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PRIMITIVE LATTICE POINTS IN STARLIKE PLANAR
SETS

Werner Georg Nowak

This article is concerned with the number BD(x) of inte-
ger points with relative prime coordinates in

√
xD, where x is

a large real variable and D is a starlike set in the Euclidean
plane. Assuming the truth of the Riemann Hypothesis, we
establish an asymptotic formula for BD(x). Applications to
certain special geometric and arithmetic problems are dis-
cussed.

1. Introduction.

Let D denote a subset of R2 which is starlike with respect to the origin, i.e.,
if u ∈ R2 belongs to D, automatically λu ∈ D for 0 < λ < 1. The distance
function F of D is defined by

F (u) = inf
{
τ > 0 :

u
τ
∈ D

}
,

with the usual understanding that inf ∅ = ∞. Let us put Q = F 2, then Q
is homogeneous of degree 2. For a large real variable x, we define AD(x) as
the number of lattice points of Z2

∗ := Z2 \ {(0, 0)} in the “blown up” domain√
xD, i.e.,

AD(x) = #
(√
xD ∩ Z2

∗
)
.

We make the supposition that AD(x) satisfies an asymptotic formula

(1.1) AD(x) =
R∑
r=0

crx
αr +O (xα) ,

with

(1.2) α0 = 1 > α1 > · · · > αR > α , α < 1
2
.
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(For a wealth of results of the form (1.1) on specific planar lattice point
problems the reader may consult the monograph of Krätzel [11].)

The objective of the present paper is to study the number BD(x) of prim-
itive lattice points in

√
xD, i.e.,

BD(x) = #
{
m = (m1,m2) ∈ Z2

∗ : m ∈ √xD , gcd (m1,m2) = 1
}
.

By Möbius inversion,

(1.3) BD(x) =
∑
m∈N

µ(m)AD
(
x

m2

)
,

where µ(m) denotes the Möbius function. By an elementary convolution
argument, one can derive from the bound

(1.4)
∑
m≤Y

µ(m)� Y ω(Y )

(see Ivić [8, p. 309]), combined with (1.1) and (1.3),

(1.5) BD(x) =
∑

r: αr≥ 1
2

cr
ζ(2αr)

xαr +O
(
x1/2ω(x)

)
,

where
ω(x) = exp(−c(log x)3/5(log log x)−1/5)

with c > 0, is a factor familiar from the Prime Number Theorem. (1.4) and
(1.5) contain the strongest information available to date concerning zero-free
regions of the Riemann zeta-function. At the present state of art, it is not
possible to reduce the exponent 1

2
of x in the O-term of (1.5). This will

be evident from Lemma 1 below (with y = 1), in view of the fact that the
Riemann zeta-function could have zeros with real part arbitrarily close to 1.

It is therefore natural to search for stronger estimates assuming the truth
of the Riemann Hypothesis (henceforth quoted as RH).

This problem has been attacked by Moroz [15], for the slightly simplified
case that R = 0. He obtained the result that

BD(x) = c0

6
π2
x+O

(
x

2−α
5−4α+ε

)
(ε > 0),

conditionally under RH.
We remark that recently Hensley [5] has recently written a paper on the

subject, too, apparently unaware of Moroz’s work. He used a methodically
original approach but failed to sharpen the estimate.

In this paper, our ultimate goal will be to prove the following.
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Theorem. Suppose that D ⊂ R2 is starlike with respect to the origin and
that AD(x) satisfies the asymptotic formula (1.1). If RH is true,

BD(x) =
∑

r: αr>θ

cr
ζ(2αr)

xαr +O
(
xθ+ε

)
,

for a large real variable x, arbitrary fixed ε > 0, and

θ :=
4− α

11− 8α
.

Before going into technical details (which we postpone to Sections 2 and
3), we outline the essential ideas of the proof.

First of all, it will be convenient to consider the quantities

A∗D(x) := #{m ∈ Z2
∗ : Q(m) ≤ x },

and

B∗D(x) := #{m = (m1,m2) ∈ Z2
∗ : Q(m) ≤ x , gcd (m1,m2) = 1},

instead of AD(x), BD(x). Since, for every δ > 0,

AD (x) ≤ A∗D(x) ≤ AD (x+ δ) , B∗D(x− δ) ≤ BD(x) ≤ B∗D(x),

A∗D(x) satisfies the asymptotic formula (1.1) as well, and the Theorem is
immediate for BD(x) if it has been proved for B∗D(x).

Further, it is clear that

Q1 := inf
u∈Z2∗

Q(u) > 0.

Thus we may restrict the summation in (1.3) to 1 ≤ m ≤ √x/Q1, and obtain
by splitting up

(1.6) B∗D(x) =
∑
m≤y

µ(m)A∗D

(
x

m2

)
+
∑
m>y

µ(m)A∗D

(
x

m2

)
=: S1 + S2,

where y = y(x) <
√
x/Q1 is a parameter remaining at our disposition. By

(1.1),

(1.7) S1 =
R∑
r=0

crx
αr
∑
m≤y

µ(m)
m2αr

+O
(
xαy1−2α

)
.
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Using the classic conditional bound (valid under RH)

(1.8)
∑
m≤Y

µ(m)� Y 1/2+ε′ (ε′ > 0),

summation by parts gives

∑
m≤y

µ(m)
m2αr

=


1

ζ(2αr)
+O

(
y

1
2−2αr+ε′

)
if αr >

1
4
,

O
(
y

1
2−2αr+ε′

)
else.

Thus (1.7) may be rewritten in the form

S1 =
∑

r: αr>
1
3 (2+α)

crx
αr
∑
m≤y

µ(m)
m2αr

+
∑

r: 1
4<αr≤ 1

3 (2+α)

cr
ζ(2αr)

xαr

+
∑

r: αr≤ 1
3 (2+α)

O
(
xαry

1
2−2αr+ε′

)
+O

(
xαy1−2α

)
.(1.9)

To deal with S2, an obvious possibility is to use (1.8) one more time and to
apply summation by parts repeatedly. Observing that A∗D (w) is monotone
and � w, one obtains

S2 � xε
′
y1/2 x

y2
.

(See Moroz [15, formula (8)].)
The key step of the present paper is to improve this elementary estimate

by a contour integration technique in the spirit of a classic paper due to
Montgomery and Vaughan [14].

Proposition. If the Riemann Hypothesis is true,

S2 =
∑
m>y

µ(m)A∗D

(
x

m2

)
=

∑
r: αr>

1
3 (2+α)

crx
αr
∑
m>y

µ(m)
m2αr

+O
(
xα+ε′

)
+O

(
xε
′
y1/2

(
x

y2

) 2+α
3
)

(ε′ > 0),(1.10)

for large real parameters x and y with 1 ≤ y � x1/2.

We combine this result with (1.9) and note that the last O-terms in (1.9)
and (1.10), respectively, are of the same order (apart from ε’s) for

(1.11) y = x
4(1−α)
11−8α .

This choice of y readily yields the assertion of our Theorem, since it is easily
verified that, for αr ≤ 1

3
(2 + α),

xαry
1
2−2αr � xθ.
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2. Some Lemmas.

For Re s > 1, we define the zeta-function ZD (s) of the set D by the absolut-
ely convergent Dirichlet series

ZD (s) =
∑

m∈Z2∗: Q(m)<∞
(Q(m))−s.

We further put, for real y ≥ 1 and a complex variable s,

(2.1) fy(s) =
1
ζ(s)

−
∑
m≤y

µ(m)
ms

.

This is regular in every s ∈ C which is not a zero of the Riemann zeta-
function.

Lemma 1. For a large real variable x, and any fixed C ≥ 5,

S2 =
∑
m>y

µ(m)A∗D

(
x

m2

)

=
1

2πi

∫ 3+ixC

3−ixC
ZD (s) fy(2s)

xs

s
ds+O

(
xα+ε

)
(ε > 0),

uniformly in 1 ≤ y � √x.

Proof. This clearly is a type of truncated Perron’s formula. It is hard to
find an explicit reference in the literature, although the argument runs on
familiar lines:

Let us write the (positive and finite) values attained by Q(m), as m runs
through Z2

∗, in form of a strictly increasing sequence (λk)k∈N. Put further

µy(m) =

{
µ(m) if m > y,

0 else,

then it follows by the homogeneity of Q that, for Re s > 1,

ZD (s) fy(2s) =
∑

n∈Z2∗: Q(n)<∞
γ(n)(Q(n))−s =

∞∑
k=1

ηkλ
−s
k ,(2.2)

with

γ(n) :=
∑
m|n

µy(m),

ηk :=
∑

n: Q(n)=λk

γ(n).
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Here m|(n1, n2) means that m|gcd (n1, n2). For later reference, we note that,
for any n = (n1, n2) ∈ Z2

∗ with Q(n) <∞,

(2.3) gcd (n1, n2)� Q(n).

To realize this, let

n∗ :=
(

n1

gcd (n1, n2)
,

n2

gcd (n1, n2)

)
,

then n∗, 2n∗, . . . , gcd (n1, n2)n∗ all belong to
√

2Q(n)D ∩ Z2
∗. Therefore, by

(1.1),
gcd (n1, n2) ≤ AD (2Q(n))� Q(n).

Furthermore,

(2.4) S2 =
∑
m>y

µ(m)

 ∑
Q(n)≤ x

m2

1

 =
∑

m,n: Q(mn)≤x
µy(m) =

∑
k: λk≤x

ηk.

It is well-known that, for a > 0, a 6= 1, and T sufficiently large,

1
2πi

∫ 3+iT

3−iT

as

s
ds =

χ(a) +O

(
a3

T |log a|
)
, (∗)

O (a3) , (∗∗)

where χ is the characteristic function of the interval ]1,∞[. Of this formula,
(∗) may be found in Apostol [1, p. 243], while (∗∗) is immediate by taking as
a path of integration the boundary of the domain {s ∈ C : |s| ≤ T, Re s ≤ 3}
if a > 1, resp., of {s ∈ C : |s| ≤ T, Re s ≥ 3} if a < 1 (cf. Prachar
[21, p. 379]).

Therefore, by (2.2) and (2.4),

1
2πi

∫ 3+ixC

3−ixC
ZD (s) fy(2s)

xs

s
ds

= S2 +
∑

k: |λk−x|≥1

O

( |ηk|
λ3
kx

2 |log λk − log x|
)

+
∑

k: |λk−x|<1

O (|ηk|) .
(2.5)

By the mean-value theorem,

|log λk − log x|−1 ≤ max (λk, x)
|λk − x| �

λkx

|λk − x| ,
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thus the first error term sum here is

� 1
x

∞∑
k=1

|ηk|λ−2
k � 1,

since the series in (2.2) converges absolutely for Re s > 1. Further,

|ηk| ≤
∑

n: Q(n)=λk

|γ(n)| � λε
′
k

∑
n: Q(n)=λk

1,

for any ε′ > 0, in view of (2.3) and the definition of γ(n). Thus the second
error term sum in (2.5) is

� xε
′ ∑
n: |Q(n)−x|<1

1� xε
′
(A∗D (x+ 1)−A∗D (x− 1))� xα+ε′ ,

in view of (1.1). This proves Lemma 1.

The key point to prove the Proposition will be to have at hand the follow-
ing estimates for the growth of the complex function ZD (s) in the vertical
direction.

Lemma 2.
(i) For any σ1 > α, there exists a positive real number ω < 1 such that

ZD (σ + it)� |t|ω ,

uniformly in σ ≥ σ1, |t| ≥ 1.
(ii) For a real parameter T ≥ 4, fixed ε′ > 0, and any fixed β with1

2+α
3
≤ β < 1, it follows that

∫ 2T

T

|ZD (β + it)| dt� T 1+ε′ .

Proof. Let us rewrite (1.1) in the form

(2.6) P ∗D(x) := A∗D (x)−
R∑
r=0

crx
αr � xα.

Let further X denote a positive real number which is not attained by Q(n)
as n runs through Z2

∗. Using Stieltjes integral calculus, we conclude that,

1For β ≥ 1, the estimate is trivial and not needed later.
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for Re s > 1,

ZD (s)−
∑

0<Q(n)≤X
(Q(n))−s =

∫ ∞
X

w−s d

(
R∑
r=0

crw
αr + P ∗D (w)

)

=
R∑
r=0

cr αr

∫ ∞
X

w−s+αr−1 dw +
∫ ∞
X

w−s dP ∗D (w)(2.7)

=
R∑
r=0

cr
αr

s− αrX
αr−s −X−sP ∗D (X) + s

∫ ∞
X

w−s−1P ∗D (w) dw.

In this identity we choose 0 < X < Q1 and let X → Q1− to obtain

ZD (s) =
R∑
r=0

cr
s

s− αrQ
αr−s
1 + s

∫ ∞
Q1

w−s−1P ∗D (w) dw.

(2.8)

In view of (2.6), this provides a meromorphic continuation of ZD (s) to the
half-plane Re s > α, with simple poles at s = αr, r = 0, . . . , R. At the same
time, (2.8) shows that

ZD (σ + it)� |t| ,
uniformly in σ ≥ σ0, |t| ≥ 1, where σ0 > α is arbitrary but fixed. Since, by
absolute convergence, ZD (σ + it) is uniformly bounded in every half-plane
σ ≥ σ2 > 1, a Phragmén-Lindelöf argument2 establishes part (i) of Lemma
2, if we put σ0 = 1

2
(α+ σ1) for arbitrary given σ1 > α.

To show (ii), we apply the identity derived in (2.7) one more time, with

(2.9) T ξ ≤ X ≤ 2T ξ , ξ :=
3

2(1− α)
,

s = β + it , T ≤ t ≤ 2T.

This is clearly justified by analytic continuation. We obtain

ZD (β + it) = SX(t) +O
(
T−1X1−β)+O

(
TX−β+α

)
,

(2.10)

with

SX(t) :=
∑

m∈Z2∗: Q(m)≤X
(Q(m))−β−it.

2For a classic reference, see Landau [13, p. 229].
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Integration over T ≤ t ≤ 2T gives
(2.11)∫ 2T

T

|ZD (β + it)| dt�
∫ 2T

T

|SX(t)| dt+O
(
X1−β)+O

(
T 2X−β+α

)
.

By Cauchy’s inequality3 ,(∫ 2T

T

|SX(t)| dt

)2

� T

∫ 2T

T

|SX(t)|2 dt

� T
∑

Q(m)≤Q(n)≤X
(Q(m)Q(n))−β

∣∣∣∣∣
∫ 2T

T

(
Q(n)
Q(m)

)it
dt

∣∣∣∣∣ .
For Q(m) < Q(n), the integrals in this sum can be estimated by∣∣∣∣∣

∫ 2T

T

exp (it(logQ(n)− logQ(m))) dt

∣∣∣∣∣ ≤ 2
logQ(n)− logQ(m)

≤ 2Q(n)
Q(n)−Q(m)

.

Along with the trivial bound, this gives(∫ 2T

T

|SX(t)| dt

)2

� T
∑

Q(n)≤X
(Q(n))−β

×
 ∑

m: Q(m)≤Q(n)

(Q(m))−β
(

max
(

1
T
,
Q(n)−Q(m)

Q(n)

))−1
 .

(2.12)

We now keep n ∈ Z2
∗ fixed for the moment and split up the inner sum over

m: For that purpose, we define a sequence (δj)
J

j=0
by δj = 2jQ(n)T−1, with

J such that 1
8
Q(n) < δJ ≤ 1

4
Q(n). We distinguish three cases according to

the relative size of Q(n)−Q(m).

First of all (Case 1),

Q(n)−Q(m) < δ0 ⇐⇒ 1
T
>
Q(n)−Q(m)

Q(n)

⇐⇒ Q(m) > Q(n)
(

1− 1
T

)
,

3Here and in what follows, m and n denote elements of Z2
∗.
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thus the contribution of these m to the inner sum in (2.12) is

� (Q(n))−βT
(
A∗D (Q(n))−A∗D

(
Q(n)

(
1− 1

T

)))

� (Q(n))1−β + T (Q(n))−β+α.
(2.13)

Further (Case 2), for 0 ≤ j ≤ J ,

Q(n)−Q(m) ∈ [δj, 2δj[ ⇐⇒ Q(n)− 2δj < Q(m) ≤ Q(n)− δj,

thus the corresponding portion of the inner sum in (2.12) is

� (Q(n))1−β

δj
(A∗D (Q(n)− δj)−A∗D (Q(n)− 2δj))

� (Q(n))1−β + δ−1
j (Q(n))1−β+α.

Summing this over j = 0, . . . , J gives
(2.14)
O
(
J(Q(n))1−β)+O

(
δ−1

0 (Q(n))1−β+α
)� T ε(Q(n))1−β + T (Q(n))α−β.

Finally (Case 3), the portion of the inner sum in (2.12) corresponding to the
m’s with Q(n)−Q(m) ≥ 2δJ is

(2.15) �
∑

m: Q(m)≤Q(n)

(Q(m))−β =
∫ Q(n)

1
2

u−β dA∗D (u)� (Q(n))1−β.

We now combine the upper bounds (2.13), (2.14), and (2.15), and use them
in (2.12) to conclude that(∫ 2T

T

|SX(t)| dt

)2

� T
∑

Q(n)≤X
(Q(n))−β

(
T ε(Q(n))1−β + T (Q(n))α−β

)
= T 1+ε

∫ X

1
2

w1−2β dA∗D (w) + T 2 � T 1+εX2−2β + T 2.

Combining this with (2.11), we obtain∫ 2T

T

|ZD (β + it)| dt� T 1/2+εX1−β + T +X1−β + T 2X−β+α.

It is easy to see that the choice of X according to (2.9) is optimal, and that
the bound obtained is � T 1+ε for β ≥ 2+α

3
. Thus the proof of Lemma 2 is

complete.
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Lemma 3. If RH is true, the function fy(s) defined in (2.1) satisfies

fy(σ + it)� y
1
2−σ+ε′

(
|t|ε′ + 1

)
(ε′ > 0 fixed),

uniformly in σ1 ≤ σ ≤ σ2, y ≥ 1, for arbitrary σ2 > σ1 >
1
2
.

Proof. This key lemma of the Montgomery-Vaughan method is meanwhile
well-known. See, e.g., Nowak and Schmeier [20], or Baker [2, Lemma 1].

3. Proof of the Proposition.

We put

(3.1) β :=
2 + α

3
+ ε′′

with ε′′ ≥ 0 as small as we please, such that 4

β /∈ {α0, . . . , αR }.
We start from Lemma 1 and shift the line of integration to Re s = β, applying
the residue theorem. In view of clause (i) of Lemma 2 and Lemma 3, the
horizontal segments contribute

� x3−C
∫ 3

β

∣∣ZD (σ + ixC
)
fy(2σ + 2ixC)

∣∣ dσ � x3−C+C(ω+ε′) � 1

for C sufficiently large. Furthermore, by clause (ii) of Lemma 2 and Lemma 3,∫ β+ixC

β−ixC
ZD (s) fy(2s)xs

ds
s

� xβy
1
2−2β+ε′

1 +
∑

T=2−jxC , j=1,2,...

T ε
′−1

∫ 2T

T

|ZD (β + it)| dt


� xβ+2Cε′y

1
2−2β+ε′ .

Collecting results, we arrive at

S2 =
∑

r: αr>β

Res s=αr

(
ZD (s) fy(2s)

xs

s

)
+O

(
xα+ε′

)
+O

(
xεy1/2

(
x

y2

) 2+α
3
)
.

Since, by (2.8),

Res s=αr

(
ZD (s) fy(2s)

xs

s

)
= crx

αr
∑
m>y

µ(m)
m2αr

for αr > β, this completes the proof of the Proposition and thereby that of
our Theorem.

4ε′′ is only needed to deal with the case that 2+α
3

is equal to one of α0, . . . , αR.
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4. Some applications to special problems.

4.1. Convex domains with nonzero curvature of the boundary.
The most “generic” example is probably a convex planar domain D whose
boundary ∂D is sufficiently smooth5 and has nonzero curvature through-
out. We further suppose that the origin is an inner point of D. Under these
conditions, a very deep and rather recent result of Huxley [6] says that

(4.1) AD(x) = area(D)x+O
(
x

23
73 (log x)

315
146

)
.

Using this with our Theorem, we obtain for the number of primitive lattice
points in

√
xD (conditionally under RH),

BD(x) =
6
π2

area(D)x+O
(
x

269
619 +ε

)
.

However, for this special problem, Huxley and the author [7] have established
the better error term O

(
x

5
12 +ε

)
. (Numerically, 269

619
= 0.434571 . . . , while

5
12

= 0.416666 . . . .) This result does not depend on (4.1), but was derived
using the mean-square bound∫ x

0

(AD (u)− area(D)u)2 du� x3/2.

For the case that D is the unit disk (or any origin-centered rational ellipse),
a recent idea of Baker [2] can be modified to prove (under RH) that

BD(x) =
6
π
x+O

(
x

3
8 +ε
)
.

(See also [7] for a bit more details.)

4.2. Sums and differences of relative prime k-th powers. For a
fixed natural number k ≥ 3, we ask for the average order of the arithmetic
functions r+

k (n), r−k (n), and ρ+
k (n), ρ−k (n), which are defined, respectively,

by

r±k (n) := {(u, v) ∈ Z2 : |u|k ± |v|k = n},
ρ±k (n) := {(u, v) ∈ Z2 : |u|k ± |v|k = n, gcd (u, v) = 1}.

From a geometric viewpoint, these functions are associated with the starlike
planar domains

D± := {(u, v) ∈ R2 : 0 < |u|k ± |v|k ≤ 1}.
5To be precise, it suffices that the curvature of ∂D, as a function of the arclength, is

twice continuously differentiable.
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It is known from classic results of Krätzel [9], [10], [11] that

(4.2)
∑

1≤n≤T
r±k (n) = AD±(T 2/k) = c±0 (k)T 2/k + c±1 (k)T 1/(k−1) +O

(
T

1
k− 1

k2

)
,

with

c+
0 (k) =

2Γ2( 1
k
)

kΓ( 2
k
)
, c−0 (k) =

Γ2( 1
k
)

k cos(π
k
)Γ( 2

k
)
,

c+
1 (k) = 0, c−1 (k) = 4ζ

(
1

k − 1

)
k−1/(k−1).

Our Theorem readily implies (provided that RH is true)∑
1≤n≤T

ρ±k (n) = BD±(T 2/k)

=
6
π2
c±0 (k)T 2/k +

c±1 (k)

ζ
(

k
k−1

)T 1/(k−1) +O
(
T

7k+1
k(7k+4) +ε

)
.

Again the estimate can be improved slightly, making use of more precise
representations of the error term in (4.2) (see [19]).

4.3. Primitive Pythagorean triangles. Let us define as a primitive
Pythagorean triangle any triple of natural numbers (u, v, w) satisfying

u2 + v2 = w2, u ≤ v, gcd (u, v, w) = 1.

For a large real parameter A, let p(A) denote the number of primitive
Pythagorean triangles with area less than A. The problem to establish an
asymptotic formula for p(A) has been attacked by Lambek and Moser [12],
Wild [22], Duttlinger and Schwarz [4], Müller, Nowak and Menzer [17], and
Müller and Nowak [16]. According to Lambek and Moser [12], it is known
that

(4.3) p(A) =
∞∑
k=0

(−1)k BD
(√
A 2−k

)
,

where
D := {(u, v) ∈ R2 : uv(u2 − v2) < 1, 0 < v < u}.

In [16] it has been shown that

AD (x) = c0x+ c1x
2/3 +O

(
x7/22 (log x)45/22

)
,
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with

c0 =
Γ2
(

1
4

)
4
√

2π
, c1 = −

∣∣∣∣ζ (1
3

)∣∣∣∣ (1 + 2−1/3).

Applying the most recent version of Huxley’s lattice point theorems [6], it is
straightforward to sharpen this error term to O

(
x

23
73 (log x)

315
146

)
. Using this

with our Theorem and (4.3), one obtains (conditionally under RH)

p(A) = c∗0A1/2 + c∗1A1/3 +O
(
A 269

1238 +ε
)

with

c∗0 =
Γ2( 1

4
)√

2π5
, c∗1 = −

∣∣ζ ( 1
3

)∣∣ (1 + 2−1/3
)

ζ
(

4
3

)
(1 + 4−1/3)

,

which improves upon all earlier results of this kind. (Numerically, 269
1238

=
0.217285 . . . , while the best exponent in the error term known before was
37
164

= 0.225609 . . . .)

4.4. Primitive lattice points in special asteroid-shaped domains.
As a last somewhat “exotic” example we consider starlike sets

Da := {(u, v) ∈ R2 : |u|a + |v|a ≤ 1}

where a is a fixed real number with 0 < a < 1. It was known already to van
der Corput [3] that

ADa(x) = area (Da)x+
∑

1≤r< 1
a (1−2λ)

cr(a)x(1−ar)/2 + O
(
xλ
)
,

with

cr(a) =
8(−1)rζ(−ar) Γ

(
1 + 1

a

)
r! Γ

(
1 + 1

a
− r) ,

for λ = 1
3
. (Cf. also [18] for a generalization.) Appealing again to Huxley’s

work [6], this can be readily established for every λ > 23
73

. Thus our Theorem
implies that (if RH is true)

BDa(x) =
6
π2

area (Da)x+
∑

1≤r< 81
619a

cr(a)
ζ(1− ar)x

(1−ar)/2 + O
(
x

269
619 +ε

)
.
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