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THE GEOMETRY OF FLAG MANIFOLD AND
HOLOMORPHIC EXTENSION OF SZEGÖ KERNELS FOR

SU(p, q)

L. Barchini, S.G. Gindikin and H.W. Wong

Let G0 = SU(p, q), K0 = S(U(p) × U(q)) a maximal compact
subgroup, and let G,K be their complexifications. Finally,
let B be a Borel subgroup of G. We define a number of al-
gebraic functions on G/B × G/K and use them to construct
a Stein extension of the Riemannian symmetric space G0/K0.
These functions capture the singularities that can occur in the
meromorphic extensions of the Knapp-Wallach Szegö kernels.
These facts imply that all solutions of the Schmid equations
extend holomorphically to the space of linear cycles.

1. Introduction.

A Szegö mapping is an intertwining operator from a principal series repre-
sentation to a discrete series representation. Knapp and Wallach write down
a number of Szegö mappings explicitly in [KW], in which they realize the
discrete series as the solution space of the Schmid equations on a Riemannian
symmetric space Z0. It will follow as an easy consequence from our work
that these solutions extend holomorphically to an universal Stein symmetric
domain Z containing Z0. While this paper is strictly concerned with the
Szegö mapping and its holomorphic extension, and is self-contained in this
respect, we believe it is important to make explicit the rich underlying geom-
etry. We will prove various geometric assertions made in this introduction
in another paper [BGW].

It is standard in projective geometry to study duality of homogeneous
spaces. In our setting, the two spaces are complex homogeneous spaces
X,Z, where X is a generalized flag manifold and Z a Stein symmetric space.
The same geometric data is encapsulated by a triple (G,K,B), where G
is a connected complex reductive group, K a subgroup which is the fixed
point set of a complex involution, and B a parabolic subgroup, so that
X = G/B,Z = G/K. The duality is most conveniently captured by the
following double fibration picture, in which Y = G/(K ∩B):

Y
↙ π ρ↘

X Z.
(1.1)
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We will specialize in this paper to the following triples: G = SL(p+ q,C),
B is a Borel subgroup, and K is the subgroup S(L(p)× L(q)) (which is the
subgroup of SL(p+ q,C) consisting of matrices which have diagonal block of
size p× p in the upper left corner and q× q in the lower right hand corner).
We assume p ≥ q and let n = p+ q. The advantage of this situation is that
we can express everything in terms of objects from basic projective geometry,
although the phenomenon is more subtle than that of the classical geometry.

To see what sort of interesting geometry could be done in this setting,
it is instructive to recall the more elementary situation of Matineau theory
of duality of complex projective spaces, see [Mar1], [Mar2], and [GH].
Let D be a linearly convex domain of Pn, in the sense of Martineau (i.e.,
through each point in Pn \ D is a hyperplane lying inside Pn \ D; clearly,
all convex domains, in the real sense, are linearly convex). Let D∗ ⊆ Pn∗
consist of hyperplanes which does not intersect ∂D, it is called the polar
set. Then there is an operator, known as the Fantapié indicator, which sets
up an isomorphism between H∗(D) (the space of analytic functionals) and
H(D∗) (the space of holomorphic sections of a line bundle). If we interpret
the analytic functional as an integral operator over ∂D, what the Fantapié
indicator does is to integrate the function 〈η, z〉−1 (z is the variable) against
a suitable integral kernel, and it then yields the value at the point in D∗

represented by η. Since the singularity of 〈η, z〉−1 is the hyperplane defined
by η, we know that we can integrate over ∂D for any η representing a point
in D∗.

We would like to do the same in the more complicated setting of the
flag manifold X. It turns out that for each point z ∈ Z, its stabilizer
Gz
∼= K acts on X with a unique open orbit D(z). Its complement is a

union O(z) =
⋃q
k=0Ok(z) of the closure of exactly q + 1 orbits Ok(z)0 of

codimension one. We will call O(z) a determinant configuration, and the
singular varieties Oj(z) determinant varieties. From the other direction,
suppose A ⊆ X is any subset, define the polar of A, Â, to consist of those
z ∈ Z such that O(z) does not intersect A. Obviously, O(z) plays the role of
hyperplane in ordinary projective geometry. However, a configuration O(z)
is more complicated than a hyperplane, and there are not so many “large”
subsets A whose polar Â is non-empty. These reflect the fact that flag
manifold is more complicated than projective space. To put this complexity
in a slightly different way, all these reflect the rigidity of symmetric spaces
with rank higher than one, of flag manifolds, or of flag domains.

It turns out that we have bihomogeneous polynomials Dj(x, z), in terms
of suitable homogeneous coordinates of x on X and z on Z, such that the
equation Dj( , z) = 0 defines Oj(z). We call the functions Dj determinant
functions, for they can be expressed as suitable determinants. These func-
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tions Dj contribute to all the singularities that can occur when we extend
holomorphically any Knapp-Wallach Szegö kernel. To give readers a sense
of what is happening, we would like to mention that we can also write down
Szegö kernels for generalized flag manifolds. The more “degenerate” the flag
manifold is (i.e., if the generalized flag manifold is G/P , then the larger P is),
the less will be the number of factors involved in the singularities of the Szegö
kernels. In the limiting cases of the Grassmanians G(p, p + q),G(q, p + q),
only two “determinant functions” are involved, and they can be expressed
in terms of norm functions of the related Jordan algebras. The pullback via
X → G(p, p+ q) (or G(q, p+ q)) of these two limiting determinant functions
are D0 and Dq, and occur in the Cauchy-Szegö kernels for Hermitian sym-
metric manifolds. The remaining q − 1 functions are genuinely new and are
particularly interesting.

The second key ingredient in Martineau’s theory is the boundary of the
linearly convex domain. In our context, we look for a class of “large” sub-
manifolds whose polars are non-empty. We need a real form of G. In fact, we
are interested only in the conjugacy (under G on G0) class of real forms, just
as we consider the conjugacy class {Gz, z ∈ Z} of K. Each member of the
class acts on X with a unique minimal (closed) orbit. Thus we have a class
of submanifolds: The G translates of the minimal G0 orbit X0. The polar X̂0

turns out to be a Stein extension of the real form Z0 = G0/K0 ⊆ Z. Indeed,
as complex manifolds, a connected component of X̂0 satisfies (X̂0)0 ∼= Z0×Z0.
We will see that X̂0 plays an important role in the Szegö kernels and holo-
morphic extension of solution of Schmid equations.

We can also understand the connected component of X̂0 from another
direction. There are (p+q)!

p!q!
open G0 orbits on X, called the flag domains. It

is well-known that cohomology on these flag domains realize various discrete
series representations. All the flag domains share X0 as the same “Shilov
boundary”. Pick any flag domain D. Among the minimal orbits of K, ex-
actly one, Γ, lies inside D. The class of all G translates of Γ which stay
inside D is called the class of linear cycles associated to D. The spaces of
linear cycles associated with all but two of the domains D are parametrized
by the a connected component of X̂0 (as can be shown by a direct compu-
tation, but this also follows from a general result proved by J. Wolf and R.
Zierau). On the other hand, in [Wo1] it is proved that the space of linear
cycles is always Stein, but we can prove the Stein property directly. Re-
call how to prove an open subset X̂0 of a Stein manifold Z to be Stein, it
is enough to construct barrier functions for each z ∈ ∂X̂0. The functions
(D(x, ))−1 = Πq

j=0(Dj)−1 for each x ∈ X0 are what we need. Thus we
see that our determinant functions give a natural way of proving the Stein
property.
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A final ingredient in Martineau’s theory is the Fantapié indicator. The
analogue here is the holomorphic extensions of Szegö kernels. For a real
semisimple Lie groupG0 with non-empty discrete series, each Knapp-Wallach
Szegö mapping sends sections of a certain vector bundle on the homogeneous
space S0 = G0/P0 (P0 is a minimal parabolic subgroup) to the solution space
of the system of elliptic differential equations discovered in [Sc1] on the Rie-
mannian symmetric manifold Z0: The Schmid equations. We would like to
extend holomorphically the Knapp-Wallach Szegö kernels. In the case of
SU(1, 1), the Szegö kernel of Knapp-Wallach coincides with the Cauchy ker-
nel for the unit disc, and its holomorphic extension is self-evident. In [Gi]
is discussed how to do so in SU(2, 1). See also [Kn]. In general, we need
to “complexify” the homogeneous manifolds S0 and Z0. Instead of Z0, we
consider Z, and instead of S0, we consider X (for reasons to be explained in
Section 3). The kernel function of the Szegö mapping is an analytic section,
over X0 × Z0, of a certain bundle on X × Z. We would like to extend this
kernel holomorphically as far as possible.

We will show that we will end up with a meromorphic object P (x,z)

Q(x,z)
, where

P (x, z) is a section of a suitable bundle and is expressible in terms of bi-
homogeneous polynomials, Q(x, z) is a product of powers of Dj. This ex-
plains another reason why we are interested in the configurations O(z): all
Szegö kernels of the Knapp-Wallach type can be extended to at least its
complement.

Morally, the Szegö mapping is obtained by integrating over X0 of the
Szegö kernel. Recall the set X̂0. From what we know about the possible
singularity of the holomorphic extension of the kernel, we know that the
Szegö mapping will actually send a suitable section of a line bundle on X0

to a holomorphic section of a related bundle on X̂0. Thanks to the work
in [KW], we know that the restriction of such holomorphic sections to Z0

give all the solutions of Schmid equations when the parameters are “far
from the wall”. Hence we have found an “universal” Stein extension of Z0

over which we always have a holomorphic extension of the solutions of the
Schmid equations. This is reminiscent of the classical result of Aronshain
about the universal extension of solutions of Laplace equations. Later, this
result is generalized by Martineau and Kiselman to a system with constant
coefficients. We have here an universal domain for the extensions of the
solutions of elliptic equations with variable, instead of constant, coefficients.

Here is a brief summary of the paper. In Section 2 we define q + 1 deter-
minant functions in order to construct a Stein extension for the Riemannian
symmetric space G0/K0. We shall summarize the construction of the Knapp-
Wallach Szegö mappings in Section 3. We go to the nuts and bolts of the
computation, when G0 = SU(p, q), in Sections 4 and 5, and the upshot of the
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computations is that the singularities of the Knapp-Wallach Szegö kernels
can be be described as the zero set of some of the determinant functions.
From this it follows that the solution of Schmid equations can always be
extended to a universal domain. Some of the results stated in Section 5 are
proved in Section 6.

2. Determinant Functions.

We will define certain functions called the determinant functions, and we
will use them to define a Stein manifold. The determinant functions will
be seen to capture the singularities of the meromorphic extension of Szegö
kernels and the solution of the Schmid equations will be seen to extend
holomorphically to the Stein manifold.

We start with certain notations which we use throughout the paper. We
start with the obvious geometric interpretations of X and Z. The space
X is the set of all sequence (Vi; 1 ≤ i ≤ n = p + q) of subspaces of Cn,
where dimVi = i and Vi ⊆ Vj if i ≤ j. We can represent a point of X by
ω = (ωi, 1 ≤ i ≤ p + q), where ωi ∈ ΛiCp+q. Strictly speaking, we should
look at the n−tuple (ω̃i) ∈ Πn

i=1P(ΛiCn), where ω̃i is the projective point
in P(ΛiCn) represented by ωi. The space Z consists of pairs (Lp, L′q) of
disjoint subspaces of dimensions p and q. We can likewise think of Lp, L′q,
as in the case of ωj, as two elements in Λ•Cn. (Of course, there are various
algebraic conditions to be satisfied by ωi and Lp, L

′
q, but we will not list

them here. We only want to point out that Lp∧L′q 6= 0.) Sometimes we find
it convenient to use an ordered basis (vi, 1 ≤ i ≤ n) to represent a flag, by
putting ωi = v1 ∧ . . . ∧ vi.

For the sake of simplicity, we find the following notation .= useful. It
means that the two sides are equal up to a non-zero constant multiple.

We introduce two more pieces of notations, for convenience’s sake. On
Λ•Cp+q we have a “star” operator. Suppose we have an ordered basis (vi, 1 ≤
i ≤ p+ q) for Cp+q, then ∗vk1 ∧ . . . ∧ vki := εvki+1 ∧ . . . ∧ vkp+q . Here ε is +1
or −1 according to whether (k1, . . . , kp+q) is an even or odd permutation of
(1, . . . , p + q). Now suppose u ∈ ΛaCp+q, v ∈ ΛbCp+q, and suppose a + b ≥
p+q, define uuv := ι(∗u)v. Here ι( ) means the interior product. Note that
uu v .= vuu. Geometrically, if u, v represent subspaces of dimensions a and
b, then uu v 6= 0 iff the subspaces represented by u, v intersect transversally
and in that case u u v represents their intersection.

Next, for any forms ω, θ, define ωtθ := ω∧θ. Observe that ωtθ .= θtω.
The reason we introduce this notation is due to the following geometric
interpretation. If ω, θ represent subspaces, then ω t θ 6= 0 iff they do not
intersect, and in that case ω t θ represents their linear span.
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We will take the convention that atbtc := (atb)tc, likewise for aubuc.
We will take (e1, . . . , ep+q) as the standard ordered basis of Cp+q. We let

lp = e1 ∧ . . . ∧ ep, l′q = ep+1 ∧ . . . ∧ ep+q be the standard p-plane and q-plane.
Given any forms u of the top degree, we can identify it as a scalar [u],

provided we have made a choice of a “standard” top form, as we have already
done.

We define q + 1 determinant functions on X × Z as follows.
Definition 2.1. For 0 ≤ j ≤ q, define Dj = Dj(ω1, . . . , ωp+q;Lp, L′q) as
follows.

Dj =


[ωp t L′q] if j = 0,
[(ωp+q−j u Lp) t ωj t L′q] if 1 ≤ j ≤ q − 1,
[ωq t Lp] if j = q.

(2.1)

Remark 2.2. The “functions” Dj are in fact sections of suitable line
bundles on X × Z. To be more precise, proceed as follows. On Z are
two tautological vector bundles, denoted by Vp and V ′q . The fiber of Vp,
respectively V ′q , over the point (Lp, L′q) (viewing it as a pair of vector spaces)
is just Lp, respectively L′q. Likewise, over X are various tautological bundles
Ui, whose fiber over a point represented by ω = (ωj) in X is the vector
subspace represented by ωi. We can form the top exterior products of all
these bundles and obtain line bundles LZ,p and L′Z,q on Z and LX,i on X.
With these notations at hand, Dj is a section of (LX,p+q−j ⊗LX,j)� (LZ,p⊗
L′Z,q) for 1 ≤ j ≤ q − 1, of LX,p � L′Z,q for j = 0, and of LX,q � LZ,p when
j = q.
Remark 2.3. Further, these functions are pullbacks via the obvious projec-
tion X → Y , where Y is the generalized flag manifold consisting of subspaces
V1 ⊆ . . . Vq ⊆ Vp ⊆ Vp+1 . . . Vp+q−1 ⊆ Vp+q, where dimVi = i (Vp is redundant
if p = q). The manifold Y is the complexification of the manifold G0/P0, on
which the principal series in [KW] is realized.

Next, let G0 = SU(p, q) and K0 = S(U(p)×U(q)) be its maximal compact
subgroup. The space Z0 = G0/K0 is a Hermitian symetric space. Concretely,

Z0 = {Lp ∈ G(p, p+ q)|〈 , 〉 is positive definite on Lp}.
Here we define 〈z, z〉 :=

∑p
i=1 |zi|2 −

∑p+q
j=p+1 |zj|2. We shall identify the

conjugate manifold G0/K0 as

Z0 := {L′q ∈ G(q, p+ q)|〈 , 〉 is negative definite on L′q}.
Hence there is the obvious identification of Z0 × Z0 ⊆ Z = G/K.
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We will from now on identify

Z0 = {(Lp, (Lp)⊥)|〈 , 〉 is positive definite on Lp} ⊆ Z0 × Z0.

Here ⊥ denotes the orthogonal complement with respect to 〈 , 〉. The
advantage of this point of view is that Z is manifestly a G0 invariant com-
plexification (indeed Stein) extension of Z0.

It is well known that X has a unique closed G0 orbit X0 which is K0

homogeneous ([Wo1]). It can be realized geometrically as follows. On Pn−1

are three G0 orbits, two of them are open (those points on which 〈 , 〉 are
positive, resp. negative), the remaining one Σ is closed. A flag ω = (ωj, 1 ≤
j ≤ n) belongs to X0 iff the following is true: ωq ⊆ Σ (here, we view ωq as a
projective plane of dimension q− 1 and Σ a subset in Pn−1) and ωn−1, when
viewed as a hyperplane of Pn−1, is tangent to Σ at any point of ωq.

Now consider the set
Definition 2.4. Define X̂0 ⊆ Z as follows.

X̂0 := {(Lp, L′q)|Dj(ω;Lp, L′q) 6= 0 for all j and for all ω ∈ X0}.

Let D := ΠjDj, then

X̂0 = {(Lp, L′q)|D(ω;Lp, L′q) 6= 0 for all ω ∈ X0}.(2.2)

Obviously, X̂0 is a G0 invariant subset of Z. We want to show that X̂0

is Stein. To do that, we need the following technical lemma in complex
analysis, the proof provided in [Gu, p. 137] carries over verbatim.

Lemma 2.5. Let V be a holomorphic variety and Uj, j ∈ J , is an arbitrary
collection of Stein open subsets. Suppose U := ∩jUj is non-empty open, then
U is also a Stein variety.

We now have:

Lemma 2.6. The space X̂0 is a Stein variety.

Proof. We would like to apply Lemma 2.5. Let V = Z. For each ω ∈ X,
define Uω = {(Lp, L′q) ∈ Z|D(ω,Lp, L′q) 6= 0}. Then X̂0 = ∩ω∈X0Uω.

It can be verified directly that Lp = lp, L
′
q = l′q belongs to X̂0. The

compactness of X0 guarantees that X̂0 is open.
It remains to see that each Uω is Stein. Observe that Z is in fact a smooth

affine variety. Viewed in this way, each Dω(Lp, L′q) := D(ω;Lp, L′q) can be
viewed as a regular function on Z. The set Uω is the complement of the
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closed set defined by Dω = 0, and is thus a principal open set, hence also
affine, and therefore Stein.

Lemma 2.7. The space X̂0 contains Z0.

Proof. The space X̂0 is clearly G0 invariant and contains the base point of
Z0 where Lp = lp, L

′
q = l′q. However, G0 acts transitively on Z0.

Remark 2.8. It can be verified directly that X̂0 is connected except when
p = q, and the connected component containing Z0 is the space of linear
cycles associated any flag domains. Clearly, this points to a close connection
with the work in [Wo1], [Wo2], [Wo3], [WW]. It also relates to a recent
work by Wolf and Zierau that the space of linear cycles have the structure
G0/K0 ×G0/K0 [WZ]. See [BGW] for further details.

3. Knapp-Wallach Construction.

We briefly summarize Knapp-Wallach construction in the caseG0 = SU(p, q).
The compact Cartan subgroup of G0 is

T0 = {g = diag(eiθ1 , . . . , eiθn)|Σn
j=1θj = 0},

and we think of it0 = {(θ1, . . . , θn)|∑n
i=1 θi = 0} as Rn in the obvious way.

If we denote by fj ∈ (Rn)∗, j = 1, . . . n, the elements of the dual basis of
the standard basis ej of Rn, then the roots of t in g correspond to the set

∆(g, t) = {fi − fj|i 6= j; 1 ≤ i, j ≤ n}.
The Cartan involution θ is defined by θ(X) = −X∗ for X ∈ g0. Thus we

have g = k⊕ p. The set of compact imaginary roots of t in g is given by

∆(k, t) = {fi − fj|1 ≤ i, j ≤ p} ∪ {fk − fm|p+ 1 ≤ k,m ≤ p+ q}

and

∆(p, t) = {±(fi − fp+j)|1 ≤ i ≤ p, 1 ≤ j ≤ q}
is the set of noncompact roots of t in g.

Once a positive system ∆+(k, t) is fixed, the Knapp-Wallach construction
starts with a triple (t,∆+(g, t), λ), where the positive system is chosen to be
compatible with ∆+(k, t) and λ ∈ K̂0 is a dominant integral parameter so
that λ− ρn + ρk is regular dominant for ∆+(g, t).

Each triple determines uniquely a representation in the discrete series of
G0 ([Sc2]). The Knapp-Wallach Szegö mapping relates a principal series
with a discrete series. The details are as follows.
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First, to each triple (t,∆+(g, t), λ) is associated a new triple (̂t⊕a,∆+(g, t̂⊕
a), (µ, λ|̂t)), where t̂⊕a a maximally split Cartan subalgebra of g , ∆+(g, t̂⊕a)
a positive system for ∆(g, t̂⊕a) with the property that if α ∈ ∆+, then θα /∈
∆+, and µ ∈ a∗. We would like to explain how this new triple determines a
principal series representation of G0.

To choose the maximally split Cartan subgroup, we have to start with a
sequence of positive noncompact roots α1, . . . , αq which satisfies:{

{αi} are strongly orthogonal (s.o.).
αj is simple in the subsystem of roots s.o. to {α1, . . . , αj−1} .(3.1)

Such a sequence is called a strongly orthogonal sequence (s.o.s.). Let
〈 , 〉 be the trace form, choose root vectors Eα so that

〈Eα, E−α〉 =
2

〈α, α〉 .

Define Hα to be the member of t dual to α under 〈 , 〉.
The standard Cayley transform relative to the sequence α1, . . . , αq is c =

Ad(u) with u = uα1 . . . uαq and uαj = exp(π
4
(Eαj − E−αj )). The maximally

split Cartan subalgebra is a ⊕ t̂ = ct = Σ(Eαj + E−αj ) ⊕ t̂. Here t̂ is the
orthocomplement of Σq

1iCHαj ∈ t.
This takes care of the maximally split Cartan subgroup. Next, we need

to explain the positive restricted root system. Since this is in turn pinned
down by a positive root system of a ⊕ t̂, we will explain the choice of the
latter.

The positive system ∆+(g, a⊕ t) is determined lexicographically with re-
spect to the list Hα1 . . . Hαq . Indeed, a root cβ is positive if 〈β, α1〉 < 0 or
〈β, α1〉 = 0 and 〈β, α2〉 < 0, etc. For roots cβ supported on t̂, then cβ is
positive if β ∈ ∆+(g, t).

Finally, we can take care of the parameter µ ∈ a∗. It is defined by means
of the equation

(µ− ρa)(Eαj + E−αj ) =
−2〈λ+ njαj, αj〉

〈αj, αj〉
where ρa denotes the half sum of the associated positive restricted roots.
Here the integer nj is as in Equation (6.5b) on [KW, p. 178].

At this point, we have the principal series representation: The maximally
split Cartan together with the positive system ∆+(g, a ⊕ t̂) determines a
minimal parabolic subgroup P0 = M0A0N0 of G0. Let σ be the irreducible
representation of M0 with highest weight λ|̂t (when p = q,M0 is disconnected
and one has to be a little more careful in defining σ). The principal series
representation of G0 is induced form (σ, µ).
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Finally, we can write down the Knapp-Wallach Szegö mapping.
If (τ, V ) denotes the irreducible representation of K0 with the highest

weight λ, then Knapp-Wallach Szegö map is given by

Sf(l) =
∫
K

τ(k)[f(lk)]dk,

where f is a function on G0 with the correct transformation property such
that it represents an element of the principal series.

We would like to rewrite the mapping in a slightly different context.
If P denotes the complexification of P0, then G0/P0 is the unique closed

orbit of the generalized flag manifold Y = G/P (the same manifold as in
Remark 2.3). The preimage of G0/P0, under the canonical fibration X −→
G/P , is the unique closed orbit X0 of X. Thus we can transfer geometrical
data on G0/P0 to X0. In particular, instead of a vector bundle on G0/P0,
we can consider a related line bundle on X0. In this context, the domain of
the Szegö map is a space of certain smooth sections of an appropriate line
bundle over X0. Some of this is implicitly done in [KW, p. 180] when they
rewrite their intertwining formula as a kernel operator.

More precisely, proceed as follows. The s.o.s. {α1, . . . , αq} determines
a base point on the orbit X0. Indeed, the set of roots ∆+(m, t̂) ∪ {β ∈
∆(g, t)|〈β, α1〉 < 0, or 〈β, α1〉 = 0 and 〈β, α2〉 < 0, etc.} defines a Borel
subalgebra b′ = t ⊕ u′. The base point in X0 associated to α1, . . . , αq is
given as the Borel subalgebra b = cb′ = a ⊕ t̂ ⊕ u. We denote by B the
analytic subgroup of G with Lie algebra b.

Let ν ∈ (h = a⊕t̂)∗ be so that ν|a = µ+ρa and ν |̂t = λ|̂t. This defines a line
bundle Lν on X. Let Ωtop be the line bundle induced from ∧top(u/(u∩m)) (it
can be interpreted as top holomorphic de Rham forms on X ”transversal”
to the fibers of X −→ G/P ). Finally, let the K module (τ, V ) induce the
vector bundle V → Z. The Knapp-Wallach Szegö kernel can be viewed as a
section of the bundle (L∗ν ⊗Ωtop)� V on X0 × Z0, where Z0 ⊆ Z is the real
form G0/K0 of Z.

When x, l ∈ G0, let x−1l = κan ∈ K0A0N0 be the Iwasawa decomposition,
then the Szegö kernel as given in [KW] can be written as

S(x, l) = a(x−1l)µ−ρτ(κ(x−1l))φλ ×Ad(l)(Ω)(3.2)

where φλ denotes a highest weight vector of the irreducible representation
τ and Ω is a non-zero element of Λtopu/(u ∩ m). In other words, suppose
f : G0 → Cν represents a section over X0 which comes from the principal
series, then for each x, S(x, l)f(x) would represent the pullback of a top
de Rham form on G0/P0, its integration over G0/P0 is Sf(x).
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Remark 3.1. We will abuse terminology and say that Sf(x) is the inte-
gration over X0 of S(x, l)f(l).
Remark 3.2. For SU(p, q), s.o.s. satisfying the Conditions 3.1 are not
unique. Different choices of s.o.s. produce different choices of the base point
in the unique closed G0 orbit X0 in X and different line bundles over X0.
This may result in, as commented upon in [KW, p. 164], the realization of
the same discrete series as quotients of different principal series. Sometimes
we will choose some particular s.o.s. to carry out computations.

Each point l ∈ G determines a point l · B ∈ X, and each x ∈ G can be
thought as a point x · K ∈ Z. In this context we want to obtain a mero-
morphic continuation of S(x, l) in the most straightforward manner, simply
as in Equation 3.2 but now let x, l ∈ G. Thus, we are led to consider the
subset of G whose elements g are expressible as κan ∈ KAN . However,
there is no complex Iwasawa decomposition because two things can poten-
tially go wrong. First, not all g ∈ G admits such a form. Second, κ, a, n
need not be unique. Theoretically, we can “remedy” these two defects as
follows. We can, instead, define the Szegö kernel for those pairs of (x, l)
such that g = x−1l admits a complex Iwasawa decomposition, and then go
on to prove that such a mapping continues meromorphically to all pairs.
This should “remedy” the first defect. For the second defect, we can try to
show that the integrality of λ will guarantee that the formula will be well
defined despite the fact that there may be several Iwasawa decompositions
for the same g.

However, we choose to take a more pragmatic approach here. Since we
are dealing with the special case of G0 = SU(p, q), we will naively extend
the Szegö kernel formula complex analytically, and express it in terms of
geometrical data, rather than group data. It will be apparent from the
resulting formula that it is meromorphic and well defined.

4. Knapp-Wallach Construction for SU(p, q) in Practice I.

Suppose we have two rows of increasing numbers: xi in the first row, with
1 ≤ xi ≤ p, yj in the second row, with p + 1 ≤ yj ≤ p + q. An alignment
of these two rows of numbers is called a double array. A double array looks
like

x1 . . . xi1 xi1+1 . . . xi2 xi2+1 . . .
yp+1 . . . yp+j1 yp+j1+1 . . . yp+j2

(4.1)

We allow for the possibilities that i1 = 0 (i.e., nothing precedes yp1) and
i1 + 1 = i2, etc.

If we let xi = i, 1 ≤ i ≤ p and ym = m, p+ 1 ≤ m ≤ p+ q, the associated
double array is called a complete double array. The set of all positive systems
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∆+(g, t) compatible with ∆+
K is in one-one correspondence with the set of

all complete double arrays.
We can describe complete double arrays more precisely. A complete dou-

ble array corresponds to a non-decreasing sequence of integers 0 ≤ a1 ≤
. . . ≤ aq ≤ p, as follows. The number yp+i in the second row must be
squeezed in the space after the number ai and before ai+1 in the first row.
Alternatively, given such a sequence a = (ai), we have a related sequence
1 ≤ b1 < . . . < bq ≤ (p + q), by putting bi := ai + i. The number bi refers
to the position of yp+i in the double array picture. Thus, referring to the
picture above, b1 = i1 + 1, bj1 = i1 + j1, bj1+1 = i2 + 1, . . . As indicated in
Remark 2.8, complete double arrays parametrize flag domains.

The simple roots are precisely fi−fj whenever xi or yi is followed by xj or
yj. The non-compact simple roots are exactly fi−fj for those xi followed by
yj or those yi followed by xj. Thus, in the diagram above, the simple roots
are: f1−f2, . . . , fi1−1−fi1 , fi1−fp+1, fp+1−fp+2, . . . , fp+ji−1−fp+j1 , fp+j1−
fi1+1, . . . The simple non-compact roots are: fi1 − fp+1, fp+j1 − fi1+1, fi2 −
fp+j1+1, . . .

Remark 4.1. From elementary combinatorics it follows that there are
(p+q)!

p!q!
= |WG|
|WK | possible complete double arrays. Here WG ,WK denote the the

respective Weyl groups. In general, there are |WG|
|WK | different G0-open orbits

in X (or, by duality, K-closed orbits in X) by [Wo1].

There are different possible choices of s.o.s. satisfying Conditions 3.1. For
the sake of illustrating that the functions Dj occur as singularities, we work
with the choice picked out by the following algorithm. This algorithm also
yields nj.

Algorithm 4.2.
(1) Let A be a complete double array. Start with the empty list as the

initial list of s.o. roots. Set j = 1.
(2) If the second row of A is empty. Stop.
(3) Suppose the most left hand member of the top row of A occurs to the

left of the most left hand member yp+r of the second row. Let xk be
the member in the first row that occurs immediately to the left of yp+r.
Append fk − fp+r to the list. Let nj be the number of elements in the
top row of A to the right of xk. Erase both yp+r, xk from A. Reset A
to be the new double array and replace j by j + 1. Go to Step 2.

(4) Suppose the most left hand element xk of the top row occurs to the
right of the most left hand element of the second row. Let yp+r be
the element in the second row immediately to the left of xk. Append
fp+r − fk to the list. Let nj be the number of elements in the second
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row of A to the right of yp+r Erase both yp+r, xk from A. Reset A to
be the new double array and replace j by j + 1. Go to Step 2.

Once the s.o.s. is selected, we can proceed as described above to determine
a base point in the G0-open orbit. The base point can be given in the form
of a Borel subalgebra or in terms of an ordered basis (vj, 1 ≤ j ≤ p + q) of
Cp+q. For a given s.o.s., the vj are as follows:
(1) For 1 ≤ i ≤ q vi = el + er where fl − fr is the i-th root in the s.o.s.
(2) For q + 1 ≤ i ≤ p vi = eki with ki < ki′ if i < i′. Here, the fki are so

that none of the roots of the form ±(fki ± fs), 1 ≤ s ≤ p+ q are in the
s.o.s.

(3) vp+1 = el − er if fl − fr is the last root in the s.o.s., etc.
(4) Until we have vp+q = el − er if fl − fr is the first root in the s.o.s.

From (vj) we can form (ω0)j := ∧ji=1vi. It can be verified that (ω0)j
is N invariant. The group A acts on them by an scalar. If a ∈ A, then
a · (ω0)j = aα1+...+αj (ω0)j for 1 ≤ j ≤ q, a · (ω0)j = aα1+...+αq(ω0)j for
q + 1 ≤ j ≤ p, and a · (ω0)j = aα1+...+αq−k(ω0)j for j = p+ k.

5. Knapp-Wallach Construction for SU(p, q) in Practice II.

An element l ∈ G is thought of as a point l · B in the flag manifold or
equivalently as a point (l · (ω0)j) = (ωj). An element x ∈ G is identified
with x ·K or equivalently with the pair (x · lp, x · l′q) = (Lp, L′q). We want
to rewrite the Szegö kernel as in Equation 3.2 in geometric terms. We will
omit the term Ad(l)(Ω) for we do not need it (see Remark 5.5).

We can assume that, under the trace form, λ is the diagonal matrix

diag

(
p∑
1

ri,
p∑
2

ri, . . . , rp;
q∑
1

si,
q∑
2

si, . . . , sq

)
,

where ri, sj ≥ 0 when i ≤ p− 1, j ≤ q − 1.
We find it convenient to think of (τ, V ) as the unique subrepresentation

of type τ in the following obvious representation of K.

{(Cp)r1 ⊗ (∧2Cp)r2 ⊗ . . .⊗ (∧pCp)rp}⊗ {(Cq)s1 ⊗ (∧2Cq)s2 ⊗ . . .⊗ (∧qCq)sq}.
Here (. . . )ri denotes the ri-symmetric tensor. The representation τ is equiv-
alent to the representation of K acting on the cyclic span of {(e1)r1 ⊗ (e1 ∧
e2)r2 ⊗ . . .⊗ (e1 ∧ e2 ∧ . . .∧ ep)rp}⊗ {(ep+1)s1 ⊗ (ep+1 ∧ ep+2)s2 ⊗ . . .⊗ (ep+1 ∧
. . . ∧ ep+q)sq} (a highest weight vector) under K.

Call this bigger representation (τ,W ). Notice that it admits an obvious
extension to a representation of G. Hence, the obvious homogeneous bundle
G ×K W → G/K is a trivial bundle (but non-trivial as a homogeneous
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bundle!): Take a basis (wi) for W , then the sections g 7→ (g, g−1 · wi)/ v
forms a pointwise basis, here (g, g−1 · wi)/ v means the equivalent class
of (g, g−1 · wi) under the usual equivalence relation. We will trivialize the
bundle G×K W in such a manner.

It should now become obvious why we would like to embed V into the
larger space W . For each l, we can view S( , l) as a function S( , l) : G→W
coming from a section of G×KW . Under the trivialization explained above,
we can view S( , l) as a vector-valued function G/K → W : S(x · K, l) =
x · S(x, l). From now on we will understand S(x, l) in this way.

Here is the general structure of the Szegö kernel, no matter how the s.o.s.
is found.

Theorem 5.1. The Szegö kernel is a product of meromorphic functions of
the form Πq

k=0Dj(ωj;Lp, L′q)
nj , where nj ∈ Z, with a suitable holomorphic

section.

Remark 5.2. We will prove Theorem 5.1 in the next section. It should
be noted that the proof contains a general algorithm which tells us how to
write down the formula for the Szegö kernel in general. The actual formula
depends crucially on the actual choice of s.o.s. Since a general description of
s.o.s. is combinatorially complicated, we are unable to give a “one-line” for-
mula for the Szegö kernel. Further, in the formula resulted, the holomorphic
section may share common factors with the meromorphic function. Hence,
we cannot be sure of the precise singularities and their degrees.

We have the following immediate corollary.

Corollary 5.3. The singularities of a Szegö kernel is always a union of
the zero set of some of the Dk, i.e., ∪k∈A{(ωj;Lp, L′q)|Dk(ωj;Lp, L′q) = 0}
for some subset A ⊆ {0, . . . , q}.

We have the following remarkable consequence straightaway.

Theorem 5.4. When λ is far from the wall, in the sense of [KW], any
solution of the Schmid equation admits a holomorphic extension to X̂0.

Proof. By [KW, Corollary 9.6], the image of the real version of the Knapp-
Wallach Szegö mapping is exactly the solution space.

Now the Szegö mapping is the integration over X0 of the Szegö kernel
(recall Remark 3.1). Since the only singularity of the kernel is always outside
X̂0, the Szegö mapping sends a section over X0 to a section defined for any
point in X̂0 and the resulting section over X̂0 is clearly holomorphic. Its
restriction to Z0 is clearly what is given by the real version of the Szegö
mapping.
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Remark 5.5. We have been ignoring the term Ad(l)ω in Equation 3.2
for the Szegö kernel. This is because Ad(l)Ω, when restricted to X̂0, is
essentially the pullback of a K0 invariant top form on G0/P0 and would not
contribute any singularity.

For the rest of this section, we assume that we choose the s.o.s. by Algo-
rithm 4.2.

It is convenient to introduce the notation Ωk := (ωk tL′q)uLp in order to
state the following results.

For the next theorem, assume we are dealing with the following special
sort of complete double array:

x1 . . . xi1 xi1+1 . . . xi2 . . . xiq−1+1 . . . xiq xiq+1 . . . xp
yp+1 yp+2 . . . yp+q

where 1 ≤ i1 < . . . < iq.

Theorem 5.6. If x · lp = Lp, x · l′q = Lq, l ·(ω0)j = ωj, then the Szegö kernel,
expressed as S(x ·K, l), is, up to a non-zero constant multiple, the product
of the following meromorphic function

(5.1) Dq((ω);Lp, L′q)
sq−(r1+...+rp)−(p−iq) ×D−(riq+...+rp−1)−(p−iq)

0

×Π{k|1≤k≤q−1}D
−(rik+...+r(ik+1−1))−(ik+1−ik)

k

(when iq = p (in particular, if p = q), the factor D0 should be interpreted as
not being involved) with the following holomorphic section:

(5.2)
{ i1−1⊗
a=1

(ωa+q u Lp)ra ⊗
i2−1⊗
a=i1

((ωa+q−1 u Lp) t Ω1)ra ⊗ . . .⊗
ik+1−1⊗
a=ik

((ωa+q−k u Lp) t Ωk)ra ⊗ . . .⊗
iq−1⊗
a=iq−1

((ωa+q−(q−1) u Lp) t Ωq−1)ra ⊗

p−1⊗
a=iq

Ωra
a ⊗ Lrpp

}

⊗
{ q−1⊗
a=1

((ωa t Lp) u L′q)sa ⊗ (L′q)
sq

}
.

Remark 5.7. Suppose ik = k for k ≤ j but ij+1 6= j + 1. Observe in
that case ik = ik+1 − 1 for k ≤ j − 1 and that ωik−k+q u Lp .= Dq for k ≤ j.
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Piece these together, we can rewrite the formula in Theorem 5.6 as follows.
The meromorphic function stays the same except that the exponent of Dq

becomes sq − (rj+1 + . . .+ rp)− (p− iq).
The section becomes

(5.3)
{ j⊗
a=1

(Ωa)ra ⊗
ij+1−1⊗
a=j+1

((ωa+q−j u Lp) t Ωj)ra ⊗

q−1⊗
k=j+1

ik+1−1⊗
a=ik

((ωa+q−k u Lp) t Ωk)ra ⊗ . . .⊗

p−1⊗
a=iq

Ωra
a ⊗ Lrpp

}

⊗
{ q−1⊗
a=1

((ωa t Lp) u L′q)sa ⊗ (L′q)
sq

}
.

Proposition 5.8. Keep the notations in Theorem 5.6. In the case of anti-
holomorphic discrete series:

x1 . . . xp
yp+1 . . . yp+q

the Szegö kernel, expressed as S(x ·K, l), is the product of the meromorphic
function D

rp−(s1+...+sq)
0 with the holomorphic section{ p−1⊗
a=1

(Ωa)ra ⊗ (Lp)rp
}
⊗
{ q−1⊗
a=1

(ωa+p u L′q)sa ⊗ (L′q)
sq

}
.(5.4)

From these follows this corollary:

Corollary 5.9. Assume 〈λ− δn + δk, α〉 ≥ 0 for all α ∈ 4+(g, t). Each of
the determinant functions Dj occurs as part of the singularity of the Szegö
kernel associated with a suitable discrete series.

We will prove these results in the next section.

6. Proofs.

The following simple but crucial observation follows from a simple piece of
linear algebraic calculation.

[ωp u L′q] = a(x−1l)α1+...+αq∆1

[ωq u Lp] = a(x−1l)α1+...+αq∆2

[(ωp+q−k u Lp) t ωk t L′q] = a(x−1l)2(α1+...+αk)

(6.1)
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for 1 ≤ k ≤ q − 1. We view κ(x−1l) as a diagonal block matrix in GL(p) ×
GL(q) ⊆ GL(p + q) and ∆1 refers to the determinant of the submatrix of
κ(x−1l) in GL(p), ∆2 to the determinant of the submatrix in GL(q).

Proof of Theorem 5.1. It will be very convenient to introduce the following
notations. For 1 ≤ k ≤ p− 1, Uk := x · κ · (e1 ∧ . . . ∧ ek), for 1 ≤ k ≤ q − 1,
Vk := x · κ · (ep+1 ∧ . . . ∧ ep+k).

Let (αi; 1 ≤ i ≤ q) be the s.o.s. Let αk = fak − fp+bk or αk = fp+bk − fak .
Therefore {bi} = {1, . . . , q} and {ai} ⊆ {1, . . . , p}. Let c1 < c2 . . . < cp−q be
such that {cl} ∪ {ai} = {1, . . . , p}.

Let D̃k = Dk for 1 ≤ k ≤ q − 1 but D̃q = D0Dq.
Observe that, if aj = J , then

x · κ · eJ = D̃−1
j a(x−1l)αj (ωp+q−j+1 u (ωj t L′q) u Lp).

Also, observe that

Λi
m=1(x · κ · ecm) = D−1

q (ωq+i u Lp).

From now on, assume 1 ≤ aj(1) < . . . < aj(q) ≤ p and bi(k) = k for
1 ≤ k ≤ q.

For each 1 ≤ m ≤ p−1, let {a1, . . . , aq}∩{1, . . . ,m} = {aj(1), . . . , aj(M)}
and {aj(1), . . . , aj(M)} ∪ {c1, . . . , cN} = {1, . . . ,m}.

Let Ω̂k := ωp+q−k+1 u (ωk t L′q) u Lp, and we define

U ′m := (ωq+N u Lp) t Ω̂j(1) t . . . t Ω̂j(M).

It can be verified that

Um
.= ΠM

k=1(D̃j(k))−1 ×D−1
q ×ΠM

k=1a(x−1l)αj(k)U ′m.(6.2)

Similarly, let Ω′k := ωp+q−k+1 u (ωk t Lp) u L′q, we can define

V ′n := Ω′i(1) t . . . t Ω′i(n),

then
Vn

.= Πn
k=1(D̃i(k))−1 ×Πn

k=1a(x−1l)αi(k)V ′n.

Now let a(x−1l)αi be eti , then a(x−1l)µ−ρ = Πq
k=1(etk)±(Rk−Sk)−2nk , where

Rk =
∑p
i=ak

ri, Sk =
∑q
i=bk

si and the sign is negative if αk = fak −fp+bk and
positive if αk = fp+bk − fak .

Group these together, we conclude that

(6.3) a(x−1l)µ−ρx · κ · φλ = Πq
k=1D

−(Rk+Sk)
k ×Πq

k=1(e2tk)Mk
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×D−(Rq+Sq)
0 ×D−

∑p

i=1
ri

q

p⊗
k=1

(U ′k)
rk ⊗

q⊗
k=1

(V ′k)sk ,

where Mk = Sk − nk or Rk − nk depending on whether αk is fak − fbk or
fbk − fak .

Recall that e2tk = Dk
Dk−1

for 2 ≤ k ≤ q − 1, e2t1 = D1, e2tq = D0Dq
Dq−1

, we are
done.

The remaining results to be proved are all stated under the assumption
that we are using Algorithm 4.2 to pick the s.o.s.

Proof of Theorem 5.6. It is a simple exercise of linear algebra to verify that
for a < i1,

ωa+q u Lp .= Dqx · κ · (e1 ∧ . . . ∧ ea),
for ik ≤ a < ik+1, 1 ≤ k ≤ q − 1, we have

(ωa+q−k u Lp) t Ωk
.= Dqa(x−1l)(α1+...+αk)x · κ · (e1 ∧ . . . ∧ ea),

for iq ≤ a we have

Ωa
.= a(x−1l)(α1+...+αq)x · κ · (e1 ∧ . . . ∧ ea),

whereas for 1 ≤ b ≤ q − 1 we have

(ωb t Lp) u L′q .= a(x−1l)(α1+...+αb)x · κ · (ep+1 ∧ . . . ∧ ep+b).

Finally, a(x−1l)µ−ρ .= Πq
k=1(etk)(sk+...+sq)−(rik+...+rp)−2(p−ik), where

a(x−1l)αk = etk .
Piece these up together and simplify, we reach the formula.

Proof of Proposition 5.8. It can be verified that for 1 ≤ a ≤ q,

x · κ · (e1 ∧ . . . ∧ ea) .= a(x−1l)−(α1+...+αa)Ωa,

for q + 1 ≤ a ≤ p,

x · κ · (e1 ∧ . . . ∧ ea) .= a(x−1l)−(α1+...+αq)Ωa,

for 1 ≤ b ≤ q,

x · κ · (ep+1 ∧ . . . ∧ ep+b) .= a(x−1l)−(α1+...+αq−b)∆−1
1 (ωp+b u L′q).
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It is simple to check that aµ−ρ .= Πq
k=1(etk)(rk+...+rp)−(sq−k+1+...+sq). Piece

these together, we are done.

Proof of Corollary 5.9. First of all, we would like to see that for both
the case when ij = j, 1 ≤ j ≤ q, in Remark 5.7 and the case of Propo-
sition 5.8, the holomorphic section does not vanish identically on the set
{(ω;Lp, L′q)|Dj(ω;Lp, L′q) = 0} for 0 ≤ j ≤ q. It suffices to find, for each
0 ≤ j ≤ q, a point of X represented by ω0 such that Dj(ω0; lp, l′q) =
0 but the holomorphic section does not vanish on (ω0; lp, l′q). The fol-
lowing choice of base points ω0(j) turns out to be what we need, as a
simple but tedious linear algebraic computation reveals. We will simply
pin down the base point by choosing a basis. For 1 ≤ j ≤ q − 1, it
is (e1 + ep+1, . . . , eq + ep+q,

︷ ︸︸ ︷
eq+1, . . . , ep, eq − ep+q, . . . , ej+2 − ep+j+2, ej −

ep+j, ej+1 − ep+j+1, ej−1 − ep+j−1, . . . , e1 − ep+1). For j = 0 it is (e1 +

ep+1, . . . ,
︷ ︸︸ ︷
eq + ep+q, eq+1, . . . , ep−1, ep+q, ep, eq−1− ep+q−1, . . . , e1− ep+1). For

j = q, it is (e1 + ep+1, . . . , eq−1 + ep+q−1, eq,
︷ ︸︸ ︷
eq+1 + ep+q, eq+2, . . . , ep, eq −

ep+q, . . . , e1 − ep+1). (When p = q, the portion under the overbraces are
skipped.)

To complete the proof, we need to see that the exponents of various Dj

involved in the formulae in Remark 5.7 and Proposition 5.8 are strictly
negative. It turns out to be an immediate consequence of the inequality 〈λ−
ρn + ρk, α〉 ≥ 0. We will demonstrate these only for the (more complicated)
case of Remark 5.7, and omit the easier (and similar) case of Proposition 5.8.

Under the trace form, ρk is the diagonal matrix
1
2

diag((p− 1), (p− 3), . . . ,−(p− 1); (q − 1), (q − 3), . . . ,−(q − 1)),

and ρn is the diagonal matrix

diag(a1, . . . , ap; p− 2i1, p− 2i2, . . . , p− 2iq),

where ak = q− 2j + 2 iff ij−1 + 1 ≤ k ≤ ij, for j = 1, . . . , q+ 1 and with the
convention that i0 = 0, iq+1 = p.

It can be verified that the exponents of Dr is −(〈λ − ρn + ρk, βr〉 + 1),
with βr defined as below. For r = 0, β is the root fiq − fp (when iq < p),
for r = q and with j the same meaning as in Remark 5.7, βq = fj+1 − fp+q,
for 1 ≤ r ≤ q − 1, βr = fir − fir+1 . As all βr are positive roots, we are
done.
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