P("’mﬁ)
BEAT 0<m<p
divides det,,(s¢) in 47 . Hence there exists R € 4 such that

det, (s¢) = (K,) =R T ] ( (pﬁ))dﬁ)

BeA+ 0<m<p

P(n,mp)



156 SHRAWAN KUMAR AND GAIL LETZTER

=R H H (KB — 52(m*(p,B))d5K§1)P(n,mg) ’

BeA+ 0<m<p

by (1) of Lemma 8.2.
Since the constant term of expression (2) is non-zero, by Lemma (8.2), it is
easy to see that R is a (non-zero) constant. This proves the theorem. |

10. The Jantzen filtration and the Linkage principle.

One of the standard applications of the Shapovalov determinant is deriving
the character-sum formula for the Jantzen filtration. In the modular and root
of unity case, Andersen-Jantzen-Soergel [AJS, Proposition 6.6] determined
this formula by different methods. In this section we derive this character-
sum formula as an easy consequence of our Theorems (3.2) and (3.4). We
first define the Jantzen filtration for the Verma modules of u, and u,, which
is fairly standard (and follows Jantzen’s original construction).

Let us consider the polynomial algebras R := Q¢[S] and R, := F,[s]
where S and s are indeterminates. Let D, (resp. D,) be the quotient field
of R¢ (resp. R,). Recall the definition of the algebras u, and u¢ from §3 and
let up, and ug, (resp. up, and up,) be obtained from them by extension
of scalars from F), (resp. Q¢) to D, and R, (resp. D¢ and R¢). Similarly,
let b(up,) (resp. bp,) be obtained from b(u,) (resp. be) by extending the
scalars from F,, (resp. Q¢) to D, (resp. D).

For any fixed \ € b}, consider the one dimensional representation S?&* of

bp, defined by
(S%A) (K;) = S(onﬁ)g()‘vai)
and
(SPEM(E;) =0, for any 1<i<n.
This gives rise to the Verma module
Mp, = MDE(SPS/\) = Up, Qpp, (S7EM).
Similarly, define the one dimensional representation A + sp of b(up,) by
(A+sp)(H;) = XNH;) +s and (A +sp)(e;) =0,

and let Mp = Mp (A+sp) be the associated Verma module for the algebra
Uup .

I4
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Following Jantzen [J1, §5], define the contravariant form F¢(\) on Mp,
with values in D¢ (resp. F,(A) on Mp, with values in D,) such that

f&(/\)(viavﬁ) = }—p()‘)(vmvp) = 13

where v (resp. w,) is a highest weight vector in Mp, (resp. Mp,). The
determinant formulas (Theorems 3.2 and 3.4) and the definition of the Cox-
eter number h of the Lie algebra g (see, e.g., [J2, Part II, §6.2]) imply that
both of these contravariant forms are non-degenerate for p > h. (In fact,
Fe(A) is non-degenerate for any prime p.) Define the Jantzen filtration
{F.(&);m > 0} of the Verma module M(£) := ue ®y, (&) as follows,
where (£) is the one dimensional representation of b satisfying

(EN(K) =X and  (Y)(E;) = 0.

First, let Mg, = Mg, (S*€*) be the up,- submodule of Mp, generated by
the highest weight vector v,, and define (for any m > 0)

My = {v € My, : Fe(\) (v, Mg,) C Re(S — 1)}

Identifying Mz, @, Q¢ with Mg, (§*) (where Re — Q¢ is the Q¢-algebra
homomorphism which sends S to 1), we define F,,(*) as the image of
M. ®p, Q¢ in Mg, (£%).

Using the homomorphism R, — F, taking s — 0, we can similarly de-
fine the filtration F),()) of the Verma module My, (A) corresponding to the
algebra u,.

As in the classical case, Mg, (§*)/F; (&) is an irreducible ug-module. Sim-
ilarly, Mg, (A)/F1()) is an irreducible u,-module.

We define the formal character ch of certain submodules of the Verma
modules Mg, (§*) as an element of the group algebra Z[h3] as follows. We
first define the weight of the highest weight vector v, = 1®2z € M = Mg, (§ )
for z € (£*) as \. Now a vector v € M is said to be of weight A — 7 if we
can write v = Y a,F"v,, for some a; € Q¢, where the summation runs over
t = (t1,...,tn) € ZY such that > ¢;8; = n. Define the (A — n)— weight
space of M as

M,_, ={v e M:v is of weight X\ —n}.

Then it is easy to see that M = ©,crMx_,, where R := {3 3.5+ 750; 0 <
rg <p} CQt.

A submodule N C M is said to be a weight module if N = ®,cgNx_,
where Ny_, := M,_,, N N. In this case we define its formal character ch
N € Z[b;] by

ch N = Z dim N,\,ne)‘_".
n
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An exactly parallel definition applies to Mg, (A) and its submodules. It
is easy to see that F),(&*) (resp. Fy,(\)) are weight submodules of Mg, (£*)
(resp. Mg, (X)).

Given € AT, following [AJS] let ng = ng(A\) be the integer congruent
to (A + p)(Hz) mod p which satisfies 0 < ng < p. For A € b, define

R\ ={Be AT :0<ng<p}.

We derive the following result due to Andersen-Jantzen-Soergel as an
immediate consequence of our Theorems (3.2) and (3.4).

Theorem 10.1 ([AJS, Proposition 6.6)).
(a) For any A € b}, and p > h (where h is the Coxeter number of g)

Z ch F,,(\)

m>0

= Z (Z ch Mg, (A — (mp +ng)B3) — Z ch Mg, (X — mpﬁ)) )

BER(N) \m=>0 m>0

(b)  Similarly, for any X € b} and any odd prime p (we assume p # 3 if Go
is a factor of g)

> ch F,(&Y)

m>0

- (Z ch Mg (€0"+m9)%) — 3™ ch MQE(gA—mpﬁ)) .

BER(N) \m=>0 m>0

Proof. Using the argument in [J1, §5.3] and the factorization of the modular
Shapovalov determinant (cf. Theorem 3.2), we get

Z ch F,,(A) = Z ZP(n,nﬁﬁ)ek".

m>0 BER(N) nER

Now for any § € R(\),

3" ch My, (A — (mp+n5)8) — 3 ch Mg, (A —mpf)

m>0 m>0
— Z Z pres(n)ek—(mw%nﬁ)ﬁ—n _ Z z Pres(n)eA—mw—n
m>0neER m>0neER

neR \m>0

= Z (Z PTCS(n - mpﬁ - nﬁﬁ) - Prcs(n - (m + 1)p,3)> 6)\_77.
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Thus, to prove the theorem, it suffices to show that for any g € R(\),

(1) Z Prcs(ﬁ —mpf — nﬁﬁ) - Prcs(n - (m + 1)pﬁ) = P(Tlanﬁﬁ) :

m>0
Set (for any integers s; < s5)
Ngs(s1,82) = {t = (t;)ea+ € Zf; s1 <tg < S2}.
Then it is easy to see that the left hand side of (1) equals
z; # ({t = (t,) € P(n);0 < t, <p for v # B} N Ns(mp + ng, (m + 1)p))
m>0
F A= (0); 0 <ty < p for 7 # B} Ns((m+ Dp, (m+ p+ 1))

—#{t=(t,); 0<t, <p for v # B} N Ng((m+ 1)p,(m +1)p + ng))
—#{t=(t,); 0<t, <p for v # B} N Ng((m + 1)p+ng, (m +2)p)).

Clearly, by virtue of cancellations, the above sum reduces to

(2) #{t=(t,) € P(n); 0<t, <p for v# B and ng <t5 <p}.

Now (2) equals P(n,ngf) (by its definition; cf. (6) of §3.1). This proves (1)
and hence the first part of the theorem follows. The second part follows by
exactly the same argument (using Theorem 3.4). l

Remark. Even though we deduce the above character-sum formula from
our factorization of the Shapovalov determinant (Theorems 3.2 and 3.4),
Jantzen has pointed out to us that one could work backwards and deduce
our Theorems (3.2) and (3.4) by using the character-sum formula as in [AJS]
for “non-integral” weights.

Definition 10.2. Let A\, € b be two weights. Then A is said to be
strongly linked to p if there exist A\; <--- < A, € h3;01,...,06.—1 € AT and
Ni,...,N,._1 € Z such that

M =MNN=p and N =55 (N +p) —p+n;pF;, forall 1<j<r—1,
where sg; is the reflection throught the root 3;, and < denotes the Bruhat
partial order on bj.

For A =Y m;a; € QT, let |\| denote the sum Y m;,.

As in [AJS, §6], the following theorem can easily be deduced from The-
orem 10.1. Recall that this result in the modular case (in fact for arbitrary

p) was proved in general by Andersen [A], and in the quantum case by
Andersen-Polo-Wen [APW].
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Theorem 10.3. Letp > h be any odd prime (where h is the Coxeter number
of @). Then if Ly, (\) is a subquotient of Mg, (i) as a u,-module, then X is
strongly linked to pu, where Ly, (\) is the (unique) irreducible quotient of
Mg, (N).

Similarly, for any prime p as in (b) of Theorem (10.1), if Lo, ()\) is a
subquotient of Mg, (1) as a uc-module, then X is strongly linked to .
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