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DISTORTION THEOREMS FOR BLOCH FUNCTIONS

Mario Bonk, David Minda and Hiroshi Yanagihara

A function f holomorphic on the unit disk D is called a
Bloch function if

‖f‖B = sup{(1− |z|2)|f ′(z)| : z ∈ D} <∞.

For α ∈ [0, 1] let B1(α) denote the class of Bloch functions
which have the normalization ‖f‖B ≤ 1, f(0) = 0 and f ′(0) = α.
A type of subordination theorem is established for B1(α). This
theorem yields numerous sharp growth, distortion, curvature
and covering theorems for B1(α).

1. Introduction.

In an earlier paper [BMY] the authors used a type of subordination theorem
to systematically derive a number of known and new results for normalized
locally univalent Bloch functions. This paper has a similar theme. We show
that there is an analogous subordination theorem (Theorem 1) for normal-
ized (not necessarily locally univalent) Bloch functions. This subordination
result enables us to obtain some known results from a unified perspective
and also leads to new results.

Let us introduce some notation and terminology. The unit disk in the
complex plane is denoted by D. For a function f holomorphic on D the
Bloch seminorm is given by

‖f‖B = sup{(1− |z|2)|f ′(z)| : z ∈ D},

and f is called a Bloch function when ‖f‖B < ∞. Normalized classes of
Bloch functions are

B1 = {f holomorphic on D : f(0) = 0, f ′(0) > 0 and ‖f‖B ≤ 1}

and
B1(α) = {f ∈ B1 : f ′(0) = α}.

The normalization ‖f‖B ≤ 1 requires that α ∈ [0, 1]. Also, B1 is the disjoint
union of the classes B1(α) as α ranges over [0, 1].

241

http://nyjm.albany.edu:8000/PacJ/
http://nyjm.albany.edu:8000/PacJ/1997/v179no2.html
http://nyjm.albany.edu:8000/PacJ/1997/


242 M. BONK, D. MINDA & H. YANAGIHARA

There are a number of parallels between our former paper [BMY] and
this one. But it is interesting that a complete parallelism does not hold.
For instance, here we obtain some results (such as the radius of starlikeness)
which do not have analogs in [BMY]. Sometimes analogous results hold but
the proofs are different. For example, determining the variability region for
log f ′(z) in the class B∞(α) = {f ∈ B1(α) : f is locally univalent} was fairly
direct in [BMY]. The analogous problem of finding the variability region
for f ′(z) in the class B1(α) involves much more computation. Here we only
prove a partial result (Theorem 2) which is sufficient for the subsequent
applications. Another difference is illustrated by the problem of minimizing
|f(z)| over B1(α) or B∞(α). We completely solve this for B1(α) while the
problem for B∞(α) was only partially resolved in [BMY].

Several previous papers dealt with sharp growth, distortion, curvature and
covering theorems for Bloch functions. A number of results of this type were
obtained by Bonk ([B1], [B2]). In particular, he found the sharp lower bound
on Re f ′(z) for f ∈ B1(1). A geometric method for obtaining this result was
given by Minda [M]. Liu and Minda [LM] extended this geometric approach
to locally univalent Bloch functions and to other classes of Bloch functions
between B1(α) and B∞(α). The subordination method of this paper unifies
these results and gives new ones.

2. Preliminaries.

We recall some basic facts together with terminology and notation that will
be needed.

We begin by introducing two invariant differential operators. Suppose f
is holomorphic on D. Then Djf(j = 1, 2) is defined by

D1f(z) = (1− |z|2)f ′(z),

D2f(z) = (1− |z|2)2f ′′(z)− 2z(1− |z|2)f ′(z).

If a ∈ D and T (z) = (z+a)/(1+az), then T is a conformal automorphism of
D sending 0 to a and Djf(a) = (f ◦ T )(j)(0)(j = 1, 2). In particular, Djf(0)
is the ordinary jth derivative of f at the origin. These differential operators
have the invariance property

|Dj(S ◦ f ◦ T )| = |Djf | ◦ T (j = 1, 2),

where S is any euclidean motion of C and T is any conformal automorphism
of D.

The Bloch seminorm is given by ‖f‖B = sup{|D1f(z)| : z ∈ D}. The
invariance property implies that ‖f ◦ T‖B = ‖f‖B for any conformal auto-
morphism T of D. For z ∈ D let r(z, f) denote the radius of the largest
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schlicht disk centered at f(z) in the Riemann image surface of f viewed
as spread over the complex plane. The function f is Bloch if and only if
sup{r(z, f) : z ∈ D} <∞.

It is convenient to let De(a, r) = {z : |z − a| < r} denote the euclidean
disk with a center a and radius r.

Next, we recall basic facts about hyperbolic geometry on the unit disk.
The hyperbolic metric on D is λD(z)|dz| = |dz|/(1 − |z|2). It is invariant
under conformal automorphisms of D; that is,

λD(T (z))|T ′(z)| = λD(z),

or

|T ′(z)|
1− |T (z)|2 =

1
1− |z|2 ,

for any conformal automorphism T of D. The associated hyperbolic distance
function on D is

dD(a, b) =
1
2

log

1 +
∣∣∣ a−b

1−ab

∣∣∣
1−

∣∣∣ a−b
1−ab

∣∣∣
 = artanh

∣∣∣∣ a− b1− ab
∣∣∣∣ .

The hyperbolic disk (circle) with center a and radius r > 0 is DD(a, r) = {z :
dD(a, z) < r}(CD(a, r) = {z : dD(a, z) = r}). Hyperbolic disks and circles in
D are actually euclidean disks and circles in D with possibly different center
and radius. A horocycle Γ in D based at λ ∈ ∂D is a euclidean circle in D
which is tangent to the unit circle at λ. The interior of a horocycle is called
a horodisk. For a ∈ D the following are readily seen to be equivalent:

dD(a, r) = r,∣∣∣∣ z − a1− az
∣∣∣∣ = tanh(r),

|1− az|2
1− |z|2 =

1− |a|2
1− tanh2(r)

.

Hyperbolic geometry is transformed to any simply connected region Ω 6= C
as follows. The hyperbolic metric λΩ(w)|dw| on Ω is determined from

λΩ(f(z))|f ′(z)| = λD(z),

where f : D→ Ω is a conformal mapping. It is independent of the choice of
the conformal mapping of D onto Ω. For A,B ∈ Ω the hyperbolic distance
between them is

dΩ(A,B) = inf
∫
γ

λΩ(w)|dw|,
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where the infimum is taken over all paths γ in Ω joining A and B. A
conformal mapping f : D→ Ω is an isometry relative to hyperbolic distance:
dΩ(f(a), f(b)) = dD(a, b). Hyperbolic disks (circles) in Ω are defined by
DΩ(a, r) = {z : dΩ(a, z) < r}(CΩ(a, r) = {z : dΩ(a, z) = r}). Typically these
are not euclidean disks (circles).

Henceforth, we generally use dh to denote the hyperbolic distance and
Dh(a, r) the hyperbolic disk with center a and radius r when reference to
the specific region Ω is clear. In fact, we usually use this notation when
Ω = D.

When D = De(a, r) is a euclidean disk, then hyperbolic geometry on D is
simple to understand. The function f(z) = a+ rz is a conformal map of D
onto D; this is a stretching followed by a translation. The hyperbolic metric
on D is

λD(w)|dw| = r|dw|
r2 − |w − a|2 .

Hyperbolic circles and horocycles in D are euclidean circles.
The final topic is curvature. The euclidean curvature of a path Γ : w =

w(t) in C at w = w(t) is

κe(w,Γ) =
1

|w′(t)| Im
{
w′′(t)
w′(t)

}
.

If f is holomorphic in D and f ′(z) 6= 0, then the euclidean curvature of the
image path f ◦ γ at f(z), where γ : |z| = r, is

κe(f(z), f ◦ γ) =
1 + Re

{
zf ′′(z)
f ′(z)

}
|zf ′(z)| .

3. Extremal functions.

We present basic facts about certain two-sheeted branched coverings of D
onto other disks. These functions are extremal for all of the results in this
paper.

The function

F (z) = −3
√

3
4
z2

is a two-sheeted branched covering of D onto De(0, 3
√

3
4

) with F (0) = 0,
F ′(0) = 0 and ‖F‖B = 1. The latter holds since

(1− |z|2)|F ′(z)| = 3
√

3
2
|z|(1− |z|2) = M(|z|),
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where

M(t) =
3
√

3
2
t(1− t2)

is increasing on [0, 1/
√

3], decreasing on [1/
√

3, 1] and M(1/
√

3) = 1. Thus
for z ∈ D, (1 − |z|2)|F ′(z)| ≤ 1 with equality if and only if |z| = 1/

√
3.

Note that (1 − |z|2)|F ′(z)| is constant on circles centered at the origin and
F maps [0, 1) decreasingly onto (−3

√
3/4, 0] and (−1, 0] increasingly onto

(−3
√

3/4, 0].
Henceforth, we let m : [0, 1] → [0, 1/

√
3] be the inverse function for the

restriction of M to the interval [0, 1/
√

3]. The function m is increasing with
m(0) = 0, m(1) = 1/

√
3 and

3
√

3
2
m(α)(1−m2(α)) = α

for α ∈ [0, 1].
A whole class of extremal functions is obtained by precomposing F with

certain conformal automorphisms of D and then normalizing the function at
the origin. For a ∈ (−1, 1) the function

Ta(z) =
z − a
1− az

is a conformal automorphism of D so

F ◦ Ta(z) = −3
√

3
4

(
z − a
1− az

)2

has Bloch seminorm 1. From

(F ◦ Ta)′(z) =
3
√

3
2

(1− a2)(a− z)
(1− az)3

we obtain

(F ◦ Ta)′(0) =
3
√

3
2
a(1− a2) = M(a).

For each α ∈ [0, 1] there is a unique a ∈ [0, 1/
√

3] with M(a) = α; in fact,
a = m(α). We define

Fα(z) = F ◦ Tm(α)(z)− F ◦ Tm(α)(0)
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=
3
√

3
4

[
m2(α)−

(
z −m(α)
1−m(α)z

)2
]
.

The function Fα belongs to B1(α) and is a two-sheeted branched covering of
D onto De

(
3
√

3
4
m2(α), 3

√
3

4

)
with

F ′α(z) =
3
√

3
2

(1−m2(α))(m(α)− z)
(1−m(α)z)3

.

Note that F ′α(m(α)) = 0, Fα is increasing on [0,m(α)], maps this interval
onto [0, 3

√
3

4
m2(α)], decreasing on

[
m(α), 2m(α)

1+m2(α)

]
and maps this interval

onto
[
0, 3
√

3
4
m2(α)

]
. Next,

F ′α(z) = F ′(Tm(α)(z))T ′m(α)(z),

and since

|T ′m(α)(z)| =
1− |Tm(α)(z)|2

1− |z|2 ,

we get

(1− |z|2)|F ′α(z)| = (1− |Tm(α)(z)|2)|F ′(Tm(α)(z))|.
Consequently, (1− |z|2)|F ′α(z)| ≤ 1 with equality if and only if |Tm(α)(z)| =
1/
√

3; that is, dh(m(α), z) = artanh(1/
√

3). Also, (1−|z|2)|F ′α(z)| is constant
on hyperbolic circles centered at m(α). We note that F0 = F .

For future reference we record several observations. Set ∆(α) = Dh(m(α),
artanh(1/

√
3)). In euclidean terms ∆(α) = De

(
2m(α)

3−m2(α)
,
√

3(1−m2(α))

3−m2(α)

)
. The

boundary of ∆(α) meets the real axis in the points − 1−√3m(α)√
3−m(α)

∈ [−1/
√

3, 0]

and 1+
√

3m(α)√
3+m(α)

∈ [1/
√

3,
√

3/2]. The function Tm(α) maps ∆(α) conformally

onto De(0, 1/
√

3). For any unimodular constant λ

∆λ(α) = Dh(λm(α), artanh(1/
√

3)) = {λz : z ∈ ∆(α)}
is the rotation of ∆(α) through the angle arg λ.

The functions Fα satisfy a differential identity.

Lemma 1. For α ∈ [0, 1] and z ∈ ∆(α)

|D2Fα(z)| = 3
√

3
2

[1−m2(|D1Fα(z)|)][1− 3m2(|D1Fα(z)|)].
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Proof. Since Fα = S ◦F ◦Tm(α), where S is a euclidean motion, |DjFα(z)| =
|DjF |(Tm(α)(z)) (j = 1, 2). Because Tm(α) maps ∆(α) onto ∆(0), it suffices
to establish the result when α = 0. Now,

D1F0(z) = −3
√

3
2
z(1− |z|2),

so |D1F0(z)| = M(|z|). This gives m(|D1F0(z)|) = |z| when |z| < 1/
√

3.
Since

D2F0(z) =
3
√

3
2

(1− |z|2)(3|z|2 − 1),

we have

|D2F0(z)| = 3
√

3
2

(1− |z|2)(1− 3|z|2)

=
3
√

3
2

[1−m2(|D1F0(z)|)][1− 3m2(|D1F0(z)|)]

for |z| < 1/
√

3.

There is an important auxiliary function associated with each Fα. For
α ∈ [0, 1] set

Gα(z) = (1−m(α)z)2F ′α(z)

=
3
√

3(1−m2(α))
2

m(α)− z
1−m(α)z

= −3
√

3(1−m2(α))
2

Tm(α)(z).

The function Gα is a Möbius transformation. For dh(m(α), z) = r, |Gα(z)| =
3
√

3
2

(1 − m2(α)) tanh(r). Therefore, Gα is a conformal mapping of
Dh(m(α), r) onto De(0, 3

√
3

2
(1 − m2(α)) tanh(r)). In particular, Gα maps

∆(α) conformally onto De(0, 3
2
(1−m2(α))). Observe that Gα is decreasing

on ∆(α) ∩ R with

Gα

(
−1−√3m(α)√

3−m(α)

)
=

3
2

(1−m2(α)),

Gα

(
1 +
√

3m(α)√
3 +m(α)

)
= −3

2
(1−m2(α)).
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4. Subordination theorem.

We make use of a slight variant of the customary notion of subordination.
Suppose both k and K are holomorphic on D with k(0) = K(0) and ∆ is
an open disk in D with 0 ∈ ∆. We say k is subordinate to K on ∆ relative
to the origin, written k ≺0 K, if there is a holomorphic function ϕ defined
on ∆ with ϕ(∆) ⊂ ∆, ϕ(0) = 0 and K ◦ ϕ(z) = k(z) for z ∈ ∆. If D is
any hyperbolic disk (relative to hyperbolic geometry on ∆) with center 0,
then k ≺0 K implies k(D) ⊂ K(D) since the function ϕ must map D into
itself. If K is univalent on ∆ and a point of ∂D is sent by k to a point of
K(∂D), then ϕ must be a conformal automorphism of D which fixes 0. If
the function ϕ fixes any point of ∆ distinct from the origin, then ϕ is the
identity function. A variant of Schwarz’ Lemma implies that |ϕ′(0)| ≤ 1
with equality if and only if ϕ is a conformal automorphism of ∆ fixing the
origin. In particular, ϕ′(0) = 1 if and only if ϕ is the identity function.

We also need a second variation of subordination. In this situation ∆ is an
open disk in D with 0 ∈ ∂∆. In this context we write k ≺0 K on ∆ if there
is a holomorphic function ϕ defined on ∆ ∪ {0} with ϕ(∆) ⊂ ∆, ϕ(0) = 0
and K ◦ ϕ(z) = k(z) for z ∈ ∆ ∪ {0}. Julia’s Lemma applied to the disk ∆
and boundary point 0 yields ϕ′(0) > 0. In this situation we cannot conclude
|ϕ′(0)| ≤ 1 as when 0 is an interior point of ∆. But whenever we employ this
type of subordination we will always have the additional hypothesis that
k′(0) = K ′(0) 6= 0, so ϕ′(0) = 1 is always valid by the chain rule. But
now ϕ′(0) = 1 does not necessarily imply that ϕ is the identity function.
For ϕ′(0) = 1 Julia’s Lemma implies that if D is any horodisk (relative to
hyperbolic geometry on ∆) based at the origin (in other words, D is an
open euclidean disk which is internally tangent to ∂∆ at the origin), then
ϕ(D) ⊂ D and if ϕ maps one boundary point of D (other than the origin)
to another boundary point of D, then ϕ is a conformal automorphism of ∆
fixing the boundary point 0. If ϕ fixes an interior point of ∆, then ϕ is the
identity function.

Theorem 1. Let f ∈ B1(α). Then for any unimodular constant λ

(1−m(α)λz)2f ′(z) ≺ 0 (1−m(α)λz)2F ′α(λz)

=
3
√

3(1−m2(α))
2

· m(α)− λz
1−m(α)λz

on ∆λ(α).

Proof. We need only establish this result in the case λ = 1 since the general
case follows from applying this case to the function λf(λz) which also belongs
to B1(α).
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Set g(z) = (1−m(α)z)2f ′(z). Then g(0) = α. For dh(m(α), z) = r,

|g(z)| = |1−m(α)z|2
1− |z|2 (1− |z|2)|f ′(z)|

≤ |1−m(α)z|2
1− |z|2 =

1−m2(α)
1− tanh2(r)

.

This shows that g maps Dh(m(α), R) into De

(
0, 1−m2(α)

1−tanh2(R)

)
for 0 < R <

∞. We know that Gα is a conformal map of Dh(m(α), R) onto the disk
De

(
0, 3
√

3
2

(1−m2(α)) tanh(R)
)
. Since g(0) = Gα(0) = α, the relation g ≺0

Gα will hold on Dh(m(α), R) when

3
√

3
2

tanh(R) =
1

1− tanh2(R)
;

that is, when M(tanh(R)) = 1. This holds precisely when tanh(R) = 1/
√

3,
or

R = artanh(1/
√

3) = log

(
1 +
√

3
2

)
= 0.658478 . . . .

Note that f ∈ B1(1) implies f ′′(0) = 0. It follows that in case α = 1 we have
g′(0) = G′1(0) = −2/

√
3 6= 0 in addition to g ≺0 G1.

Remark. The relationship g ≺0 Gα fails to hold on any larger hyperbolic
disk centered at m(α). This can be seen as follows. Recall that 1+

√
3m(α)√

3+m(α)
is a

boundary point of ∆(α). For 1+
√

3m(α)√
3+m(α)

≤ r < 1 the boundary of the variabil-
ity region {f ′(r) : f ∈ B1(α)} is the circle {w : |w| = 1

1−r2 } [B1, Satz 2.2.1].

Thus, for each r with 1+
√

3m(α)√
3+m(α)

≤ r < 1 there is a function f ∈ B1(α) with
(1− r2)|f ′(r)| = 1. For such r and an associated function f ∈ B1(α),

|g(r)| = (1−m(α)r)2|f ′(r)|
=

(1−m(α)r)2

1− r2
=

1−m2(α)
1− tanh2(r)

.

Since Gα maps Dh(m(α), r) conformally onto De(0, 3
√

3
2

(1−m2(α)) tanh(r))
and

1−m2(α)
1− tanh2(r)

>
3
√

3
2

(1−m2(α)) tanh(r)

for 1/
√

3 < tanh(r) (because M(t) < 1 for 1/
√

3 < t < 1), it follows that
g ≺0 Gα cannot hold on Dh(m(α), r) for any r > artanh(1/

√
3).
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5. Applications of subordination.

We begin by using direct consequences of subordination to establish sharp
growth, distortion and covering theorems for the classes B1(α), α ∈ [0, 1].

Theorem 2. Suppose f1 ∈ B1(α), α ∈ [0, 1].
(i) For |z| ≤ 1+

√
3m(α)√

3+m(α)

Re f ′(z) ≥ F ′α(|z|) =
3
√

3
2

(1−m2(α))(m(α)− |z|)
(1−m(α)|z|)3

with equality at z = reiθ, r ∈
(
0, 1+

√
3m(α)√

3+m(α)

)
if and only if f(z) =

eiθFα(e−iθz). In particular, for |z| ≤ m(α)

|f ′(z)| ≥ F ′α(|z|) ≥ 0

with equality at z = reiθ as above.
(ii) For z ∈ D

|f ′(z)| ≤
F

′
α(−|z|) = 3

√
3

2

(1−m2(α))(m(α)+|z|)
(1+m(α)|z|)3 if |z| < 1−√3m(α)√

3−m(α)
,

1
1−|z|2 if 1−√3m(α)√

3−m(α)
≤ r < 1.

Equality holds at z = − reiθ, r ∈
(
0, 1−√3m(α)√

3−m(α)

)
, if and only if f(z) =

eiθFα(e−iθz).

Proof. Set g(z) = (1−m(α)z)2f ′(z). The proof below is valid when α ∈ [0, 1);
the simple modification required when α = 1 in case (i) is indicated.
(i) By making use of the rotational invariance of the class B1(α), it suffices
to establish (i) when z = x ∈

(
0, 1+

√
3m(α)√

3+m(α)

)
and show that equality holds if

and only if f = Fα. For x so restricted, inequality (i) will follow from

Re g(x) ≥ Gα(x)

with equality if and only if g = Gα.
We now establish this result for g. Let δx be the hyperbolic circle (relative

to hyperbolic geometry on ∆(α)) with center 0 which passes through x. Since
g ≺0 Gα on ∆(α), g maps the circle δx into the closed disk bounded by the
circle Gα(δx). Note that Gα(δx) is a hyperbolic circle (relative to hyperbolic
geometry on De

(
0, 3

2
(1−m2(α))

)
) with hyperbolic center Gα(0) = α and is

symmetric about R. Since Gα is decreasing on ∆(α)∩R, the point of Gα(δx)
with the smallest real part is Gα(x). Consequently, Re g(x) ≥ Gα(x) and if
equality holds we must actually have g(x) = Gα(x). But then g = Gα ◦ ϕ
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implies ϕ(x) = x and so ϕ is the identity function since it fixes both 0 and
x. Thus, equality implies g = Gα.

A simple modification must be made in the case α = 1. The hyperbolic
circle δx must be replaced by the horocycle (relative to hyperbolic geometry
on ∆(α)) based at the origin that passes through x. In other words, when
α = 1 we take δx to be the circle through 0 and x which is symmetric about
the real axis.
(ii) The second part of the inequality in (ii) is trivial since ‖f‖B ≤ 1. Ac-
tually, it is best possible as follows from the determination of the vari-
ability region for f ′(z) for the class B1(α) [B1, Satz 2.2.1]. Precisely, for
1−√3m(α)√

3−m(α)
≤ |z0| < 1, there exists f ∈ B1(α) with |f ′(z0)| = 1/(1− |z0|2).

Now, we establish the first inequality in (ii). There is nothing to prove
when α = 1, so we assume α ∈ [0, 1). It suffices to prove the inequality
for z = −x, x ∈

(
0, 1−√3m(α)√

3−m(α)

)
, and show that equality holds if and only if

f = Fα. This will follow from showing

|g(−x)| ≤ Gα(−x)

for x ∈
(
0, 1−√3m(α)√

3−m(α)

)
with equality if and only if g = Gα.

The proof is similar to that of the inequality in part (i). Note that −x ∈
∆(α) and let δ−x be the hyperbolic circle (relative to hyperbolic geometry on
∆(α)) with center 0 which passes through −x. As g ≺0 Gα on ∆(α), g maps
the circle δ−x into the closed disk bounded by the circle Gα(δ−x) which is a
hyperbolic circle (relative to hyperbolic geometry on De

(
0, 3

2
(1−m2(α))

)
)

with hyperbolic center Gα(0) = α ∈ [0, 1). Since De

(
0, 3

2
(1−m2(α))

)
is

centered at the origin and the hyperbolic center of Gα(δ−x) is nonnegative,
it follows that the euclidean center of Gα(δ−x) is also nonnegative. As Gα is
decreasing on ∆(α)∩R and Gα(δ−x) is symmetric about R, we conclude that
for all w in the closed disk bounded by Gα(δ−x), |w| ≤ Gα(−x) with equality
if and only if w = Gα(−x). Thus, |g(−x)| ≤ Gα(−x) and equality forces
g(−x) = Gα(−x). As in the proof of part (i), this implies g = Gα.

Corollary 1. Suppose f ∈ B1(α).
(i) For |z| ≤ 2m(α)

1+m2(α)
, 0 ≤ Fα(|z|) ≤ |f(z)| with equality at z = reiθ, r ∈(

0, 2m(α)

1+m2(α)

]
, if and only if f(z) = eiθFα(e−iθz). In particular, f(z) 6= 0

for 0 < |z| < 2m(α)

1+m2(α)
.

(ii) For |z| ≤ 1−√3m(α)√
3−m(α)

, |f(z)| ≤ −Fα(−|z|) with equality at z = − reiθ, r ∈(
0, 1−√3m(α)√

3−m(α)

]
, if and only if f(z) = eiθFα(e−iθz).
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Proof. (i) It is sufficient to consider z = x ∈
(
0, 2m(α)

1+m2(α)

]
and show that

equality forces f = Fα. By using part (i) of the theorem, we obtain

|f(x)| ≥ Re f(x) =
∫ x

0

Re f ′(t)dt

≥
∫ x

0

F ′α(t)dt = Fα(x).

Equality implies Re f ′(t) = F ′α(t) for 0 ≤ t ≤ x and so f = Fα.
(ii) As usual, it is enough to consider z = −x, where x ∈

(
0, 1−√3m(α)√

3−m(α)

]
,

and prove that equality implies f = Fα. This follows by integrating the
inequality in part (ii) of the theorem:

|f(−x)| =
∣∣∣∣∫ x

0

f ′(−t)dt
∣∣∣∣ ≤ ∫ x

0

|f ′(−t)|dt

≤
∫ x

0

F ′α(−t)dt = −Fα(−x).

Equality forces |f ′(−t)| = F ′α(−t), 0 ≤ t ≤ x, and so f = Fα.

Corollary 2. The radius of univalence for B1(α) is m(α) which is also the
radius of bounded turning. More precisely, if α ∈ (0, 1] and f ∈ B1(α), then
f is univalent in De(0, r) for some r > m(α) unless f(z) = eiθFα(e−iθz) for
some θ ∈ R.

Proof. Recall that f is said to be of bounded turning in De(0, r) when
Re f ′(z) > 0 in De(0, r). The Wolff-Warschawski-Noshiro Theorem im-
plies that a function of bounded turning is univalent. For f ∈ B1(α) and
|z| < 1+

√
3m(α)√

3+m(α)
,

Re f ′(z) ≥ F ′α(|z|) =
3
√

3(1−m2(α))(m(α)− |z|)
2(1−m(α)|z|)3

with strict inequality for z 6= 0 unless f is a rotation of Fα. In particular,
Re f ′(z) > 0 for |z| < m(α), so f is univalent and of bounded turning in
De(0,m(α)). Since F ′α(m(α)) = 0, Fα is neither univalent nor of bounded
turning in any larger disk centered at the origin. All that remains is to
show that if f(z) 6= eiθFα(e−iθz) for all θ ∈ R, then f is both univalent
and of bounded turning on a strictly larger disk. If f is not a rotation of
Fα, then strict inequality holds in the above inequality. In particular, for
|z| = m(α), Re f ′(z) > 0 which implies that there exists r > m(α) such
that Re f ′(z) > 0 for z ∈ De(0, r).



DISTORTION THEOREMS FOR BLOCH FUNCTIONS 253

Corollary 3. Suppose f ∈ B1(α) and α ∈ (0, 1]. Then r(0, f) ≥ 3
√

3
4
m2(α)

with equality if and only if f(z) = eiθFα(e−iθz) for some θ ∈ R.

Proof. Assume there is no θ ∈ R so that f(z) is equal to eiθFα(e−iθz). Then
|f(z)| > Fα(|z|) for |z| < 2m(α)

1+m2(α)
. Since m(α) < 2m(α)

1+m2(α)
, we obtain

min {|f(z)| : |z| = m(α)} > Fα(m(α)) =
3
√

3
4
m2(α).

Because f is univalent in |z| ≤ m(α) and f(0) = 0, this implies that r(0, f) >
3
√

3
4
m2(α). It is straightforward to check that r(0, Fα) = 3

√
3

4
m2(α) with the

same value for all rotations of Fα.

Subordination also yields information about the derivative. We now em-
ploy this type of information to obtain results for Bloch functions.

Theorem 3. Suppose f ∈ B1(α). Then

|f ′′(0)| ≤ −F ′′α (0) =
3
√

3
2

[1−m2(α)][1− 3m2(α)].

For α ∈ [0, 1) equality holds if and only if f(z) = λFα(λz) for some unimod-
ular constant λ.

Proof. Note that if α = 1, then f ′′(0) = 0 and m(1) = 1/
√

3, so the inequality
is actually a trivial identity when α = 1. Now, we assume α ∈ [0, 1) and
observe there is nothing to prove when f ′′(0) = 0. Thus, we suppose f ′′(0) <
0 and prove that −f ′′(0) ≤ −Fα(0) with equality if and only if f = Fα. The
general case follows by considering λf(λz) for an appropriate unimodular
constant λ. If g(z) = (1−m(α)z)2f ′(z), then g(0) = α and g′(0) = f ′′(0)−
2αm(α) < 0. As g ≺0 Gα on ∆(α), there is a holomorphic self-mapping ϕ
of ∆(α) with ϕ(0) = 0 and g(z) = Gα ◦ ϕ(z) for z ∈ ∆(α). Now,

[f ′′(0)− 2αm(α)] = g′(0) = G′α(0)ϕ′(0)

= [F ′′α (0)− 2αm(α)]ϕ′(0).

The two expressions in brackets are negative, so ϕ′(0) > 0. As |ϕ′(0)| ≤ 1,
we have 0 < ϕ′(0) ≤ 1 and so

2αm(α)− f ′′(0) ≤ 2αm(α)− F ′′α (0),

or

−f ′′(0) ≤ −F ′′α (0).
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This establishes the inequality. If equality holds, then ϕ′(0) = 1 which
implies that ϕ is the identity function and f = Fα.

Corollary. Suppose f is holomorphic in D and ‖f‖B ≤ 1. Then for z ∈ D

|D2f(z)| ≤ 3
√

3
2

[1−m2(|D1f(z)|)][1− 3m2(|D1f(z)|)].

Equality holds at point z0 ∈ D where D2f(z0) 6= 0 if and only if

f(z) = λFα

(
µ
z − z0

z − z0z

)
+ C

for some α ∈ [0, 1), unimodular constants λ and µ and C ∈ C.
Also

|D2f(z)| ≤ 3
√

3
2

with equality at a point z0 ∈ D with D2f(z0) 6= 0 if and only if

f(z) = λF0

(
µ
z − z0

1− z0z

)
+ C

for unimodular constants λ and µ and C ∈ C.

Proof. Fix z0 ∈ D. The function f ◦ T , where T (z) = (z + z0)/(1 + z0z)
satisfies ‖f ◦ T‖B = ‖f‖B ≤ 1 and |Dj(f ◦ T )(0)| = |Djf(z0)| (j = 1, 2). If
α = |D1f(z0)|, then a rotation of f ◦ T − f(z0) belongs to B1(α) and the
theorem applied to this function gives the desired result.

The second inequality follows immediately from the first. The function
L(s) = 3

√
3

2
[1−m2(s)][1−3m2(s)] is strictly decreasing on [0, 1], so L(s) ≤ 3

√
3

2

with equality if and only if s = 0.

Theorem 4. Suppose f ∈ B1(α). Then for |z| ≤ m(α)

|D2f(z)| ≤ −D2Fα(|z|)
or

|(1− |z|2)f ′′(z)− 2zf ′(z)|

≤ 3
√

3(1−m2(α))[1− 3m2(α) + 4m(α)|z| − (3−m2(α))|z|2]
2(1−m(α)|z|)4

.

Equality holds at z = reiθ, r ∈ (0,m(α)], if and only if f(z) = eiθFα(e−iθz).

Proof. The corollary of Theorem 3 gives

|D2f(z)| ≤ L(|D1f(z)|).
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The function L is strictly decreasing on [0, 1] and from part (i) of Theorem
2 it follows that |z| ≤ m(α) implies

|D1f(z)| = (1− |z|2)|f ′(z)|
≥ (1− |z|2)F ′α(|z|) = D1Fα(|z|) ≥ 0.

Therefore, for |z| ≤ m(α)

|D2f(z)| ≤ L(D1Fα(|z|))

=
3
√

3
2

[1−m2(|D1Fα(z)|)][1− 3m2(|D1Fα(|z|)|)]
= D2Fα(|z|).

If equality holds at z = reiθ, r ∈ (0,m(α)], then |f ′(z)| = F ′α(|z|) and so
f(z) = eiθFα(e−iθz).

Corollary 1. Suppose f ∈ B1(α) and α ∈ (0, 1]. Then for |z| < m(α)∣∣∣∣D2f(z)
D1f(z)

∣∣∣∣ ≤ −D2Fα(|z|)
D1Fα(|z|) ,

or ∣∣∣∣(1− |z|2)
f ′′(z)
f ′(z)

− 2z
∣∣∣∣ ≤ 1− 3m2(α) + 4m(α)|z| − (3−m2(α))|z|2

(m(α)− |z|)(1−m(α)|z|) .

Equality holds at z = reiθ, r ∈ (0,m(α)), if and only if f(z) = eiθFα(e−iθz).

Proof. From part (i) of Theorem 2

|D1f(z)| ≥ D1Fα(|z|) ≥ 0

for |z| < m(α). The theorem then gives∣∣∣∣D2f(z)
D1f(z)

∣∣∣∣ ≤ D1Fα(|z|)
|D1f(z)|

(−D2Fα(|z|))
D1Fα(|z|) ≤ −D2Fα(|z|)

D1Fα(|z|)
and for 0 < |z| < m(α) equality forces |f ′(z)| = F ′α(|z|) and so f(z) =
eiθFα(e−iθz).

Corollary 2. Suppose f ∈ B1(α) and α ∈ (0, 1]. Then for |z| < m(α)

Re
{
zf ′′(z)
f ′(z)

}
≥ |z|F

′′
α (|z|)

F ′α(|z|)
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= −|z|(1− 3m2(α) + 2m(α)|z|)
(m(α)− |z|)(1−m(α)|z|) .

Equality holds at z = reiθ, r ∈ (0,m(α)), if and only if f(z) = eiθFα(e−iθz).
In particular, the radius of convexity for B1(α) is

Rc(α) =
m(α)

1−m2(α) +
√

1−m2(α) +m4(α)
.

Proof. From the preceding corollary we obtain

Re
{
zf ′′(z)
f ′(z)

− 2|z|2
1− |z|2

}
= Re

{
zD2f(z)

(1− |z|2)D1f(z)

}
≥ |z|F

′′
α (|z|)

F ′α(|z|) −
2|z|2

1− |z|2
which is the desired inequality. The statement concerning equality follows
from Corollary 1. Now,

1 + Re
{
zf ′′(z)
f ′(z)

}
≥ 1 +

|z|F ′′α (|z|)
F ′α(|z|)

and the right-hand side is positive for |z| < Rc(α) and vanishes for |z| =
Rc(α). This yields the radius of convexity result.

Remark. For α = 1 we have Rc(1) =
√

7−2√
3

= 0.372824 . . . while the radius
of univalence is 1√

3
= 0.57735 . . . .

Theorem 5. Suppose f ∈ B1(α) and α ∈ (0, 1]. Then for |z| ≤ m(α)∣∣∣∣zf ′′(z)− 2m(α)|z|
1−m(α)|z|f

′(z)
∣∣∣∣

≤ 2m(α)|z|
1−m(α)|z|F

′
α(|z|)− |z|F ′′α (|z|)

=
3
√

3(1−m2(α))2|z|
(1−m(α)|z|)4

.

Equality holds at z = reiθ, r ∈ (0,m(α)), if and only if f(z) = eiθFα(e−iθz).

Proof. It is enough to consider z = x ∈ (0,m(α)) and prove that∣∣∣∣f ′′(x)− 2m(α)
1−m(α)x

f ′(x)
∣∣∣∣ ≤ 2m(α)

1−m(α)x
F ′α(x)− F ′′α (x)

with equality if and only if f = Fα. For g(z) = (1 − m(α)z)2f ′(z), the
preceding inequality is equivalent to

|g′(x)| ≤ −G′α(x)
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for x ∈ (0,m(α)) with equality if and only if g = Gα. We will establish this
inequality.

We begin by establishing a stronger inequality that will be used in the
proof of Theorem 6. Namely,

|g′(z)|
9
4
(1−m2(α))2 − |g(z)|2 ≤

|G′α(z)|
9
4
(1−m2(α))2 − |Gα(z)|2

for z ∈ ∆(α). The hyperbolic metric on D(α) = De(0, 3
2
(1−m2(α))) is

λD(α)(w)|dw| =
3
2
(1−m2(α))|dw|

9
4
(1−m2(α))2 − |w|2 .

Since Gα is a conformal mapping of ∆(α) onto D(α),

λ∆(α)(z) = λD(α)(Gα(z))|G′α(z)|,

where λ∆(α)(z)|dz| is the hyperbolic metric on ∆(α). Now, g maps ∆(α)
into D(α) because g ≺0 Gα. The Principle of Hyperbolic Metric gives

λD(α)(g(z))|g′(z)| ≤ λ∆(α)(z)

with equality if and only if g is a conformal mapping of ∆(α) onto D(α).
Therefore,

λD(α)(g(z))|g′(z)| ≤ λ∆(α)(Gα(z))|G′α(z)|
for z ∈ ∆(α) which yields the desired inequality. In particular, for z = x ∈
∆(α) ∩ R we have

|g′(x)|
9
4
(1−m2(α))2 − |g(x)|2 ≤

−G′α(x)
9
4
(1−m2(α))2 −G2

α(x)
.

As 0 < Gα(x) ≤ |g(x)| for 0 < x < m(α) with equality if and only if
g = Gα (see the proof of part (i) of Theorem 2), the preceding inequality
implies |g′(x)| ≤ −G′α(x) for 0 < x < m(α) with strict inequality unless
|g(x)| = Gα(x); that is, unless g = Gα. This completes the proof.

Remark. The theorem gives∣∣∣∣zf ′′(z)f ′(z)
− 2m(α)|z|

1−m(α)|z|
∣∣∣∣ ≤ 2m(α)|z|

1−m(α)|z| −
|z|F ′′α (|z|)
F ′α(|z|)

for f ∈ B1(α), α ∈ [0, 1] and |z| < m(α). But this is weaker than the
analogous inequality obtained from Corollary 1 of Theorem 4.
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Corollary 1. Suppose f ∈ B1(α) and α ∈ (0, 1]. Then for |z| ≤ m(α)

|f(z)− (1−m(α)|z|)zf ′(z)|
≤ Fα(|z|)− (1−m(α)|z|)|z|F ′α(|z|)

=
3
√

3(1−m2(α))2|z|2
4(1−m(α)|z|)2

.

Equality holds at z = reiθ, r ∈ (0,m(α)], if and only if f(z) = eiθFα(e−iθz).

Proof. As usual, it is enough to establish the inequality for some z = x ∈
(0,m(α)] and demonstrate equality for f = Fα. Note that

d

dx
[f(x)− x(1−m(α)x)f ′(x)]

= 2m(α)xf ′(x)− x(1−m(α)x)f ′′(x),

so the theorem gives∣∣∣∣ ddx [f(x)− x(1−m(α)x)f ′(x)
∣∣∣∣

≤ d

dx
[Fα(x)− x(1−m(α)x)F ′α(x)]

for 0 ≤ x ≤ m(α). Note that the right hand side of this inequality is
nonnegative. By integrating this inequality over [0, x] we obtain

|f(x)− (1−m(α)x)xf ′(x)| ≤ Fα(x)− (1−m(α)x)xF ′α(x)

with equality if and only if f = Fα.

Corollary 2. Suppose f ∈ B1(α) and α ∈ (0, 1]. Then for |z| ≤ m(α)∣∣∣∣zf ′(z)f(z)
− 1

1−m(α)|z|
∣∣∣∣ ≤ 1

1−m(α)|z| −
|z|F ′α(|z|)
Fα(|z|)

=
(1−m2(α))|z|

(1−m(α)|z|)(2m(α)− (1 +m2(α))|z|) .

In particular, for |z| ≤ m(α)

Re
{
zf ′(z)
f(z)

}
≥ |z|F

′
α(|z|)

Fα(|z|)
=

2(m(α)− |z|)
(1−m(α)|z|)(2m(α)− (1 +m2(α))|z|) .
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In both inequalities equality holds at z = reiθ, r ∈ (0,m(α)), if and only if
f(z) = eiθFα(e−iθz). The radius of starlikeness for the class B1(α) is m(α).

Proof. Recall that f(z) 6= 0 for 0 < |z| < m(α) < 2m(α)

1+m2(α)
(see Corollary 1(i)

of Theorem 2). Therefore, the preceding corollary gives∣∣∣∣zf ′(z)f(z)
− 1

1−m(α)|z|
∣∣∣∣ ≤ Fα(|z|)

|f(z)|
[

1
1−m(α)|z| −

|z|F ′α(|z|)
Fα(|z|)

]

for |z| ≤ m(α) < 2m(α)

1+m2(α)
. Since 0 < Fα(|z|) ≤ |f(z)| for 0 < |z| < 2m(α)

1+m2(α)
,

the first inequality together with the statement about equality follows from
Corollary 1(i) of Theorem 2. The second inequality follows immediately from
the first. This latter inequality shows that Re

{
zf ′(z)
f(z)

}
> 0 for |z| < m(α),

so f is starlike on De(0,m(α)). As zF ′α(z)

Fα(z)
vanishes for z = m(α), the radius

of starlikeness for the class B1(α) is m(α).

As our final application of the subordination theorem we determine a
sharp lower bound on the euclidean curvature of the image of circles centered
at the origin with radius at most 1/

√
3 for functions B1(1).

Lemma 2. For 0 < r < 1/
√

3 the function

h(t) =

√
3+r√
3−r t−

√
3

2(
√

3−2r)

t2

is strictly increasing on the interval I =
[

1−√3r
1− r√

3
, 1
]
. In particular, for t ∈ I

h(t) ≥ h
(

1−√3r
1− r√

3

)

with strict inequality unless t = 1−√3r
1− r√

3
.

Proof. We show that h′(t) > 0 for t ∈ I. Now,

h′(t) =

√
3√

3−2r
−
√

3+r√
3−r t

t3

will be positive on I provided the numerator is. The numerator is a linear
function with negative slope and t-intercept

t0 =
3−√3r

3−√3r − 2r2
.
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Since t0 > 1 when 0 < r < 1/
√

3, we conclude that h′(t) > 0 for t ∈
I.

Theorem 6. Suppose f ∈ B1(1), r ∈ (0, 1/
√

3) and γ is the positively
oriented circle |z| = r. Then for z ∈ γ

κe(f(z), f ◦ γ) ≥ κe(F1(|z|), F1 ◦ γ)

=

(
1− |z|√

3

)2 (
1− 4√

3
|z| − |z|2

)
|z|(1−√3|z|)2

.

Equality holds at z = reiθ, r ∈ (0, 1/
√

3), if and only if f(z) = eiθF1(e−iθz).

Proof. The euclidean curvature of f ◦ γ at the point f(z) is

κe(f(z), f ◦ γ) =
1 + Re

{
zf ′′(z)
f ′(z)

}
|zf ′(z)| .

It suffices to establish the inequality for z = r ∈ (0, 1/
√

3) and show that
equality holds if and only if f = F1.

Set g(z) =
(
1− z√

3

)2

f ′(z). Straightforward calculation shows that

κe(f(r), f ◦ γ) =

(
1− r√

3

)2

r

Re
{√

3+r√
3−r + rg′(r)

g(r)

}
|g(r)| .

From the proof of Theorem 5 in case α = 1 we have

|g′(r)| ≤ −G′1(r)
1−G2

1(r)
(1− |g(r)|2)

=
√

3(1− |g(r)|2)
2r(
√

3− 2r)

for r ∈ (0, 1/
√

3). Therefore,

Re
{
rg′(r)
g(r)

}
≥ −

∣∣∣∣rg′(r)g(r)

∣∣∣∣ ≥ −
√

3(1− |g(r)|2)
2(
√

3− 2r)|g(r)|
which gives

κe(f(r), f ◦ γ) ≥
(
1− r√

3

)2

r

 √
3

2(
√

3− 2r)
+

√
3+r√
3−r |g(r)| −

√
3

2(
√

3−2r)

|g(r)|2


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=

(
1− r√

3

)2

r

[ √
3

2(
√

3− 2r)
+ h(|g(r)|)

]
.

Here h is the function of the last lemma. For r ∈ (0, 1/
√

3) we have

0 ≤ 1−√3r
1− r√

3

= G1(r) ≤ |g(r)| ≤ 1

with strict inequality unless g = G1 (see the proof of Theorem 2(i)). Since h

is increasing on
[

1−√3r
1− r√

3
, 1
]
, the preceding lemma gives h(|g(r)|) ≥ h(G1(r))

with strict inequality unless g = G1. By making use of this inequality we
obtain

κe(f(r), f ◦ γ) ≥
(
1− r√

3

)2

r

[ √
3

2(
√

3− 2r)
+ h(G1(r))

]

= κe(F1(r), F1 ◦ γ) =

(
1− r√

3

)2 (
1− 4√

3
r − r2

)
r(1−√3r)2

with strict inequality unless g = G1; that is, f = F1.
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