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SOME FOUNDATIONAL QUESTIONS CONCERNING
DIFFERENTIAL ALGEBRAIC GROUPS

Anand Pillay

In this paper we solve some problems posed by Kolchin
about differential algebraic groups. The main result (from
which the others follow) is the embeddability of any differen-
tial algebraic group in an algebraic group. A crucial interme-
diate result, and one of independent interest, is a generalisa-
tion of Weil’s theorem on recovering an algebraic group from
birational data, to pro-algebraic groups.

1. Introduction.

Differential algebraic groups were introduced by Cassidy and Kolchin ([C1, 2]
and [K2]), and have been studied by them and several others, notably Buium
(e.g. [B1]). In fact interest in the subject has been given a boost by Buium’s
recent work [B2] relating “finite- dimensional” differential algebraic groups
to diophantine geometry. In any case, the preface to Kolchin’s book [K2]
ends with a few questions in the general theory which “suggest themselves
with nagging persistence”, specifically the question of embeddability into al-
gebraic groups, the possibility of a “Chevalley-Barsotti” structure theorem,
and some questions on fields of definition. We answer all the questions posi-
tively. Kolchin’s set-up for “differential algebraic geometry” and the theory
of differential algebraic groups, is, much like that in [K1], slightly unusual,
although quite beautiful. A certain amount of what we do here is concerned
with showing the equivalence between Kolchin’s set-up and a more “natu-
ral” or “geometric” category of objects. This may give some of the work
here a somewhat scholastic flavour. Actually we complicate matters by in-
troducing a third category, the model theoretic one-namely the category of
“groups definable in differentially closed fields”, and we end up showing the
equivalence of all three categories, even with respect to “differential fields of
definition”.

One will see quite quickly that from a differential algebraic group (in any
of the senses) G defined over (the differential field) k, one obtains (and in fact
generically embeds G in) a kind of proalgebraic variety V (also defined over
k) equipped with a kind of generic group law. At this point one is in a purely
algebraic-geometric context, and the main problem becomes to recover from
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V, a proalgebraic group H (namely an inverse limit of algebraic groups Hµ),
also defined over k. This we do. In fact our argument is motivated by (and
could even be deduced from) a result of Hrushovski [H] about stable groups.
Finally, a Noetherianity argument yields an embedding of G into some Hµ.
In the remainder of this introduction we will recall the basic differential
algebraic definitions, introduce the three versions of “differential algebraic
group”, and state formally Kolchin’s questions.

We will be working with fields of characteristic 0 equipped with a single
derivation δ. (However everything we say generalises to the case where we
allow a fixed finite set ∆ of commuting derivations.) We refer the reader
also to [B1] and [B4] for a precise and concise background on differential
algebra and “differential algebraic geometry”, to [Ho] and [P1] for elemen-
tary model theory and stability theory, to [M] for more on the model theory
of differential fields, and to [Po] for stable groups.

Let us first fix notation. By a differential field we will mean a field k
of characteristic 0 equipped with an additive homomorphism δ : k → k
satisfying δ(x.y) = δ(x).y+x.δ(y). Unless we say otherwise, by an embedding
of such objects we mean a 1-1 map preserving both the field structure and
the derivation. Similarly for isomorphism. If k < K are differential fields,
and A ⊆ K then k〈A〉 denotes the differential subfield of K generated by
k∪A. Following Kolchin, it is convenient to work in a “universal” differential
field. So U will denote a differential field of some cardinality κ > ω, with
the features (i) any differential field k of cardinality < κ can be embedded in
U, (ii) whenever k1, k2 are differential subfields of U of cardinality < κ, and
f : k1

∼= k2, then f extends to an automorphism of U. For every κ > ω there
is such U, which is moreover unique up to isomorphism. In model-theoretic
language, U is simply a saturated differentially closed field of cardinality
κ. Typically we will be interested in certain differential algebraic objects
“defined over” a differential field k. The only requirement on κ will then be
that κ > cardinality of k.

From now on U will be fixed and k, k1, . . . , will denote differential sub-
fields of U of cardinality < κ.

U{X1, . . . , Xn} denotes the ring of differential polynomials over U in dif-
ferential indeterminates X1, X2, . . . , Xn, namely ordinary polynomials over
U in indeterminates δjXi, i = 1, . . . , n, j < ω. Similarly for k{X1, . . . , Xn}.
These are actually differential rings. Clearly if f ∈ U{X1, . . . , Xn}, and
a ∈ Un, then f can be evaluated at a. By an affine differential algebraic set,
we mean a subset V of Un (for some n) which is the zero set of a (finite) set
f1, . . . , fr ∈ U{X1, . . . , Xn}. We will say V is defined over k, if the fi can be
chosen in k{X1, . . . , Xn}. In any case we obtain a differential Zariski topol-
ogy on Un by taking as closed sets the differential algebraic ones. We will
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say simply δ-closed for differential Zariski closed. This is a Noetherian topol-
ogy. δ-k-closed will mean δ-closed and defined over k. We obtain the notion
of δ-irreducible δ-closed sets, and also δ-k-irreducible δ-k-closed sets. By a
δ-morphism from V to W (where V,W are δ-closed) we mean an everywhere
defined map f : V → W such that V has a covering by finitely many open
sets U1, . . . , Us such that the restriction of f to each Ui is given by a tuple
of differential rational maps (namely quotients of differential polynomials),
everywhere defined on Ui. We also have natural notions of such a morphism
being defined over k, (the Ui should be defined over k and restrictions of
f to each Ui given by differential rational functions over k). We similarly
obtain the notion of a δ- rational function between δ-closed sets. As in clas-
sical algebraic geometry, one can go on to define the notion of an (abstract)
differential algebraic variety (or δ-algebraic variety) X, an object obtained
by piecing together finitely many affine (or even quasi- affine) differential al-
gebraic sets Ui, with differential rational transition maps fij. X comes then
equipped with its own δ-Zariski topology. Such an object X say, is said to
be defined over k, if the Ui and fij are all defined over k. So we are using
here the analogue of the Weil definition of abstract algebraic varieties. By a
δ-regular map from X to U we mean an everywhere defined map f : X → U
such that when read in the charts Ui, f is locally differential rational. The
referee has pointed out a difference with the algebraic-geometric category
coming from the fact that there exists an affine differential algebraic vari-
ety V and a δ-regular map which is not given by a differential polynomial
map. But this need not bother us. In any case one obtains the notions of
δ-morphism and δ-rational map between abstract differential algebraic vari-
eties. A differential algebraic group, or as we shall say a δ-algebraic group,
is simply a δ-algebraic variety G with a group law given by a δ-morphism
G×G→ G. G is said to be defined over k, if both the underlying δ-algebraic
variety, and the morphism giving the group law, are defined over k. We call
such G δ-connected if G is irreducible, or equivalently if G has no δ-closed
subgroups of finite index.

We now summarise Kolchin’s notion of a δ-k-group. k is again a differen-
tial subfield of U, with |k| < κ.

Definition/Fact 1.1. (See pp. 29, 33 of [K2].)
(I) By a Kolchin δ-k-group we mean a group G, equipped with a preorder
x → y (the specialisation relation), and for each x ∈ G, a differential field
kx < U finitely generated (as a differential field) over k, and for each pair
x, y ∈ G such that x ↔ y (namely x → y and y → x), a k-isomorphism
S(x, y) : kx → ky, such that certain axioms DAS 1 and 2, DAG 1, 2 and 3,
are satisfied, where
DAS 1 says: There is a finite subset Φ of G such that for every y ∈ G, there
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is x ∈ Φ such that x→ y.

DAS 2 says: (a) If x ↔ y and y ↔ z then S(x, z) is the composition of
S(x, y) and S(y, z). (b) If x ∈ G and f is a k-isomorphism of kx with k′ then
there is a unique y ∈ G such that x↔ y, ky = k′ and f = S(x, y).

DAG 1 says: For any x, y ∈ G, kxy is contained in kx〈ky〉, and also kx−1 = kx.

DAG 2 says various things, but we wish to emphasise here: If x, y, u, v ∈ G,
x ↔ u, y ↔ v and there is an automorphism h of U which extends both
S(x, u) and S(y, v), then xy ↔ uv and h extends S(xy, uv).

DAG 3 gives information about the “connected component” of G.

(II) By a δ-k-homomorphism between Kolchin δ-k-groups G and H, we mean
an abstract group homomorphism f : G → H such that f preserves the
specialisation relations →, for all x ∈ G, kx contains kf(x), and whenever
x, y ∈ G and x ↔ y then S(x, y) extends S(f(x), f(y)). (In particular we
have the notion of a δ-k-subgroup of G.)

(III) (More or less the content of DAG 3.) G is said to be connected if there
is x ∈ G such that kx is a regular extension of k (in the field- theoretic sense)
and for all y ∈ G, x→ y. Any such x is called a generic element of G over k.

Any Kolchin δ-k group has a smallest δ-k-closed subgroup of finite index,
G0. Moreover G0 is connected. (Here X ⊆ G is called δ-k-closed if whenever
x ∈ X, y ∈ G and x→ y then y ∈ G.)

Finally we present the model-theoretic category. Although the reader is
advised to look at [Ho] we will begin with a few explanatory words, as
well as give some comments on our treatment of algebraic geometry. By a
language L we will mean a set of constant symbols, function symbols and
relation symbols. The function symbols and relation symbols come with fixed
“arities”. A first order L-formula is something built up from these symbols
together with a supply of variables xi, and from the logical connectives &,∨,
¬, ∃.∀, in the natural way. For example if R is a ternary relation symbol
of L then ∀x1∃x2(R(x1, x2, x3)) is such an L-formula. For such a formula
ϕ we can speak of the free, (or unbound) variables in ϕ. (So in the above
example the free variable is x3.) A formula without free variables is called an
L-sentence. If x is the tuple of free variables in the formula ϕ, we may write
ϕ(x) for ϕ. We also let yj, zk etc. denote variables. By an L-structure M
say, we mean a set X (the universe or underlying set of M), together with,
for each constant symbol c of L, an element cM of X, for each n-ary function
symbol f of L, a function fM : Xn → X, and for each m-ary relation symbol
R of L, a subset RM of Xm. Usually we notationally blur the distinction
between X and M (so we also write M for the universe of M).
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Now let ϕ(x) be an L-formula with free variables x = (x1, . . . , xn). Let
a = (a1, . . . , an) be an n-tuple from M. It then makes sense to speak of
“ϕ(x) being true of a in M”, which we write as “M � ϕ(a)”. This notion
is defined inductively in the obvious way. One of the base steps is: If R is
a n-ary relation symbol, then M � R(a1, . . . , an) iff (a1, . . . , an) ∈ RM . One
of the inductive steps is: If ϕ(x) is the formula ∃y(ψ(x, y)), then M � ϕ(a)
if for some b ∈M, M � ψ(a, b).

If τ is an L-sentence then we clearly have that M � τ (τ is true in M or
M is a model of τ) or M � ¬τ (τ is false in M).

Th(M) (the theory of M) is the set of all L-sentences true in M. In general
a complete theory is a set Σ of L-sentences such that Σ has a model, and for
every L-sentence τ, τ ∈ Σ or ¬τ ∈ Σ. Any complete theory Σ is of the form
Th(M) for some L-structure M. A structure M is said to have quantifier-
elimination if for any L- formula ϕ(x) there is a quantifier-free L-formula
ψ(x) such that M � ∀x(ϕ(x)↔ ψ(x)). Similarly for a (complete) theory to
have quantifier-elimination.

Given an L-structure M it is convenient to add “names” or constants to
the language L for elements of M, to obtain a language L(M). So a formula
ϕ(x) of L(M) may have additional “parameters” fromM. If these parameters
are from a subset A of M, we say ϕ is over A. When a model-theorist sudies
a structure M he or she is studying the category of definable sets in M. So
by a definable set in M, we mean a set Y ⊆Mn such that for some formula
ϕ(x) of L(M), Y = {a ∈ Mn : M | = ϕ(a)}. Y is said to be A-definable (A
some subset of M) if ϕ can be chosen to be over A. By a definable function
we mean a function (from some subset of Mn to some subset of Mm) whose
graph is definable.

The structure M is said to be κ-saturated (κ some infinite cardinal) if
whenever n < ω, A ⊆ M has cardinality < κ, and {Xi : i ∈ I} is a family
of A-definable subsets of Mn, every finite subset of which has nonempty
intersection, then ∩iXi 6= ∅.

If a is a tuple from M and A ⊆ M, by tp(a/A) (the type of a over A in
M) we mean the set of formulas ϕ(x) over A such that M � ϕ(a).

Let M be a substructure of N. We say that M is an elementary sub-
structure of N (or N is an elementary extension of M) if whenever ϕ is an
L(M)-sentence, then M � τ iff N � τ. If A ⊆ M, and a is from M we say
a ∈ acl(A) if there is some formula ϕ(x) over A such that M � ϕ(a) and
there are only finitely many points b from M such that M � ϕ(b). If ϕ(x)
can be chosen such that a is the unique solution of ϕ in M, then we say
a ∈ dcl(A).

In this paper we shall be concerned exclusively with two languages: L
= {+,−, ., 0, 1, δ} (the language for differential rings) and the sublanguage
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L0 = {+,−, ., 0, 1} (the language of rings). U as defined earlier is naturally
an L-structure. The theory of U is precisely the theory of differentially
closed fields of characteristic 0, often denoted DCF0. U turns out to be a
κ-saturated model of DCF0. If we “forget” the distinguished derivation δ on
U, we get an L0- structure, U0 say. The theory of U0 (in L0) is precisely
the theory of algebraically closed fields of characteristic 0, ACF0. Again U0

is κ-saturated.
We will be using some model theory of algebraically closed fields, all of

which is well-known to the model-theorist (but not necessarily to the al-
gebraic geometer). The model-theoretic approach to algebraic geometry is
essentially from the point of view of Weil’s Foundations [W1]. As mentioned
above ACF0 is the theory of algebraically closed fields of characteristic 0. Let
K be a κ-saturated model of ACF0, which amounts to being simply an alge-
braically closed field of characteristic 0, of cardinality κ, which we consider
as an L0-structure, as well as a universal domain for algebraic geometry.

Fact 1.2. ACF0 has quantifier-elimination as well as elimination of imagi-
naries.

Comment 1.3. Quantifier-elimination has been defined above, and amo-
unts to saying that the definable subsets X of Kn are precisely the con-
structible sets, namely finite Boolean combinations of Zariski closed sets.
Moreover if k < K and X is k-definable, then the relevant Zariski closed
sets can be chosen to be defined over k. Another consequence of quantifier-
elimination in ACF0 is that if A ⊆ K, then dcl (A) is precisely the subfield of
K generated by A. Elimination of imaginaries is a rather more subtle notion,
introduced by Poizat (which in the case of algebraically closed fields is inti-
mately related to the existence of smallest fields of definitions for varieties).
What it means is that if X is some k-definable subset of Kn, and E some
k-definable equivalence relation on X, then there is k-definable set Y ⊆ Km

(some m), and k-definable map f from X onto Y such that for a,b ∈ X,
E(a,b) iff f(a) = f(b). A consequence of elimination of imaginaries is that
any definable set has a smallest “field of definition”, the Galois-theoretic
interpretation of which is: If X ⊆ Kn is definable, then there is some tuple
c from K such that for any automorphism σ of K, σ(c) = c iff σ(X) = X.

Definition/Fact 1.4.

(i) Let V be an irreducible (affine, say) variety, defined over k, with
dim(V ) = n. A point a ∈ V will be called a generic point of V over k,
if tr.deg(k(a)/k) = n (where k(a) is as usual the field generated by k and a).
In the same situation we call tp(a/A) a generic type of V over k. If a1, a2

are both generic points of V over k, then there is a k-automorphism of K
which takes a1 to a2, or equivalently tp(a1/k) = tp(a2/A), and thus V has
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a unique generic type over k.

(ii) tp(a/k) is said to be stationary if whenever k < L, k(a) is algebraically
disjoint from L over k, and tp(b/k) = tp(a/k) and k(b) is algebraically dis-
joint from L over k, then tp(a/L) = tp(b/L). Now for any tuple a and subfield
k of K, let V (a/k) be the variety over k generated by a (namely the variety
defined by all polynomials over k vanishing at a). Then the stationarity of
tp(a/k) is equivalent to the (absolute) irreducibility of V (a/k), which is also
equivalent to k(a) being a regular extension of k.

(iii) (With the notation of (i).) Suppose moreover that ϕ(x, y) is an L0-
formula (possibly with parameters from k). Let Y = {b : for some (any)
generic point of V over k(b), K � ϕ(a, b)} = {b : ϕ(x, b) defines a Zariski-
dense subset of V }. Then Y is a k-definable set (so k-constructible). This is
not difficult: for example if ϕ(x, y) defines a Zariski closed set, then b ∈ Y
iff K � ∀x(x ∈ V → ϕ(x, b)). Now simply generalise to constructible sets. In
any case this fact amounts to “definability of the generic type of V ” in the
sense of model theory.
Definition/Fact 1.5. By a group definable in K we mean a group (G, .)
such that both G and the graph of multiplication are definable sets in K
(so G ⊆ Km, graph (.) ⊆ K3m for some m). By an algebraic group we as
usual mean an (abstract) variety G (not necessarily irreducible) equipped
with a group operation which is a morphism from G × G to G. A basic
result in the model theory of algebraically closed fields states that there is
an equivalence of categories between the category of definable groups (with
definable homomorphisms) and algebraic groups. This result rests on Weil’s
theorem which recovers a (unique) algebraic group from birational data.
The equivalence of categories moreover respects “fields of definition”. The
reader may at first sight think this equivalence of categories to be erroneous,
as it suggests that all algebraic groups are (quasi-) affine. However, one
should note that if G ⊆ Kn is a definable group, then the underlying subset
of G need not be a quasi-affine variety, and also multiplication (being a
constructible map) need not even be continuous for the Zariski topology.
An important component in passing from an algebraic group to a definable
group is the use of elimination of imaginaries. For one can view an abstract
variety X as a finite disjoint union of Zariski closed subsets of certain affine
spaces, quotiented out by a certain definable equivalence relation (given by
the transition maps), and thus one can identify definably X with a certain
constructible subset of some Km.

We now return to our universal differential field U which as remarked
above is a κ-saturated model of DCF0, the theory of differentially closed
fields of characteristic 0. Rather than having to refer back continually to the
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underlying algebraically closed field U0, we will rather distinguish betwen
sets (with parameters) definable in U in the language L = {+,−, ., 0, 1, δ}
which we will call δ-definable sets, and those definable in the language L0 =
{+,−, ., 0, 1} which we will call f -definable sets (unless there is no room for
ambiguity). So the notions: δ-k-definable; f -k-definable, should be clear.

Fact 1.6. DCF0 has quantifier-elimination, as well as elimination of imag-
inaries.

So the δ-definable sets are precisely the finite Boolean combinations of
δ-closed sets. It also follows from quantifier-elimination that for any A ⊆ U,
dcl(A) is precisely the differential subfield of U generated by A.

We can now introduce the third category of “differential algebraic groups”.

Definition/Fact 1.7. By a group definable in U over k, we simply mean a
groupG such that both the universe ofG and the graph of its group operation
are definable sets (in Un, U3n, respectively, for some n). We will call such
groups δ-definable groups. Again G will be said to be δ-definable over k, or
δ-k-definable if both G and the graph of the group operation are δ-definable
over k. Now the theory DCF0 is ω-stable. Formally this means that the set
of types over any countable differential subfield k of U is countable. All we
will use of this is a certain consequence for groups G defined in a models of
ω-stable theories, namely any such G satisfies the descending chain condition
on definable subgroups. In particular G has a smallest definable subgroup of
finite index, its connected component. So this applies to δ-definable groups.

Definition/Fact 1.8. An important ingredient in all categories is the
notion of δ-independence. If k is a differential subfield of U, and a, b are
tuples from U we say that a is δ-independent from b over k, if k〈a〉 and k〈b〉
are algebraically disjoint over k. If G is a Kolchin δ-k-group we will say that
a, b ∈ G are δ-independent over k, if ka and kb are algebraically disjoint over
k. We call tp(a/k) stationary if whenever L > k is a differential subfield of
U, and tp(b/k) = tp(c/k) = tp(a/k) and each of b, c are independent from
L over k, then tp (b/L) = tp(c/L). Stationarity of tp (a/k) is equivalent
to k〈a〉 being a regular extension of k, and also to V (a/k), the differential
algebraic variety defined by the differential polynomials over k which vanish
at a, being δ-irreducible.

We now consider the interaction between the various categories, beginning
with some obvious statements.

Remark 1.9. Any δ-algebraic group defined over k, can be canonically
given the structures of both a δ-k-definable group and a Kolchin δ-k group.

Proof. Let G be a δ-algebraic group defined over k. Fix an affine open
covering (or even quasi-affine open covering) U1, . . . , Un of G. Let H be the
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disjoint union of the Ui quotiented by the (k-definable) equivalence relation
E given by the identifications fij. Then (by elimination of imaginaries) H is
a δ-k-definable group and we have a canonical isomorphism f : G ∼= H.

Now to give G the structure of a Kolchin δ-k group: For a ∈ G, note
f(a) is a point in some affine space Um. Put ka = k〈f(a)〉. Put a → b if
b is a differential specialisation over k of a. It is then clear that a ↔ b iff
there is a k-automorphism of U which takes f(a) to f(b). This induces a
k-isomorphism of ka with kb and we call this S(a, b). Everything follows.

In [P3], it is shown that a δ-definable group G can be δ-definably equipped
with the structure of a δ-algebraic group. This does not give information on
fields of definition except in the case where G is K-definable for differentially
closed K, in which case the δ-algebraic group can be chosen to be defined
over K too. The results of this paper, among other things, generalise this
to arbitrary k.

The notion of generic element is fundamental in all categories. For Kolchin
groups the notion appears in Def. 1.1 III. It should also be mentioned that
Kolchin defines the notion of a “pre δ-k homomorphism” f between (say
connected) Kolchin δ-k-groups G, H as follows: f is a map from a subset
of G containing the k-generic points of G, to H, such that if a, b are δ-k-
independent, k-generic elements of G then f(a.b) = f(a).f(b). Also the other
conditions in Def. 1.1 II hold where relevant. If V is a δ-irreducible δ-variety
defined over k, then an element a ∈ V is said to be generic (or we may say
δ-generic) over k, if a /∈ X for every proper δ-k-closed subset X of V. If a, b
are δ-generic elements of V over k then (identifying a, b with points in the
same δ-k-open affine subset of V ) there is a k-isomorphism of U taking a to
b. Moreover k〈a〉 is a regular extension of k. If G is a δ-k-definable group,
then we call a ∈ G generic over k, if for all b ∈ G, a. b is δ-independent
from b over k. (Equivalently, using model-theoretic notions, the Morley rank
of tp (a/k) = Morley rank of G.) Again, if G is connected, then for any
generic points a, b of G over k there is a k-automorphism of U taking a
to b. Moreover again k〈a〉 is a regular extension of k, which corresponds
exactly to tp (a/k) being stationary. If the δ-connected δ-algebraic group G
(defined over k) is identified as in Remark 1.8 with a δ-k-definable group,
then the two notions of “generic point of G over k” coincide. Similarly if G
is considered as a Kolchin δ-k group. Moreover we have:

Fact 1.9. If G is a group in any of the three categories, which is defined
over k, then for any g ∈ G there are g1, g2 ∈ G, each generic over k, such
that g = g1.g2.

Fact 1.10. If G, H are (say connected) groups over k in any of the
three categories, and if f0 is a “generically defined” δ-map from G to H
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satisfying: If a, b are δ-generic, δ-independent elements of G over k, then
f0(a.b) = f0(a).f0(b). Then f0 extends to a unique δ-k homomorphism f
from G to H. Moreover if f0 is 1-1 on k-generics of G, then f is 1-1. Here
by “generically” defined δ-map, we mean the obvious thing in each of the
categories.

In fact, at the “generic” level it is easy to see that the three notions of
δ-k-group are identical.

Definition 1.11. By a pre-δ-k group we mean an irreducible δ-variety V
defined over k, and a δ-rational map f : V × V → V, defined over k, such
that
(I) if a, b are δ-independent δ-generic points of V over k, and c = f(a, b)
then k〈a, b〉 = k〈b, c〉 = k〈a, c〉, and
(II) if a, b, c are δ-independent δ-generic points of V over k, then
f(f(a, b), c) = f(a, f(b, c)).

Such a map f is said to be a normal law of composition.

Note that if V is a pre-δ-k group, and U is an open affine subset of V
defined over k, then U is also a pre-δ-k group (in fact essentially the same one
as V ). Clearly a δ-connected, δ-algebraic group G, defined over k, is a pre-
δ-k-group (where f is simply multiplication in G). Also if G is a connected
δ-definable group defined over k, then G gives rise to a pre δ-k group as
follows. Let p(x) be the generic type of G over k (in the model-theoreric
sense). p is stationary, which implies that p is the generic type of some
affine δ-irreducible δ-k-algebraic set V. For a, b independent realisations of p,
a.b ∈ dcl(k,a,b) = k〈a, b〉. So a.b = f(a,b) for some δ-k-rational function
f. (V, f) is then easily seen to be a pre-δ-k group. Finally if G is a connected
Kolchin δ-k group then G also gives rise to a pre-δ-k group: Fix a some
generic point of G (over k). Fix some tuple α(a) such that ka = k〈α(a)〉.
Now ka is a regular extension of k. So if we let V be the δ-k-locus of α(α),
then V is δ-irreducible. For any generic b ∈ G, define α(b) to be S(a, b)α(a).
So α(b) is a k-generic point of V. On the other hand any k-generic point
of V will be of the form α(c) for some generic c in G (by Axiom DAS 2
(b)). Choose a, b such that α(a), α(b) are δ-independent over k (namely ka
is algebraically disjoint from kb over k). Let c = a.b. Then c is generic in G.
Let α(c) = f(α(a), α(b)) for some δ-k-rational function f. From the Kolchin
axioms written above it is easy to conclude that (V, f) is a pre-δ-k group.

Kolchin asks in [K2] the following questions about Kolchin δ-k-groups G :
(1) Is G embeddable (by a Kolchin δ-k1-homomorphism for some k1 ⊇ k)
in an algebraic group?
(2) Is G covered by affine δ-k-open sets? (Here a δ-k-open set is affine if it
is δ-k isomorphic to a δ-k-closed subset of Um, for some m. In fact Kolchin
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states this with “quasi-affine” in place of affine.)
(3) Is there a structure theorem for G analogous to the Chevalley-Barsotti
theorem for algebraic groups? (Recall the latter says that any connected
algebraic group has a (unique) maximal connected normal linear group and
the quotient group is an abelian variety.)

We will answer all these questions positively. In fact we prove (1) with
k1 = k, and the algebraic group defined over k. (2) and (3) follow, although
some additional work is required to get the uniqueness part of (3). Of course
the main problem in trying to prove (1) is to see how to transform the
differential rational group law on G into some kind of rational group law.

I would like to thank Phyllis Cassidy for her comments and questions on
an earlier draft of this paper. I would like also to thank Ehud Hrushovski
for sharing with me his understanding and interpretation of Buium’s work.
Finally I would finally like to thank Zeljko Sokolovic for various discussions
at the time this work was done.

2. Pro-algebraic varieties.

In this section we point out the rather obvious fact that if (V, f) is a δ-pre-
group, then one obtains a canonical “pro algebraic variety” W defined over
k, a k-rational “generic” group law h on W and a δ-k-rational generically
surjective mapping ϕ of V to W such that for δ-generic and δ-independent
points a, b of V over k, ϕ(f(a.b)) = h(ϕ(a), ϕ(b)). Possibly with some am-
biguity, we will call a proalgebraic variety with a generically defined group
law, a pre pro-group. This is a priori not the same as a projective limit of
pre-groups, but in fact one of the main points (proved in 3) is that these
notions do coincide.

There appears to be no systematic account of pro-algebraic varieties in the
literature, although there has been some work on the subject ([Se], [Ko]).
In any case we will give definitions suitable for our purposes. In Definition
2.1 K will be a universal domain for algebraic geometry, which we take to be
an algebraically closed field (of characteristic 0 say) which has cardinality κ
for some given κ > ω. If V is a variety over K then we as usual identify V
with its set of K-rational points.
Definition 2.1.
(i) Let I be a directed set of cardinality < κ. So we have a partial ordering
≤ on I, and for all µ, υ ∈ I there is λ ∈ I such that λ ≥ µ and λ ≥ υ. Let, for
each µ ∈ I, Vµ be a variety over K, and for υ ≥ µ, πυµ an everywhere defined
generically surjective morphism from Vυ to Vµ, with the usual compatibility
requirements. By a pro algebraic variety, we mean the inverse limit V of
such a directed system (Vµ, πυµ).
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(ii) We will call V irreducible if each Vµ is irreducible. We will say that V
is defined over k (k < K) if each Vµ and each πυµ is defined over k. (Note
that the cardinality conditions on I implies that there is k < K with |k| < κ
such that V is defined over k.)
(iii) By a point of V (in K) we mean simply an I-tuple (αµ : µ ∈ I) such
that for each µ in I, αµ ∈ Vµ, and if υ ≥ µ then πυµ(aυ) = aµ. Assuming V
to be defined over k < K, such a point is said to be a generic point of V over
k, if each aµ is a generic point of Vµ over k. If a, b are points of V , we will
say that a is independent from b over k, if k(a) is algebraically disjoint from
k(b) over k. Note that assuming |k| < κ, then there will be generic points of
V over k. In fact for any µ ∈ I and generic point c of Vµ over k, there will
be a generic point (aυ)υ∈I of V such that aµ = c. (This is simply because
|K| = κ and thus K is “κ-saturated” in the model-theoretic sense.) Note
also that because the πυµ are not necessarily surjective, such a pro algebraic
variety is in a sense only a “birationally defined” kind of object, and has no
natural structure of a scheme. Assume now V to be irreducible and defined
over k with |k| < κ.
(iv) By a rational function on V, defined over k, we mean simply a rational
function on some Vυ, defined over k (namely an element of k(Vυ)). If f is
such then f is defined at any point a = (aµ)µ∈I which is generic over k, by
f(a) = f(aυ). Such a rational function will be often written as f(Xµ : µ ∈ I)
with the understanding that its value depends only on aυ, or equivalently
on a finite number of aµ’s.
(v) Suppose W = inv. limit (Wλ : λ ∈ J) is another pro algebraic variety
defined over k. By a rational map from V to W defined over k, we mean a
sequence f = (fλ : λ ∈ J) of rational functions on V, each defined over k,
such that for a ∈ V generic over k, (fλ(a))λ∈J ∈ W. We can view such f
as being defined on a “Zariski open” subset of V. Note that such a rational
map is an inverse system of rational maps fλ : Vν(λ) →Wλ, where ν(λ) is an
order preserving map on the index sets.
(vi) If V = inv.lim (Vυ : υ ∈ I), W = inv.lim (Wλ : λ ∈ J) are pro algebraic
varieties defined over k, then V ×W = inv. lim(Vµ ×Wλ : (µ, λ) ∈ I × J)
is also a pro algebraic variety defined over k : We put (µ, λ) ≥ (µ′, λ′) iff
µ ≥ µ′ and λ ≥ λ′, and π(µ′,λ′)(µ,λ) = πµ′µ × πλ′λ.
(vii) By a pre pro group, defined over k, we mean a pro-algebraic variety
V = inv. lim (Vµ : µ ∈ I) defined over k, equipped with a rational function
f : V × V → V with the features
a) if a, b are independent generic points of V over k, and f(a, b) = c, then
a, c are independent generic points of V over k, similarly for b, c, and also
k(a, b) = k(b, c) = k(a, c),
b) if a, b, c are independent generic points of V over k then f(f(a,b), c) =
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f(a, f(b, c)). Again f is called a normal law of composition on V.
(viii) By a pro algebraic group G defined over k, we mean the inverse limit of
a directed system (Gµ, πυµ)µ∈I, where each Gµ is an algebraic group defined
over k, and where πυµ : Gυ → Gµ is a surjective homomorphism, defined
over k. Note that a proalgebraic group is now a global object, in particular
a group (and also a scheme). Group multiplication is an everywhere defined
rational map (defined over k), and trivially gives G also the structure of a
pre pro group.

Remark. Any pro algebraic variety V defined over k is in birational
correspondence with a pro affine algebraic variety defined over k. For if V =
inv.lim (Vλ)λ, then let Wλ be an open affine subset of Vλ defined over k, and
the identity map from inv.lim (Wλ) to V is the required correspondence.

We now return to the differential field context. The universal differentially
closed field U is as mentioned in the introduction, also a universal domain
for algebraic geometry, so Definition 2.1 makes sense with U in place of K.
k will be a differential subfield of U with |k| < κ.

Definition 2.2. Let X be some δ-algebraic variety defined over k, and
V = inv.lim (Vµ)µ∈I a pro algebraic variety defined over k. By a δ-k-rational
map from X into V one simply means a sequence f = (fµ)µ∈I where each
fµ is a δ-k-rational map from X into Vµ, and such that for a ∈ X δ-generic
over k, and for υ ≥ µ in I, πυµ(fυ(a)) = fµ(a).

Lemma 2.3. Let X be a δ-irreducible pre δ-k group, with f : X ×X → X
the normal law of composition. Then there is an irreducible pro affine pre
pro group V = inv. lim(Vµ)µ∈I (some I), defined over k, with normal law of
composition g : V × V → V, and there is a δ-k-rational map h from X into
V such that
(i) if a, b are distinct δ-generic points of X over k, then h(a), h(b) are

distinct generic points of V over k,
(ii) if a, b are δ-generic δ-independent points of X over k, then h(f(a, b)) =

g(h(a),h(b)).

Proof. This is simply a matter of seeing what the words mean. We may
assume that X is affine. We first point out that if (i) holds then at least (ii)
makes sense. If a, b are δ-generic δ-independent points of X over k, then k〈a〉
is algebraically disjoint from k〈b〉 over k. But h(a) ⊆ k〈a〉, and h(b) ⊆ k〈b〉,
thus h(a) is independent from h(b) over k, so if (i) is true, h(a), h(b) will
be generic independent points of V over k, whereby g(h(a),h(b)) is defined.
Note that the δ-irreducibility of X means that if a is a δ-generic point of X
over k, then k〈a〉 is a regular extension of k. Let a be a δ-generic point of X
over k. So a ∈ Um some m, say a = (e1, . . . , em). Then there is a countable
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sequence a such that k〈a〉 = k(a). For example we could take a as a sequence
whose elements are of the form δn(ei) where n < ω, and 1 ≤ i ≤ m. Write
a = (ai : i < ω). Let J be the set of finite subsets of ω. Then J is a directed
set, where we put j ≤ j′ iff j ⊆ j′. For j ∈ J, let a(j) = (ai : i ∈ j). Let
Vj be the locus of a(j) over k. Then Vj is an affine variety defined over k
which is irreducible (as by the remark above, k(a(j)) is a regular extension
of k), and a(j) is a generic point of Vj over k. For j′ ≥ j in J, let πj′j be the
restriction map: So πj′j(a(j′)) = a(j). Let V be inv.lim (Vj, πj′j)j∈J. Now
we can write a(j) = hj(a), where hj is a suitable δ-k-rational map from X
into Vj. By construction h = (hj)j∈J is then a δ-k-rational map of X into V
satisfying (i) of the lemma. Now let b be a δ-generic point of X over k〈a〉
(i.e. b is δ-generic over k, and δ-independent from a over k). So we can write
k〈b〉 as k(b) where b = (bi : i < ω) and b(j) = (bi : i ∈ j) = hj(b) for
j ∈ J. Let c = f(a, b). By the pre-δ-k group hypothesis, k〈c〉 ⊆ k〈a〉 〈k〈b〉〉.
But the latter is the same thing as k(a)(b). Thus k(c) ⊆ k(b, c). So for
each j ∈ J we can find j′ ∈ J such that c(j) ⊆ k(a(j′),b(j′)), and we can
thus write c(j) as gj(a(j′),b(j′)) for some k-rational function gj(Xj′ , Yj′).
It is then clear that g = (gj : j ∈ J) is a rational map from V × V to
V, defined over k. By construction g(h(a),h(b)) = h(f(a, b)). Also clearly
g satisfies the conditions (in Definition 2.1 (vii)) for being a normal law of
composition.

3. A Weil theorem for pro-algebraic groups.

Here we show how from a pre pro group (V, f) defined over k, we can recover
an (essentially unique) pro algebraic group G defined over k. This result is
simply a geometric adaptation of a result by Hrushovski on so-called ∗-
groups in stable theories [H]. This section takes place completely in the
algebraic (and pro- algebraic) geometrical category. Namely we are working
in a universal domain K as at the beginning of Section 2. k is again a subfield
of K with |k| < κ.

Proposition 3.1. Let V = inv. lim(Vµ, πλµ : µ ∈ I) be a pro affine ir-
reducible pro algebraic variety defined over k, with a normal law of com-
position f , defined over k. Then there is a connected proalgebraic group
G = inv. lim(Gλ : λ ∈ J) defined over k, and a birational map h : V → G de-
fined over k, such that for generic, independent a,b ∈ V over k, h(f(a,b)) =
h(a).h(b).

Proof. By assumption each Vµ is affine. We write a ∈ V as (aλ : λ ∈ I), and
we write x ∗ y in place of f(x,y). For each λ ∈ I, we define a relation Eλ
on the set of generic points of V over k as follows: Eλ(a1,a2) iff there exist
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independent generic points b, c of V over k(a1,a2) such that (b ∗ a1 ∗ c)λ =
(b ∗ a2 ∗ c)λ. Note that

(∗) this does not depend on the choice of b, c.

For if b1, c1 are also independent generic points of V over k(a1,a2), then by
irreducibility of V, there is a k(a1,a2)-automorphism of K taking (b, c) to
(b1, c1). In particular Eλ is an equivalence relation. Let us fix λ.

Claim I. For a,b independent generic points of V over k, the Eλ-class of
a ∗ b depends only on the Eλ-classes of a and b, the Eλ-class of a depends
only on the Eλ-classes of b and a ∗b, and the Eλ-class of b depends only on
the Eλ-classes of a and a ∗ b.

Proof. Suppose Eλ(a′,a) and Eλ(b′,b). Let c,d be generic independent
points of V over k(a,a′,b,b′). Then (as ∗ is a normal law of composition on
V ), we see that c ∗ a′, d are generic independent points of V over k(b,b′)
whereby by (∗)
(i) ((c ∗ a′) ∗ b ∗ d)λ = ((c ∗ a′) ∗ b′ ∗ d)λ. Similarly

(ii) (c ∗ a′ ∗ (b ∗ d))λ = (c ∗ a ∗ (b ∗ d))λ. From (i) and (ii), and the generic
associativity of ∗ we conclude

(iii) (c ∗ (a′ ∗ b′) ∗ d)λ = (c ∗ (a ∗ b) ∗ d)λ, showing that Eλ(a′ ∗ b′,a ∗ b).
The argument shows that a ∗ b/Eλ is a function only of a/Eλ and b/Eλ.
The rest of the claim is proved in a similar fashion. For example to show
that b/Eλ depends only on a/Eλ and a ∗ b/Eλ, suppose that Eλ(a,a′), a′

is independent from b′ over k, and Eλ(a ∗ b, a′ ∗ b′). Choose c,d as before.
Then our assumptions imply that (ii) and (iii) above hold. But then we
deduce (i) which shows that Eλ(b,b′).

Now it follows from the definition of a rational map that the map
g(x, y, z) = (x ∗ y ∗ z)λ from V × V × V to Vλ is given by a k-rational
map, also called g, from Vυ × Vυ × Vυ to Vλ. We then clearly obtain:

Claim II. If a1,a2 are generic points of V over k, then Eλ(a1,a2) if and
only if for some (any) generic independent points b, c of Vυ over k(a1

υ,a
2
υ),

g(b,a1
υ, c) = g(b,a2

υ, c).

Now, by 1.4 (iii) there is a k-constructible equivalence relation ε such that
for any x, y in Vυ, ε(x, y) holds iff for generic independent points b, c of Vυ
over k(x, y), g(b, x, c) and g(b, y, c) are both defined and g(b, x, c) = g(b, y, c).
Note that by Claim II, for generic points a1, a2 of V, Eλ(a1,a2) if and only if
ε(a1

υ,a
2
υ). Let a be a generic point of Vυ over k. Then the ε-equivalence class



194 ANAND PILLAY

of a is a constructible set, so by Comment 1.3 , there is a tuple σ (in some
Km) such that any automorphism of K fixes σ iff it fixes a/ε. This holds
in particular of k-automorphisms of K. Now any k(a)-automorphism of K
fixes a/ε and thus fixes σ. Thus (as we are in characteristic 0), σ ∈ k(a), so
σ = h(a) for some k-rational function h. Note that if a1 is another generic
point of Vυ over k, and σ1 = h(a1) then again any k-automorphism of K
fixes σ1 iff it fixes a1/ε. Let W be the irreducible affine variety over k whose
generic point over k is σ. So h yields a generically surjective rational map
from Vυ to W defined over k. h thus induces a generically surjective rational
map from V to W, which we also call h, by: For a a generic point of V over
k, h(a) = h(aυ). Claim I can now be restated as:

Claim III . Let a, b be generic independent points of V over k. Then h(a ∗
b) ∈ k(h(a), h(b)), h(a) ∈ k(h(b), h(a ∗ b)) and h(b) ∈ k(h(a), h(a ∗ b)).

Proof. We again use an argument by automorphism. Let f be any
k(h(a), h(b)) automorphism of K. Then by the above remarks f fixes the
ε-classes of aυ and bυ and thus fixes the Eλ-classes of a and b. By Claim
I, f fixes the Eλ class of a ∗ b. By above remarks, f fixes the ε-class of
(a ∗ b)υ, and thus f fixes h(a ∗ b). This shows that h(a ∗ b) is rational over
k(h(a), h(b)). The rest is similar.

Claim III enables us to endow W with a normal law of composition
w defined over k, by: For independent generic points σ, τ of W over k,
w(σ, τ) = ρ if there are independent generic points a, b of V over k, such
that h(a) = σ, h(b) = τ and h(a ∗ b) = ρ. (It is easily verified that this
is a normal law of composition, and hence W becomes a pre group in the
sense of Weil.) Now by Weil’s theorem [W2], there is a connected alge-
braic group G defined over k, and a birational isomorphism φ of W with
G, defined over k, such that for generic independent points σ, τ of W over
k, φ(w(σ, τ)) = φ(σ).φ(τ).

Let us rename G as Gλ to reflect its dependence on λ. Composing φ with
h, gives a a rational generically surjective map hλ from V to Gλ, defined
over k, such that for a, b generic independent points of V over k, hλ(a ∗
b) = hλ(a).hλ(b). It is clear from the construction that if µ ≥ λ then
hµ = hλ.πµλ, and thus induces a generically surjective rational map gµλ from
Gµ to Gλ, defined over k, which preserves generic multiplication. A basic
theorem from algebraic groups says that gµλ is (or extends to) a surjective
k-rational homomorphism from Gµ to Gλ. Let G be the pro-algebraic group
inv.lim (Gλ, gµλ)λ∈I. Now clearly if a 6= b are generic points of V over k, then
for some λ, hλ(a) 6= hλ(b). Thus h = (hλ)λ∈I yields a birational isomorphism
of V with G, defined over k, such that for a,b generic independent points of
V over k, h(a ∗ b) = h(a).h(b). The proof is complete.
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4. Conclusions for differential algebraic groups.

Finally we return to the category of differential algebraic groups. The result
from which everything follows is the following version of Weil’s theorem for
pre-δ-k groups. Again U is a universal domain for differential algebraic
geometry, and k is a differential subfield of U of cardinality < κ.

Proposition 4.1. Let X be a δ-irreducible pre-δ-k group with normal law of
composition ∗. Then there is a connected algebraic group H defined over k, a
δ-connected δ-algebraic subgroup H1 of H defined over k, and a δ-birational
isomorphism h of X with H1 also defined over k, such that for δ-independent
δ-generic a, b ∈ X over k, h(a ∗ b) = h(a).h(b).

Proof. It is convenient to make use of the model-theoretic category. By [H]
(together with ω-stability) there is a connected δ-definable group A, defined
over k, such that the generic points of A over k are precisely the δ-generic
points of X over k, and that ∗ agrees with multiplication in A on such points
which are δ-independent over k. Combining Lemma 2.3 and Proposition 3.1
we obtain a proalgebraic group G = inv. lim(Gλ, gµλ : λ ∈ I) defined over k,
and a δ-rational map (not everywhere defined) h = (hλ)λ∈J of X into G, such
that for each λ ∈ J, and for δ-generic δ-independent points a, b of X over k,
hλ(a∗b) = hλ(a).hλ(b) (where the latter multiplication is in Gλ), and for any
a 6= b generic points of X over k, for some λ, hλ(a) 6= hλ(b). By Fact 1.4 (for
the δ-definable category) each hλ extends to a δ-definable homomorphism of
A into Gλ, definable over k, which we call h′λ. The h′λ commute naturally with
the gµλ’s. Let Nλ = ker(h′λ). Then Nλ is a definable subgroup of A, and note
that if µ ≥ λ then Nµ ≤ Nλ. By Fact 1.7 (the DCC for δ-definable groups),
there is a finite subset Λ of I such that ∩{Nλ : λ ∈ I} = ∩{Nλ : λ ∈ Λ}. So
choosing υ ∈ I such that υ ≥ λ for all λ ∈ Λ, we see that

(∗) ∩{Nλ : λ ∈ I} = Nυ.

Claim. Nυ = {1}.
If not, let c ∈ Nυ, with c 6= 1. Let a ∈ A be generic over k〈c〉, and let
b = c.a. Then a, b are distinct generic points of X over k. But then for some
λ ∈ I which we may suppose is ≥ υ, we have hλ(a) 6= hλ(b). Then clearly
c /∈ Ker(h′λ) = Nλ, contradicting (∗). This proves the claim.

By the Claim, hυ is an embedding of A in Gυ. Put H = Gυ, and B =
the image of A under hυ. Then B is a connected δ-definable subgroup of H,
defined over k. It is a routine fact that B has to be closed in the δ-Zariski
topology on H. Now H, as an algebraic group defined over k, has a covering
by finitely many affine open sets defined over k. The intersection of each of
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these with B is an affine open subset of B in the δ-Zariski topology, which
is moreover defined over k. Thus B has the structure of a δ-algebraic group,
defined over k, and hυ is the required δ-birational isomorphism of X with
B.

Corollary 4.2.
(i) The three categories of δ-connected δ-algebraic groups defined over k,

connected Kolchin δ-k groups, and connected δ-definable groups defined
over k, are equivalent.

(ii) Any group in one of the above categories embeds by a homomorphism
(in the suitable category) defined over k in a connected algebraic group
defined over k.

Proof. Let G be a group in any of the three categories. By 4.1, the corre-
sponding pre-δ-k group is in δ-birational correspondence with a δ-connected
δ-algebraic subgroup B (defined over k) of a connected algebraic group H
defined over k. By 1.4 this birational correspondence extends to an isomor-
phism defined over k (in the relevant category) of G with B. This proves (i)
and (ii).

Remark 4.3. Corollary 4.2 solves (1) and (2) of Kolchin’s problems. First,
by (ii) any Kolchin δ-k group embeds in an algebraic group. Second, by (i),
if G is a connected Kolchin δ-k group, then G is isomorphic by a Kolchin δ-k
isomorphism to a δ-connected δ-algebraic group defined over k. In particular
this equips G with a covering by δ-k affine δ-k-open subsets of G.

Finally we aim towards a Chevalley-Barsotti theorem for δ-algebraic gro-
ups, answering the third of Kolchin’s “nagging” questions. The issue of
existence and uniqueness of a maximal δ-connected normal subgroup is some-
what subtle and requires additional information. In particular we will need to
point out the connection with Buium’s “prolongations” of algebraic groups.
Remark 4.4. (i) Suppose H is a δ-connected δ-algebraic group defined
over k. As in the proof of 4.2, we obtain from 2.3 and 3.1 a canonical proalge-
braic group G = inv. lim(Gλ, πµλ : λ ∈ I) and a family of δ-homomorphisms
hλ : H → Gλ commuting with the πµλ. So we have a canonical embedding
h : H → G. We call this data the canonical proalgebraic group associated to
H. It should be clear that G is essentially unique. The specific nature of such
proalgebraic groups G will be studied in a future paper. (They should be
“proalgebraic D- groups”, to borrow language of Buium [B1], and moreover
the category of proalgebraic D-groups which satisfy a certain finiteness con-
dition should be equivalent to the category of differential algebraic groups.)
For now we only wish to point out that the association of G (and the as-
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sociated maps) to H is functorial, in the sense that if f : H1 → H2 is a δ-
homomorphism defined over k, then there is a homomorphism g : G1 → G2

of proalgebraic groups (defined over k) such that all relevant maps com-
mute. This is not difficult: Let c1 be a δ-generic point of H1 over k. Then
f(c1) ∈ k〈c1〉. Let k(c) = k〈c〉, and k(d) = k〈f(c)〉. Then d ⊆ k(c), c is
a generic point of G1 over k, and d can be considered as a point of G2.
The “k-rational” map taking c to d can be extended to a homomorphism
G1 → G2 of prolagebraic groups, defined over k. We will call this functor F.

(ii) Suppose now that H is a connected algebraic group defined over k. In par-
ticular H is a δ-connected δ-algebraic group defined over k. (δ-connectedness
is due to Kolchin.) Then the proalgebraic group G associated to H is iden-
tical to the inverse limit of Buium’s prolongations: .... → Hn → Hn−1 →
.... → H1 → H, from [B3] or [B4]. This is not difficult to see and depends
on the fact that if a is a δ-generic point of H over k, then (a, δ(a), ..., δn(a))
is a generic point of Hn over k.

Lemma 4.5. Let H1 be a δ-connected δ-algebraic group defined over k.
Suppose f : H1 → H2 to be a δ-homomorphism from H1 into a connected
algebraic group H2, where both f and H2 are defined over k. Suppose more-
over f(H1) to be Zariski-dense in H2. Let G1 be the canonical proalgebraic
group associated to H1 and h : H1 → G1 the canonical embedding. Then
(i) there is a surjective homomorphism π : G1 → H2 (of proalgebraic

groups), defined over k, such that f = π.h.

(ii) Suppose moreover that f is an embedding. Then Ker(π) is commuta-
tive and prounipotent.

Proof. We will be brief.
(i) Let c be a δ-generic point of H1 over k. Then f(c) ∈ k〈c〉, and f(c) is
a k-generic point of H2 (by Zariski-denseness of f(H1) in H2). Let c be a
possibly infinite tuple such that k(c) = k〈c〉. Then c is a generic point of G1

over k. All that has to be checked is that the (k-rational) map π taking c
to f(c) extends to a surjective homomorphism π : G1 → H2 of proalgebraic
groups, which satisfies the requirements. This is left to the reader.

(ii) Let G2 = f(H2). There is a canonical surjective homomorphism of proal-
gebraic groups g : G2 → H2 (such that g.h2 = id on H2). By [B3], Ker (g)
is commutative and prounipotent. By functoriality F (f) is an embedding of
proalgebraic groups G1 → G2. Let π be as in (i). We leave the reader to check
that g.F (f) = π. Thus ker (π) is commutative and prounipotent.

Definition 4.6. Let G be a δ-algebraic group. We call G linear if there is
a δ-embedding of G in some GLn(U). We call G of Abelian-type if there is a
δ-embedding of G in some abelian variety A.
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Lemma 4.7. Let H be a linear δ-connected δ-algebraic group. Suppose that
f1 is a δ-homomorphism from H into a connected algebraic group H1, and
f1(H) is Zariski-dense in H1. Then H1 is also linear.

Proof. By definition of H being linear, there is a δ-embedding f2 of H in
a linear algebraic group H2, and we may assume f2(H) is Zariski-dense
in H2, and thus H2 is connected. Let k be a differential field such that
all the above data are defined over k. Let G be the canonical proalgebraic
group associate to H. By Lemma 4.5 we have surjective homomorphisms
π1 : G → H1 and π2 : G → H2 of proalgebraic groups, where moreover
ker (π2) is commutative and prounipotent. Thus (as H2 is linear), G is
prolinear. Thus H1 is linear.

Corollary 4.8. Let G be a δ-connected δ-algebraic group, defined over k.
Then G has a unique maximal linear δ-connected δ-closed subgroup N. N is
normal, defined over k, and the quotient G/N is of Abelian-type.

Proof. By 4.2 we may assume G to be a subgroup of a connected algebraic
group H defined over k, and we may also assume G to be Zariski-dense in H.
By the Chevalley-Barsotti Theorem, H has a (unique) maximal connected
linear algebraic subgroup H1 defined over k, H1 is normal in H and H/H1 is
an abelian variety B say. Then G∩H1 is δ-closed in G and defined over k. Let
N be the δ-connected component of G ∩H1. N is normal in G, δ-connected
δ-algebraic, defined over k, and linear. We must show
(i) G/N is of Abelian type, and
(ii) N contains every other normal linear δ-connected δ-algebraic subgroup
of G.

First, let G1 be G/G ∩ H1. Then G1 embeds canonically in B = H/H1,
as a δ-connected δ-closed subgroup, and in particular is commutative. On
the other hand N has finite index in G ∩H1, whereby we have a canonical
surjective homomorphism π : G/N → G1 with finite kernel G ∩ H1/N. As
G/N is δ-connected, it easily follows that G/N is also commutative. Clearly
G1 is divisible with only finitely many elements of any given order. The same
is then true of G/N. Thus we can form the “dual isogeny” π∗ : G1 → G/N
defined by π∗(c) = Σπ−1(c), which will be a surjective δ-homomorphism
with finite kernel K. We thus obtain a δ-isomorphism π∗∗ : G/N → G1/K,
inducing a δ-embedding of G/N in B/K. But the latter is also an abelian
variety. This yields (i). Suppose N1 is some other δ-connected δ-closed
linear subgroup of G. Let H2 be the Zariski-closure of N1 in H. Then H2

is connected, and by Lemma 4.7, linear. By the properties of H1, H2 is
contained in H1, and thus N1 is contained in H1 ∩ G = N. This yields (ii).
The proof is complete.
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Note that Lemma 4.7 shows that the class of linear δ-connected δ-algebraic
groups is closed under homomorphic images. Methods like those above show
that this class is also closed under extensions. The class of δ-connected δ-
algebraic groups of Abelian-type is closed under extensions, but not under
homomorphic images.
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