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THE HELGASON FOURIER TRANSFORM FOR
HOMOGENEOUS VECTOR BUNDLES OVER

RIEMANNIAN SYMMETRIC SPACES

Roberto Camporesi

The Helgason Fourier transform on a noncompact Rieman-
nian symmetric space G/K is generalized to the homogeneous
vector bundles Eτ (τ ∈ K̂) over G/K. The corresponding in-
version formula is obtained by using the Plancherel formula
on G and the Subrepresentation Theorem. For radial systems
of sections of Eτ , the Helgason Fourier transform reduces to
the (operator valued) spherical transform, defined with re-
spect to the (operator valued) τ-spherical functions on G.

1. Introduction.

Let G be a connected noncompact semisimple Lie group with finite center,
K ⊂ G a maximal compact subgroup, and G/K the corresponding Rie-
mannian symmetric space of the noncompact type. Let G = KAN be an
Iwasawa decomposition of G, and write

x = k(x) exp(H(x))n(x), x ∈ G,(1.1)

where k(x) ∈ K, H(x) ∈ a (the Lie algebra of A), and n(x) ∈ N . Let
M be the centralizer of A in K, let B = K/M , and let db = d(kM) be a
K-invariant measure on B, normalized by

∫
B db = 1.

We regard C∞0 (G/K) as the set of compactly supported smooth functions
on G which are right-invariant under K. For b = kM ∈B, λ ∈ a∗ (the real
dual of a), and f ∈ C∞0 (G/K), define the Fourier transform by

f̃(λ, b) =
∫
G

e−(iλ+ρ)(H(g−1k))f(g)dg,(1.2)

where ρ is half the sum of the positive restricted roots of G/K. [f̃ is well
defined since H(gm) = H(g), ∀m ∈ M .] Then, for a suitable normalization
of the relevant Haar measures, the following inversion formula holds ∀x ∈ G
(see, e.g., [8], Lemma 9.2.1.6.):

f(x) = w−1

∫
a∗

∫
B

f̃(λ, b)e(iλ−ρ)(H(x−1k))|c(λ)|−2dλ db.(1.3)
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Here w is the order of the Weyl group of G/K, dλ is a suitably normal-
ized Euclidean measure on a∗, and c(λ) is the Harish Chandra function.
Let φλ be the zonal spherical function on G corresponding to λ ∈ a∗C (the
complexification of a∗), given by

φλ(x) =
∫
K

e(iλ−ρ)(H(xk))dk, x ∈ G.

(The invariant measure dk on K is normalized by
∫
K dk = 1.) Then c(λ) is

related to the asymptotic form of φλ at infinity in A+ = exp(a+) (a+ the
positive Weyl chamber in a) by

c(λ) = lim
t→+∞ a

(−iλ+ρ)
t φλ(at), <(iλ) ∈ a∗+,(1.4)

where at = exp(tH) (H fixed in a+), and a∗+ is the positive Weyl chamber
in a∗. From (1.4) one obtains the integral representation

c(λ) =
∫
N̄

e−(iλ+ρ)(H(n̄))dn̄, <(iλ) ∈ a∗+,(1.5)

where N̄ = θN (θ the Cartan involution) (see [3], Theorem 6.14, p. 447).
The integral in (1.5) converges absolutely as long as <(iλ) ∈ a∗+, and it is
defined by meromorphic continuation for the other values of λ. The Haar
measure on N̄ is normalized so that∫

N̄

e−2ρ(H(n̄))dn̄ = 1.

To prove (1.3) one uses the direct integral decomposition of L2(G/K)
given by Harish Chandra, to write for all f ∈ C∞0 (G/K) (see [4], Theorem
2.1)

f(x) = w−1

∫
a∗

(f ∗ φλ)(x)|c(λ)|−2dλ, x ∈ G,(1.6)

together with the following result for the translated spherical functions
φλ(x−1y) (see [3], Lemma 4.4, p. 418)

φλ(x−1y) =
∫
K

e(iλ−ρ)(H(x−1k))e−(iλ+ρ)(H(y−1k))dk, x, y ∈ G.(1.7)

From (1.7) we find, using
∫
K g(k)dk =

∫
K/M (

∫
M g(km)dm) d(kM) (g ∈

C(K)),

(f ∗ φλ)(x) =
∫
B

f̃(−λ, b)e−(iλ+ρ)H(x−1k)db.(1.8)
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Using this in (1.6) and letting λ→ −λ in the integral over a∗ gives (1.3).
The purpose of this paper is to generalize the above construction to the

homogeneous vector bundle Eτ over G/K associated with a given irreducible
unitary representation τ of K. It is well known that a cross section f ∈
Γ(Eτ ) may be identified with a vector-valued function f : G → Vτ (Vτ the
representation space of τ) which is right-K-covariant of type τ , i.e.,

f(gk) = τ(k−1)f(g), ∀g ∈ G, ∀k ∈ K.(1.9)

We denote by C∞0 (G, τ) the space of compactly supported smooth func-
tions on G that are right-K-covariant of type τ , and by L2(G, τ) the Hilbert
space of square integrable such functions, with scalar product

〈f1, f2〉 =
∫
G

〈f1(x), f2(x)〉dx.(1.10)

The first step is to obtain the direct integral decomposition of L2(G, τ)
analogous to (1.6), with the End(Vτ )-valued spherical functions ϕUτ = ψUτ ∗
dττ in place of φλ, where U is in the tempered spectrum of G, and ψUτ is the
spherical trace function of type τ relative to U (dτ is the dimension of τ).
This is done in Section 2 using the Plancherel Theorem on G.

The second step is to find the analog of (1.7) for the translated spher-
ical functions ϕUτ (x−1y) when U is in the minimal principal series. This
is similar to the scalar-case computation, and is done in Section 3 using
the Eisenstein integral representation of ϕUτ (x), together with a well-known
change-of-variables formula for integrals over K (due to Harish-Chandra).
The convolution ϕUτ ∗ f (f ∈ C∞0 (G, τ)) can then be worked out in terms of
the (naturally defined) Helgason Fourier transform f̃ of f , in analogy with
(1.8) in the scalar case.

If G has only one conjugacy class of Cartan subalgebra (i.e., when G/K
is split-rank), the results of Section 3 are actually enough to obtain the
inversion formula on C∞0 (G, τ) (∀τ ∈ K̂), since only the minimal principal
series occur in the Plancherel formula. Similarly, if G/K has rank one and
τ does not occur in any discrete series of G, then the inversion formula of
Section 3 applies.

In Section 4 we use the Subrepresentation Theorem to reduce the general
case to the minimal one. Given U in the tempered spectrum, we can find
Uσµ in the nonunitary (minimal) principal series (σ ∈ M̂ , µ ∈ a∗C), such that
U is infinitesimally equivalent to a subrepresentation of Uσµ. For example
if G has discrete series (i.e., Ĝd 6= ∅), then an explicit embedding of each
U ∈ Ĝd as a subrepresentation of a nonunitary principal series has been
given by Knapp and Wallach in [6]. By a double induction argument, one
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obtains an embedding of any generalized principal series into a nonunitary
minimal one.

Let m and n be the multiplicities of τ in Uσµ|K and U |K , respectively.
In general we have m ≥ n, and ψUτ is different from ψU

σµ

τ , unless m = n.
However, it is always possible to represent ϕUτ (x) as a minimal Eisenstein
integral, namely

ϕUτ (x) =
∫
K

τ (k(xk))TU τ(k−1) eµ(H(xk))dk,(1.11)

where TU is a suitable element of EndM(Vτ ) (see Section 4 for details). The
analog of (1.7) for ϕUτ (x−1y) follows then immediately from (1.11), and one
can work out the contribution of U to the inversion formula.

Our main result can now be described as follows. Let P = MAN be a
minimal parabolic subgroup of G. Let P ′ be a cuspidal parabolic subgroup
of G such that P ′ ⊇ P and A′ ⊆ A, where P ′ = M ′A′N ′ is a Langlands
decomposition of P ′. Let K ′ = K

⋂
M ′ be maximal compact in M ′, and

let M ′ = K ′A1N1 be an Iwasawa decomposition of M ′ so that A = A′A1

and N = N ′N1. Given σ′ in the discrete series of M ′, choose parameters
σ̃′ ∈ M̂ and µ1 ∈ a1

∗ by the Subrepresentation Theorem (a1 the Lie algebra
of A1), so that σ′ is infinitesimally equivalent with a subrepresentation of
indM

′

MA1N1
(σ̃′⊗eµ1⊗1) (see [6]). For ν ′ ∈ a′∗ (the real dual of the Lie algebra of

A′), let Uσ′ν′ = indGP ′(σ
′⊗eiν′⊗1) be the representation in the (generalized)

principal P ′-series with parameters σ′ and ν ′. Then Uσ′ν′ can be regarded as
a subrepresentation of the (nonunitary) minimal principal series of G given
by indGP (σ̃′⊗ eiν′+µ1 ⊗ 1) and denoted U σ̃′,iν′+µ1−ρ in Section 3. This follows
by a double induction formula, see Proposition 4.1.

If τ ⊂ Uσ′ν′ |K , let Tσ′ be the element of EndM(Vτ ) such that

ϕU
σ′ν′

τ (x) =
∫
K

τ (k(xk))Tσ′ τ(k−1) e(iν′+µ1−ρ)(H(xk))dk.

For µ ∈ a∗C we put

F µ(x) = eµ(H(x)) τ(k(x)), x ∈ G.(1.12)

Theorem 1.1. Define the Helgason Fourier transform of f ∈ C∞0 (G, τ) by

f̃(λ, k) =
∫
G

F iλ̄−ρ(x−1k)∗f(x)dx, λ ∈ a∗C, k ∈ K,

where F µ(x) is given by (1.12), and ∗ denotes adjoint.
Let dµ(Uσ′ν′) = pσ′(ν ′)dν ′ be the Plancherel measure associated with the

principal P ′-series Uσ′ν′, where dν ′ is a properly normalized Euclidean mea-
sure on a′∗. Then, for a suitable normalization of the relevant Haar measures
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and for suitable constants cP ′ > 0, the following inversion formula holds

f(x) =
1
dτ

∑
P ′
cP ′

∑
σ′

∫
a′∗

∫
K

F iν′+µ1−ρ(x−1k)Tσ′ f̃(ν ′ − iµ1, k) pσ′(ν ′) dν ′dk.

Here the sum
∑
P ′ is over all cuspidal parabolic subgroups P ′ of G such

that P ′ ⊇ P and A′ ⊆ A, and the sum
∑
σ′ is over all discrete series σ′ of

M ′ such that Uσ′ν′ |K ⊃ τ . (The parameter µ1 can also be replaced by −µ1,
and the integrations over K can also be written as integrations over K/M.)

The proof of this result will be done in several steps in Sections 2, 3 and
4.

In Section 5 we define radial systems of sections of Eτ and the associated
convolution algebra C∞0 (G, τ, τ). The radial systems of sections generalize
the notion of K-invariant functions on G/K to the bundle case. Then we
use the theory of spherical functions of type τ on G (see [2, 8]), to define
a spherical transform for F ∈ C∞0 (G, τ, τ). The corresponding inversion
formula and Plancherel Theorem are obtained. Finally, we establish the
relation between the Helgason Fourier transform of a radial section and its
spherical transform.

Acknowledgements. The author would like to thank J.-Ph. Anker, E.
Pedon, F. Ricci, D. Vogan and N. Wallach for interesting conversations on
the subject of this paper.

2. The direct integral decomposition of L2(G, τ).

Fix an irreducible unitary representation τ of K on a vector space Vτ . Let
Ĝ be the unitary dual of G, and let Ĝ(τ) ⊂ Ĝ denote the subset of those
classes containing the class of τ upon restriction to K. Let (U,HU) be
a representative of the class [U ] ∈ Ĝ(τ). Since τ is fixed, we denote the
multiplicity m(τ, U) simply by ξU . It is well known that ξU is bounded by
dτ , the dimension of τ . Let Pτ be the projection from HU onto Hτ , the
subspace of vectors which transform under K according to τ . Then Pτ is
given by (see, e.g., [2])

Pτ = dτ

∫
K

U(k)χτ (k−1)dk,(2.1)

where χτ is the character of τ . We have dim Hτ = dτξU , and the represen-
tation of K on Hτ given by k → τU(k) ≡ U(k)|Hτ is the direct sum of ξU
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copies of τ . Therefore, we can regard Hτ as the K-module

Hτ ' Vτ ⊗CξU ,

with τU(k) = τ(k)⊗ 1 (1 the identity operator in CξU ).
We choose an orthonormal basis {fA}A=1···∞ of HU adapted to the decom-

position of U |K into different K-types, U |K =
∑
δ∈K̂ δ. We can always as-

sume that for A = 1, . . . , dτξU the vectors {fA} span Hτ , and we choose them
as follows. Let HomK(HU , Vτ ) be the space of all linear maps T : HU → Vτ
such that

T U(k) = τ(k)T, ∀k ∈ K.
This is a vector space of dimension ξU . Let {Pξ}ξ=1,... ,ξU be a basis of
HomK(HU , Vτ ), orthonormal with respect to the scalar product 〈P,Q〉 =
(1/dτ ) Tr (P ∗Q), where ∗ denotes adjoint. One has the relations Pξ′P ∗ξ =
δξξ′1τ , and

Pτ =
∑
ξ

P ∗ξ Pξ.

For each ξ = 1, . . . , ξU and v ∈ Vτ , we put

fvξ = P ∗ξ v.

Let {va}a=1,... ,dτ be an orthonormal basis of Vτ , and let faξ ≡ fvaξ. Then
{faξ} is an orthonormal basis of Hτ .

Define the End(Hτ )-valued spherical function ΨU
τ by

ΨU
τ (g) = PτU(g)Pτ , g ∈ G,(2.2)

and let ψUτ be the corresponding spherical trace function of type τ

ψUτ (g) = Tr [PτU(g)Pτ ] = Tr ΨU
τ (g).

For O ∈ End(Vτ ⊗ CξU ), let Tr |CξUO ∈ End(Vτ ) denote the operator
obtained by taking the partial trace of O with respect to CξU . Define the
End(Vτ )-valued function ϕUτ on G by

ϕUτ (g) = Tr |CξU ΨU
τ (g).(2.3)

In terms of the basis {Pξ} of HomK(HU , Vτ ), we have

ϕUτ (g) =
ξU∑
ξ=1

PξU(g)P ∗ξ ,
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i.e., the matrix coefficients of ϕUτ (g) are

〈ϕUτ (g)v,v′〉 =
ξU∑
ξ=1

〈U(g)fvξ, fv′ξ〉, v,v′ ∈ Vτ .

It is easy to see, using the Schur orthogonality relations, that ϕUτ = ψUτ ∗dττ ,
i.e.,

ϕUτ (x) = dτ

∫
K

ψUτ (xk−1)τ(k)dk. x ∈ G.(2.4)

We have ϕUτ (kxk′) = τ(k)ϕUτ (x)τ(k′), ∀k, k′ ∈ K. Moreover Tr ϕUτ (x) =
ψUτ (x) (since ψUτ ∗ dτχτ = ψUτ ). If ξU = 1, then ϕUτ = ΨU

τ .

Proposition 2.1. Let f ∈ C∞0 (G, τ). Then ∀x ∈ G

f(x) =
1
dτ

∫
Ĝ(τ)

(ϕUτ ∗ f)(x) dµ(U),(2.5)

where dµ(U) is the Plancherel measure on Ĝ (suitably normalized), and the
convolution is defined by

(ϕUτ ∗ f)(x) ≡
∫
G

ϕUτ (x−1y)f(y)dy.(2.6)

Proof. We write the Plancherel (inversion) formula on G as

f(x) =
∫
Ĝ

ΘU(f ◦ Lx)dµ(U), f ∈ C∞0 (G),(2.7)

where ΘU is the global character of U , and Lx denotes left-translation on G,
Lx(y) = xy.

Consider the Fourier component ΘU,τ of ΘU , defined by the rule

ΘU,τ (f) ≡ ΘU(f ∗ dτ χ̄τ ), f ∈ C∞0 (G),

the convolution being over K.
As proved in [8], Vol. II, p. 18 (the remark), the distribution ΘU,τ coin-

cides with the spherical trace function ψUτ , i.e.,

ΘU,τ (f) =
∫
G

ψUτ (x)f(x)dx, f ∈ C∞0 (G).

Clearly if [U ] is not in Ĝ(τ), then ψUτ = 0 and

ΘU,τ (f) = 0, ∀f ∈ C∞0 (G).
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Now let f ∈ C∞0 (G, τ). It follows from (1.9) that f ∗ dτ χ̄τ = f , and
similarly (f ◦ Lx) ∗ dτ χ̄τ = f ◦ Lx. Applying ΘU to each component of the
vector-valued function f ◦ Lx, gives

ΘU(f ◦ Lx) = ΘU ((f ◦ Lx) ∗ dτ χ̄τ ) = ΘU,τ (f ◦ Lx),

and if [U ] 6∈ Ĝ(τ)

ΘU(f ◦ Lx) = ΘU,τ (f ◦ Lx) = 0.

We now apply the inversion formula (2.7) to each component of f ∈
C∞0 (G, τ), to find

f(x) =
∫
Ĝ(τ)

∫
G

ψUτ (y)f(xy)dydµ(U)

=
∫
Ĝ(τ)

∫
G

ψUτ (x−1y)f(y)dydµ(U).

Now ∫
G

ψUτ (x−1y)f(y)dy =
∫
G

∫
K

ψUτ (x−1y)τ(k)f(yk)dkdy

=
∫
G

∫
K

ψUτ (x−1yk−1)τ(k)f(y)dkdy =
1
dτ

∫
G

ϕUτ (x−1y)f(y)dy.

This proves (2.5).

The space ϕUτ ∗C∞0 (G, τ) can be given the positive definite inner product

〈ϕUτ ∗ f1, ϕ
U
τ ∗ f2〉 =

1
dτ

∫
G

〈(ϕUτ ∗ f1)(x), f2(x)〉dx(2.8)

=
1
dτ

∫
G

〈f1(x), (ϕUτ ∗ f2)(x)〉dx.(2.9)

It is clear from (2.8)-(2.9) that this inner product is well-defined. We have
the following corollary to Proposition 2.1.

Corollary 2.2. Let L2
U(G, τ) and L2(G, τ) denote the Hilbert space com-

pletions of ϕUτ ∗ C∞0 (G, τ) and C∞0 (G, τ), respectively. Let indGK(τ) denote
the representation of G on L2(G, τ) unitarily induced from τ ∈ K̂. Then we
have the direct integral decompositions

L2(G, τ) =
∫ ⊕
Ĝ(τ)

L2
U(G, τ)dµ(U),
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indGK(τ) =
∫ ⊕
Ĝ(τ)

m(τ, U)Udµ(U),

‖f‖2 =
∫
Ĝ(τ)

‖ϕUτ ∗f‖2dµ(U), f ∈ C∞0 (G, τ).

The theory above does not apparently involve any Fourier transform con-
cept for general f ∈ C∞0 (G, τ). In order to investigate this point, we need
to write down in a more precise way the convolution ϕUτ ∗ f for U in the
tempered spectrum of a semisimple group G. We shall do this in two steps.
First we consider the representations in the principal P -series, for P minimal
parabolic. Then we discuss the representations in the generalized principal
series and the discrete series.

3. τ-spherical functions for the minimal principal series.

Fix τ as before, and fix σ ∈ M̂ so that σ occurs with multiplicity mσ > 0
in τ |M . Hereafter we identify a class σ ∈ M̂ with a representative (denoted
(σ, Vσ)) in that class. Given a linear function µ : a → C, let Uσµ be the
representation of G in the nonunitary (minimal) principal series induced
from the representation σ ⊗ exp(µ+ ρ)⊗ 1 of P :

Uσµ = indGP (σ ⊗ exp(µ+ ρ)⊗ 1).(3.1)

The representation space Eσµ is the Hilbert space of those functions f :
G→ Vσ satisfying (see [8], Vol. I, p. 449)

f(xman) = a−(µ+2ρ)σ(m−1)f(x),

and ‖f‖2 < +∞, where the scalar product is defined by

〈f, g〉 =
∫
K

〈f(k), g(k)〉dk.

The action of G is just left translation of the argument:

[Uσµ(x)f ](y) = f(x−1y).

It is known that, independently of the continuous parameter µ, the re-
striction map f → f |K is a bijection of Eσµ onto L2(K,σ), the space of
square integrable functions f : K → Vσ such that

f(km) = σ(m−1)f(k), m ∈M, k ∈ K.
Thus Uσµ|K = indKM(σ) (see [8], Vol. I, p. 450), and by Frobenius Reciprocity
τ occurs in Uσµ|K exactly mσ times.
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For each µ ∈ a∗C we can define a representation of G in L2(K,σ) by

[Ũσµ(x)f ](k) = e−(µ+2ρ)(H(x−1k))f(k(x−1k)), f ∈ L2(K,σ).

The Hilbert space adjoint of Ũσµ(x) is then

Ũσµ(x)∗ = Ũσ,−µ̄−2ρ(x−1).(3.2)

[This makes sense because the operators Ũσµ(x) (µ ∈ a∗C) all act on the
same Hilbert space L2(K,σ).] Formula (3.2) follows immediately from the
change-of-variables formula∫

K

f(k)dk =
∫
K

f(k(yk′))e−2ρ(H(yk′))dk′, y ∈ G,(3.3)

valid for all f ∈ C(K) (see [8], Vol. II, p. 32). This result can be rewritten,
with a little abuse of notation, as

dk = dk(yk′) = e−2ρ(H(yk′))dk′, ∀y ∈ G.(3.4)

Eq. (3.3) is equivalent to the following one (see [3], Lemma 5.19, p. 197):∫
K

f(k(y−1k))dk =
∫
K

f(k′)e−2ρ(H(yk′))dk′ y ∈ G.

[Replace f with f◦Ty−1 in (3.3), where Ty(k) = k(yk), and use k(yk(y−1k)) =
k.]

Conversely, given f ∈ L2(K,σ) we can extend it to a smooth function in
Eσµ by letting fµ(kan) = a−(µ+2ρ)f(k), i.e.,

fµ(x) = e−(µ+2ρ)(H(x))f(k(x)), x ∈ G.(3.5)

Each f ∈ Eσµ arises this way, since (f |K)µ = f . We also have (fµ)|K = f ,
and therefore 〈fµ, fµ〉 = 〈f, f〉. In summary, we have the following (well-
known) result.

Proposition 3.1. The map f → A(f) ≡ f |K is a bijection from Eσµ onto
L2(K,σ), for each µ ∈ a∗C, with inverse given by A−1(f) = fµ. A is an inter-
twining operator for the representations Uσµ and Ũσµ, AUσµ(x) = Ũσµ(x)A,
and 〈A(f), A(f)〉 = 〈f, f〉. The Hilbert space adjoint of Uσµ(x) is given by

[Uσµ(x)∗f ](y) = e(µ+µ̄+2ρ)(H(xk(y)))f(xy)

= e(µ+µ̄+2ρ)(H(xk(y)))[Uσµ(x−1)f ](y).

(3.6)

In particular, the representation Uσµ is unitary if (and only if) µ = iλ− ρ,
with λ real-valued, and i =

√−1.
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Formula (3.6) follows easily from (3.2), and from the well-known properties
of the Iwasawa functions: k(xk(y)) = k(xy), H(xk(y)) = H(xy) − H(y)
(these are particular cases of the relations (3.13)-(3.14) below).

Now let Pτ denote the projection from Eσµ onto Hτ , the subspace of
vectors of Eσµ which transform under K according to τ ,

Pτ = dτ

∫
K

Uσµ(k)χτ (k−1)dk

(cf. (2.1)). Uσµ is neither irreducible nor unitary, in general. Nevertheless
we can define, as before, ΨUσµ

τ (x) = PτU
σµ(x)Pτ , ψU

σµ

τ (x) = Tr ΨUσµ

τ (x),
and

ϕU
σµ

τ (x) = dτ

∫
K

τ(k)ψU
σµ

τ (xk−1)dk(3.7)

(cf. (2.4)). By [8], Corollary 6.2.2.3, we have

ψU
σµ

τ (x) = dτ

∫
K

(χτ ∗ χσ)(k(k−1xk)) eµ(H(xk))dk,(3.8)

where χσ is the character of σ and the convolution is over M .

Lemma 3.2. The function ϕU
σµ

τ admits the integral representation

ϕU
σµ

τ (x) =
dτ
dσ

∫
K

τ (k(xk))Pστ(k−1) eµ(H(xk))dk,(3.9)

where
Pσ = dσ

∫
M

τ(m−1)χσ(m)dm

is the projection from Vτ onto Hσ ' Vσ ⊗Cmσ ⊂ Vτ (the subspace of vectors
of Vτ which transform under M according to σ), and dσ is the dimension of
σ.

Proof. This is a trivial calculation using (3.7)-(3.8), and the Schur orthogo-
nality relations for K.

The adjoint of ϕU
σµ

τ (x) can easily be calculated using (3.3), or (3.2),(3.6).
We find

ϕU
σµ

τ (x)∗ = ϕU
σ,−µ̄−2ρ

τ (x−1),

with similar relations for the other functions ΨUσµ

τ and ψU
σµ

τ .



274 ROBERTO CAMPORESI

This is analogous to the scalar case, where the function

ψµ(x) =
∫
K

eµ(H(xk))dk

satisfies (see, e.g., [8], Vol. II, p. 33)

ψ−µ̄−2ρ(x−1) = ψµ(x).

In the unitary case (µ = iλ− ρ, with λ real valued), the irreducibility of
Uσµ is discussed, e.g., in [8], Sect. 5.5.2, or in [5], p. 174. The result is
that if λ ∈ a∗ is regular, i.e., 〈λ, α〉 6= 0 for all roots α of (g,a), then Uσ,iλ−ρ

is irreducible. Therefore for each σ ∈ M̂ , Uσ,iλ−ρ is irreducible for an open
dense subset of a∗.

We now look for the analog of (1.7) for the translated spherical function
ϕU

σµ

τ (x−1y).
For µ ∈ a∗C, define F µ : G→ End(Vτ ) by

F µ(x) = eµ(H(x)) τ(k(x)), x ∈ G.(3.10)

We have

F µ(kxm) = τ(k)F µ(x)τ(m), ∀k ∈ K, ∀m ∈M.

The following result generalizes Lemma 4.4, p. 418 of [3].

Proposition 3.3. The translated spherical functions ϕU
σµ

τ (x−1y) admit the
integral representation

ϕU
σµ

τ (x−1y) =
dτ
dσ

∫
K

F µ(x−1k)PσF−µ̄−2ρ(y−1k)∗dk,(3.11)

where ∗ denotes adjoint.

Proof. From (3.10) we have∫
K

F µ(x−1k)PσF−µ̄−2ρ(y−1k)∗dk

=
∫
K

eµ(H(x−1k)−H(y−1k))−2ρ(H(y−1k))τ(k(x−1k))Pστ((k(y−1k))−1)dk.

(3.12)

Now notice that for all x, y, z ∈ G, we have the following cocycle relations
for the Iwasawa functions H(x) and k(x):

k (xk(yz)) = k(xyz),(3.13)
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H (xk(yz)) = H(xyz)−H(yz).(3.14)

Indeed

xyz = xk(yz)eH(yz)n(yz)

= k(xk(yz))eH(xk(yz))n(xk(yz))eH(yz)n(yz)

= k(xk(yz))eH(xk(yz))+H(yz)n′ n(yz),(3.15)

where we have used the fact that A normalizes N , i.e., for all a ∈ A and
n ∈ N , na = an′, for some n′ ∈ N . Equating (3.15) to k(xyz)eH(xyz)n(xyz)
gives (3.13)-(3.14), by the uniqueness of the Iwasawa decomposition.

Now make the change of variables k′ = k(y−1k) in the integral over K in
(3.12). From (3.13) and (3.14), we obtain k(yk′) = k(yk(y−1k)) = k, and

H(x−1k) = H(x−1k(yk′)) = H(x−1yk′)−H(yk′),

H(y−1k) = H(y−1k(yk′)) = −H(yk′),

k(x−1k) = k(x−1k(yk′)) = k(x−1yk′).

Using these relations and (3.4) in (3.12), we obtain, recalling (3.9),∫
K

F µ(x−1k)PσF−µ̄−2ρ(y−1k)∗dk

=
∫
K

eµ(H(x−1yk′))τ(k(x−1yk′))Pστ(k′−1)dk′ =
dσ
dτ
ϕU

σµ

τ (x−1y),

which is (3.11).

For µ = iλ− ρ (λ ∈ a∗C), we obtain from (3.11)

ϕU
σ,iλ−ρ

τ (x−1y) =
dτ
dσ

∫
K

F iλ−ρ(x−1k)PσF iλ̄−ρ(y−1k)∗dk.(3.16)

Let f ∈ C∞0 (G, τ), and consider the convolution ϕUτ ∗ f (defined in (2.6))
for the unitary principal series U = Uσ,iλ−ρ (λ real valued). Using (3.16) we
find

(ϕU
σ,iλ−ρ

τ ∗ f)(x) =
∫
G

ϕU
σ,iλ−ρ

τ (x−1y)f(y)dy

=
dτ
dσ

∫
K

F iλ−ρ(x−1k)Pσf̃(λ, k)dk,(3.17)

where we have defined, for k ∈ K, and λ ∈ a∗C,

f̃(λ, k) ≡
∫
G

F iλ̄−ρ(y−1k)∗f(y)dy
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=
∫
G

e−(iλ+ρ)(H(y−1k))τ(k(y−1k)−1)f(y)dy.(3.18)

The function f̃ : a∗C × K → Vτ defined in (3.18) is called the Helgason
Fourier transform of f ∈ C∞0 (G, τ). It reduces to the usual Helgason Fourier
transform in the scalar case (cf. (1.2)).

The geometric interpretation of the Helgason Fourier transform is as fol-
lows. Let τM denote the restriction of τ to the subgroup M . For λ fixed in
a∗C, the function k → f̃(λ, k) satisfies f̃(λ, km) = τ(m−1)f̃(λ, k), ∀m ∈ M ,
and defines a cross section of the homogeneous vector bundle EτM over K/M
associated to τM . Let στ be the restriction of τM to Hσ = PσVτ (cf. Lemma
3.2). Then στ ∼ σ ⊗ 1mσ , and we have the direct sum decompositions
τM =

∑⊕
σ στ , Vτ =

∑⊕
σ Hσ =

∑⊕
σ Vσ ⊗ Cmσ . By writing f̃ =

∑
σ Pσf̃ ,

we see that the function f̃σ(λ, ·) = Pσf̃(λ, ·) defines a cross section of the
homogeneous vector bundle

Eστ = Eσ ⊕ · · · ⊕Eσ︸ ︷︷ ︸
mσ−times

∼= Eσ ⊗Cmσ

over K/M associated to στ . Thus the Helgason Fourier transform maps
cross sections of the bundle Eτ over G/K into cross sections of the bundle
EτM =

∑⊕
σ E

στ over K/M .

In some case this is enough to obtain the inversion formula on C∞0 (G, τ).
Here are two examples.

Theorem 3.4. Let G/K be a (noncompact ) Riemannian symmetric space
of split-rank type, i.e., such that rankG = rankK + rankG/K. (Thus G
has only one conjugacy class of Cartan subalgebra, or equivalently, all re-
stricted roots have even multiplicity.) Let dµ(Uσ,iλ−ρ) = pσ(λ)dλ be the
Plancherel measure associated with the (minimal ) unitary principal series
Uσ,iλ−ρ, where dλ is a suitably normalized Euclidean measure on a∗. Then,
for a suitable normalization of the relevant Haar measures, the following
inversion formula holds (∀f ∈ C∞0 (G, τ), ∀τ ∈ K̂)

f(x) = w−1
∑
σ

1
dσ

∫
a∗

∫
K

F iλ−ρ(x−1k)Pσf̃(λ, k)pσ(λ)dλ dk,(3.19)

where w is the order of the Weyl group of (G,A), and the sum is over all
inequivalent M -types σ contained in τ |M . (The integrals over K can also be
written as integrals over K/M.)

Theorem 3.5. Let G/K be a (noncompact ) Riemannian symmetric space
of rank one. Fix τ ∈ K̂, and suppose that no discrete series of G (if there is
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any ) contain τ . Then there is a normalization of Haar measures such that
(3.19) holds, ∀f ∈ C∞0 (G, τ).

Proof. If G has only one conjugacy class of Cartan subalgebra, then the
set which supports the Plancherel measure in Ĝ consists precisely of the
irreducible components of the unitary principal series Uσ,iλ−ρ, with σ ∈ M̂
and λ ∈ a∗+. If G has real rank one and no discrete series of G contain τ ,
then the elements of Ĝ(τ) with nonzero Plancherel measure are again the
irreducible components of Uσ,iλ−ρ, with σ ⊂ τ |M and λ ∈ a∗+. In both cases
we obtain, from Proposition 2.1,

f(x) =
1
dτ

∑
σ

∫
a∗+

(ϕU
σ,iλ−ρ

τ ∗ f)(x)dµ(Uσ,iλ−ρ)

=
1
dτ

∑
σ

1
w

∫
a∗

(ϕU
σ,iλ−ρ

τ ∗ f)(x)pσ(λ)dλ.(3.20)

We have used the Weyl invariance of the Plancherel density, and the fact
that Uσ,iλ−ρ is unitarily equivalent with Uσ′,iλ′−ρ if and only if there exists
w in the Weyl group such that σ′ = wσ, and λ′ = wλ (see [8], Theorem
5.5.3.3). Using (3.17) in (3.20) proves (3.19).

4. τ-spherical functions for the generalized principal series and
the Helgason Fourier transform.

Let τ ∈ K̂ be fixed. The elements of Ĝ(τ) with nonzero Plancherel measure
consist not only of the irreducible components of the unitary principal se-
ries Uσ,iλ−ρ (σ ⊂ τ |M). In general τ will also be contained in some discrete
series representations (when rankG = rankK), and if rankG/K > 1, in
some (generalized) principal series representations. These are the represen-
tations of G induced unitarily from certain representations (see below) of
the nonminimal cuspidal parabolic (proper) subgroups of G.

In order to obtain the inversion formula for the Helgason Fourier transform
in the general case, we need to discuss the discrete series and the other con-
tinuous series in the tempered spectrum. The general situation is formally
similar to the minimal one, and can be described as follows.

Let P ′ be a cuspidal parabolic subgroup of G, with a (fixed) Langlands
decomposition P ′ = M ′A′N ′. Let (σ′, Vσ′) be in the discrete series of M ′,
and let ν ′ be an element of a′∗, the real dual of the Lie algebra a′ of A′. Let
Uσ′ν′ be the generalized principal series representation of G defined by

Uσ′ν′ = indGP ′(σ
′ ⊗ exp(iν′)⊗ 1).
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Then Uσ′ν′ is unitary, and depends only on the class of A′, i.e., the set
of all parabolic subgroups whose split component is A′. Moreover Uσ′ν′ is
irreducible provided that ν ′ is regular, i.e., 〈ν ′, β〉 6= 0 for all roots β of
(g,a′) (see [5], Theorem 14.15, p. 540). If P ′ is minimal, we may assume
P ′ = P = MAN , where G = KAN is an Iwasawa decomposition of G, and
M is the centralizer of A in K. In this case Uσν is the (minimal) unitary
principal series considered in Section 3, and denoted Uσ,iν−ρ there. If G has
discrete series, then G itself is cuspidal parabolic. If we take P ′ = M ′ = G,
then the parameter ν ′ is trivial, and Uσ′ = σ′ is in the discrete series of G.
The irreducible components of the unitary representations Uσ′ν′ constitute
the so-called tempered spectrum of G. This is the set which supports the
Plancherel measure in Ĝ [8].

In general, we may assume A′ ⊂ A, N ′ ⊂ N , M ′ ⊃ M , and P ′ ⊃ P . As
in the minimal case, A′ and M ′ normalize N ′, and A′ commutes with M ′,
but M ′ is, in general, a noncompact reductive group. Since P ′ is cuspidal,
M ′ has a compact Cartan subgroup contained in K ′, where

K ′ ≡ K
⋂
M ′ = K

⋂
P ′

is a maximal compact subgroup of M ′. Also M ⊂ K ′ ⊂ K. Every element
of G can be written (nonuniquely) as kp′, with k ∈ K and p′ ∈ P ′. We write
the decomposition G = KM ′A′N ′ as

x = k′(x)µ(x)eH
′(x)n′(x),(4.1)

k′(x) ∈ K, µ(x) ∈ M ′, eH
′(x) ∈ A′, and n′(x) ∈ N ′. Here the A′ and N ′

components are well defined, but there is an ambiguity in the definition of
k′(x) and µ(x). (The ambiguity can be removed by requiring that θ(µ(x)) =
(µ(x))−1.) As in [5], Proposition 7.14, p. 186, or Theorem 7.22, p. 196,
we choose A1 and N1 as Iwasawa A and N components of M ′, so that
M ′ = K ′A1N1, A = A′A1, and N = N ′N1. Then M is also the centralizer
of A1 in K ′, and P1 = MA1N1 is a minimal parabolic subgroup of M ′ (see
[5], p. 240). We call k1, H1 and n1 the corresponding Iwasawa functions on
M ′,

m′ = k1(m′)eH1(m′)n1(m′), m′ ∈M ′,(4.2)

k1(m′) ∈ K ′, eH1(m′) ∈ A1, n1(m′) ∈ N1. Using (4.2) for µ(x) in (4.1), and
comparing with (1.1), we find the following relations between the Iwasawa
functions k, k′, k1, H, H ′, and H1:

k(x) = k′(x)k1(µ(x)),(4.3)

H(x) = H ′(x) +H1(µ(x)).(4.4)
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The product k′(x)µ(x) is well defined, and satisfies

k′(kx)µ(kx) = kk′(x)µ(x), ∀k ∈ K,

k′(xm′a′n′)µ(xm′a′n′) = k′(x)µ(x)m′, ∀m′ ∈M ′, ∀a′ ∈ A′, ∀n′ ∈ N ′.
(4.5)

We also have
H ′(xm′a′n′) = H ′(x) + log a′.

By the Subrepresentation Theorem [5], we can identify Uσ′ν′ with a sub-
representation of a nonunitary (minimal) principal series U σ̃′µ, for suitable
parameters σ̃′ ∈ M̂ , and µ ∈ a∗C. It is actually enough to employ the Sub-
representation Theorem for discrete series, in view of the following result.

Proposition 4.1. Let σ′ be in the discrete series of M ′, and choose parame-
ters σ̃′ ∈ M̂ and µ1 ∈ a1

∗ (a1 the Lie algebra of A1) by the Subrepresentation
Theorem, so that σ′ is infinitesimally equivalent with a subrepresentation of
the nonunitary (minimal) principal series of M ′ given by

ωσ̃′µ1 = indM
′

MA1N1
(σ̃′ ⊗ eµ1 ⊗ 1).

Then the generalized principal series Uσ′ν′ = indGM ′A′N ′(σ
′ ⊗ eiν′ ⊗ 1) is in-

finitesimally equivalent with a subrepresentation of the nonunitary (minimal)
principal series of G

U σ̃′,iν′+µ1−ρ = indGMAN(σ̃′ ⊗ eiν′+µ1 ⊗ 1)

(in the notations of Section 3).

Proof. From a double induction formula (see [5], p. 171, 240), we obtain a
canonical equivalence of representations

indGM ′A′N ′
(
indM

′

MA1N1
(σ̃′ ⊗ eµ1 ⊗ 1)⊗ eiν′ ⊗ 1

)
∼= indGM(A′A1)(N ′N1)(σ̃

′ ⊗ eiν′+µ1 ⊗ 1).

It follows that if σ′ is a subrepresentation of ωσ̃′µ1 , then Uσ′ν′ may be re-
garded as a subrepresentation of U σ̃′,iν′+µ1−ρ. See [5], p. 240, for the precise
identification of the representation spaces.

Remark. An explicit embedding of a discrete series representation as a
subrepresentation of a nonunitary principal series was given by Knapp and
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Wallach in [6]. Using this work, one can give an explicit description of the
parameters σ̃′ and µ1 in Proposition 4.1.

Now fix σ′ and ν ′ so that τ ⊂ Uσ′ν′ |K . For simplicity, denote the repre-
sentation space of Uσ′ν′ by Hσ′ , and put Hτ = PτHσ′ (Pτ given by (2.1)),
ΨUσ

′ν′

τ (x) = PτU
σ′ν′(x)Pτ , ψU

σ′ν′

τ (x) = Tr ΨUσ
′ν′

τ (x), and define ϕU
σ′ν′

τ (x) as
in (2.4). Our aim is to find a (minimal) Eisenstein integral representation of
ϕU

σ′ν′

τ (x).
Let σ̃′ and µ1 be determined as in Proposition 4.1. Put µ = iν′ + µ1 − ρ.

Since µ1 is real, the conjugate dual parameter to µ is µ′ = −µ̄ − 2ρ =
iν′ − µ1 − ρ. We identify the representation spaces Eσ̃′µ and Eσ̃′µ′ with
Hσ̃′ = L2(K, σ̃′) (cf. Section 3). By Proposition 4.1, there is a surjective
linear map

S : Hσ̃′ → Hσ′
which carries the K-finite vectors of U σ̃′µ′ onto the K-finite vectors of Uσ′ν′

in a g-equivariant fashion. (If Uσ′ν′ is in the discrete series of G, then S may
be taken as the Szegö map of Knapp and Wallach, see [6].) Let kerS be the
kernel of S. Since Uσ′ν′(x)S = SU σ̃′µ′(x), kerS is invariant under U σ̃′µ′ , and
(kerS)⊥ is invariant under U σ̃′µ. The adjoint of S gives the embedding of
Uσ′ν′ as a subrepresentation of U σ̃′µ on (kerS)⊥.

Let m and n be the multiplicities of τ in U σ̃′µ|K and Uσ′ν′ |K , respectively.
In general we have m ≥ n. Put H̃τ = PτHσ̃′ , and write

H̃τ = H1 ⊕H2,

where H1 ⊂ (kerS)⊥, and H2 ⊂ kerS. Let P1 and P2 be the orthogonal
projections onto H1 and H2, so that Pτ = P1 +P2. We shall now prove that
the spherical trace function ψU

σ′ν′

τ equals the function ψ1 = Tr[P1U
σ̃′µ′P1].

Since Uσ′ν′ is unitary, ψU
σ′ν′

τ will also equal Tr[P1U
σ̃′µP1].

Let {Pξ}ξ=1,... ,m be an orthonormal basis of HomK(Hσ̃′ , Vτ ) (cf. Section
2), such that

P ∗ξ Vτ ⊂ H1, ξ = 1, . . . , n,

P ∗ξ Vτ ⊂ H2, ξ = n+ 1, . . . ,m.

We have P1 =
∑n
ξ=1 P

∗
ξ Pξ, P2 =

∑m
ξ=n+1 P

∗
ξ Pξ.

Let {va}a=1,... ,dτ be an orthonormal basis of Vτ , then the elements faξ =
P ∗ξ va give an orthonormal basis of H1 for ξ = 1, . . . , n, and of H2 for ξ =
n+1, . . . ,m. Clearly {gaξ = S(faξ)}ξ=1,... ,n is a basis ofHτ (not orthonormal,
in general). Observing that SPτ = SP1 = PτS, we have for ξ = 1, . . . , n,

ΨUσ
′ν′

τ (x)gaξ = PτU
σ′ν′(x)Pτ Sfaξ
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= PτU
σ′ν′(x)S P1faξ

= PτS U
σ̃′µ′(x)P1faξ

= S P1U
σ̃′µ′(x)P1faξ.

We see that the matrix representing ΨUσ
′ν′

τ (x) in the basis {gaξ} is the same
as the matrix representing Ψ1(x) = P1U

σ̃′µ′(x)P1 in the basis {faξ}. There-
fore ψU

σ′ν′

τ equals ψ1 = Tr Ψ1, as claimed. In turn this implies that ϕU
σ′ν′

τ

equals the End(Vτ )-valued function ϕ1 on G given by

ϕ1(x) = dτ

∫
K

ψ1(xk−1)τ(k)dk =
n∑
ξ=1

PξU
σ̃′µ′(x)P ∗ξ .

In order to find an explicit integral representation of ϕU
σ′ν′

τ (x), we write
down the basis of H̃τ more precisely as follows.

For v ∈ Vτ and T ∈ HomM(Vτ , Vσ̃′), consider the function from K to Vσ̃′
given by

fvT (k) =
(
dτ
dσ̃′

)1/2

Tτ(k−1)v.

This function is in L2(K, σ̃′), and an easy computation shows that fvT ∈ H̃τ .
Moreover we have

〈fvT , fv′T ′〉 = 〈v,v′〉 1
dσ̃′

Tr(T ∗T ′).

Let {Tξ}ξ=1,... ,m be a basis of HomM(Vτ , Vσ̃′), orthonormal with respect
to the scalar product 〈P,Q〉 = 1

dσ̃′
Tr(P ∗Q). Then the functions fvξ ≡ fv,Tξ

(v ∈ Vτ , ξ = 1, . . . ,m) span H̃τ . We assume (as we may) that they span
H1 for ξ = 1, . . . , n, and H2 for ξ = n + 1, . . . ,m. The basis {Pξ} of
HomK(Hσ̃′ , Vτ ) is then chosen so that

P ∗ξ v = fvξ.

We extend fvξ to Eσ̃′µ′ by means of (3.5), and denote it by the same
symbol. The matrix coefficients of ϕU

σ′ν′

τ (x) are calculated as follows:

〈ϕUσ
′ν′

τ (x)v,v′〉
= 〈ϕ1(x)v,v′〉

=
n∑
ξ=1

〈PξU σ̃′µ′(x)P ∗ξ v,v′〉
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=
n∑
ξ=1

〈U σ̃′µ′(x)fvξ, fv′ξ〉

=
n∑
ξ=1

∫
K

〈fvξ(x−1k), fv′ξ(k)〉dk

=
dτ
dσ̃′

n∑
ξ=1

∫
K

〈Tξτ(k(x−1k)−1)v, Tξτ(k−1)v′〉e−(µ′+2ρ)(H(x−1k))dk

=
dτ
dσ̃′

n∑
ξ=1

∫
K

〈τ(k)T ∗ξ Tξτ(k(x−1k)−1)v,v′〉e−(µ′+2ρ)(H(x−1k))dk

=
dτ
dσ̃′

n∑
ξ=1

∫
K

〈τ (k(xk))T ∗ξ Tξτ(k−1)v,v′〉eµ′(H(xk))dk,

(4.6)

where we have used (3.4) in the last step. This proves the following result.

Proposition 4.2. The τ -spherical function ϕU
σ′ν′

τ is given by

ϕU
σ′ν′

τ (x) =
dτ
dσ̃′

∫
K

τ(k(xk))Tσ̃′τ(k−1)e(iν′−µ1−ρ)(H(xk))dk,(4.7)

where

Tσ̃′ =
n∑
ξ=1

T ∗ξ Tξ ∈ EndM(Vτ ).

Remark. The integral representation (4.7) is invariant under µ1 →
−µ1. This follows from the fact that Uσ′ν′ is unitary, so that ϕU

σ′ν′

τ (x)∗ =
ϕU

σ′ν′

τ (x−1).

Remark. Note that the operator Pσ̃′ =
∑m
ξ=1 T

∗
ξ Tξ is precisely the projector

of Vτ onto Hσ̃′ ' Vσ̃′ ⊗Cm ⊂ Vτ (the subspace of vectors of Vτ which trans-
form under M according to σ̃′, see Lemma 3.2). We have Pσ̃′ = Tσ̃′ + Qσ̃′ ,
where Qσ̃′ =

∑m
ξ=n+1 T

∗
ξ Tξ. Tσ̃′ and Qσ̃′ are projection operators, namely

they project Vτ onto the subspaces Vσ̃′ ⊗ Cn and Vσ̃′ ⊗ Cm−n of Hσ̃′ . If
m = n then H̃τ ⊂ (kerS)⊥ and H2 = {0}. In this case Pσ̃′ = Tσ̃′ , and
ϕU

σ′ν′

τ equals the minimal spherical function ϕU
σ̃′µ

τ . The simplest example
of this is when τ is multiplicity free, i.e., τ occurs at most once in every
irreducible unitary representation of G. This is equivalent to the condition
that all M -types contained in τ |M occur with multiplicity one. In this case
every spherical trace function of type τ on G equals a minimal one ψU

σµ

τ , for
suitable σ ⊂ τ |M , and µ ∈ a∗C.
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Eq. (4.7) can also be proved by using the (nonminimal) Eisenstein integral
representation of ϕU

σ′ν′

τ . According to this, ϕU
σ′ν′

τ can be written as

ϕU
σ′ν′

τ (x) = E(P ′, F σ′ , ν ′)(x),(4.8)

where E(P ′, f, ν′) is the Eisenstein integral1

E(P ′, f, ν′)(x) =
∫
K

e(iν′−ρ′)(H′(xk))f(xk)τ(k−1)dk.(4.9)

Here ρ′ is the ρ-function for the roots of (g,a′), and the function F σ′ :
G → End(Vτ ) is defined as follows. Write τ |K′ =

∑
ω∈K̂′ pωω, and σ′|K′ =∑

ω∈K̂′ nωω. Frobenius Reciprocity implies that the multiplicity mτ of τ in
Uσ′ν′ |K is mτ =

∑
ω∈K̂′ pωnω. (The sum here is finite, being only over those

classes for which pω > 0 and nω > 0.) We identify a class ω ∈ K̂ ′ with
a representative (denoted (ω, Vω)) in that class. Let {P (ω)

j } be a basis of
HomK′(Vτ , Vω), orthonormal with respect to 〈P, P ′〉 = 1

dω
Tr (P ∗P ′). Let

ψσ
′
ω be the spherical trace function of type ω on M ′ relative to σ′. Let

ϕσ
′
ω : M ′ → End(Vω) be the ω-spherical function on M ′ defined in the usual

way, i.e.,

ϕσ
′
ω (m′) = dω

∫
K′
ω(k′)ψσ

′
ω (m′k′−1)dk′

(cf. (2.4)). Define F̂ σ′ : M ′ → End(Vτ ) by

F̂ σ′(m′) =
∑
ω∈K̂′

dτ
dω

pω∑
j=1

P
(ω)∗
j ϕσ

′
ω (m′)P (ω)

j .

Then the function F σ′ is obtained by extending F̂ σ′ to all of G by letting
F σ′(km′a′n′) = τ(k)F̂ σ′(m′), or equivalently (since k′(km′a′n′)µ(km′a′n′) =
km′)

F σ′(x) = τ(k′(x))F̂ σ′(µ(x)).

The function F σ′ satisfies F σ′(kxk′) = τ(k)F σ′(x)τ(k′), ∀k ∈ K, ∀k′ ∈ K ′.
1The relation between Eisenstein integrals and matrix coefficients of principal series

is of course well known, see, e.g., [5], Prop. 14.3, p. 525 or [7], Vol. II, Section 13.1.
(4.9) is only a special instance of Eisenstein integral. It corresponds to the case when the
double representation of K is the canonical representation τ(k1, k2)T = τ(k1)Tτ(k2) on
W = End(Vτ ), see, e.g., [7], Vol. II, p. 216.



284 ROBERTO CAMPORESI

Applying the Subrepresentation Theorem to σ′ (cf. Proposition 4.1), we
can write ϕσ

′
ω (m′) as the following Eisenstein integral (relative to M ′):

ϕσ
′
ω (m′) =

dω
dσ̃′

∫
K′
ω(k1(m′k′))T (ω)

σ̃′ ω(k′−1)e(−µ1−ρ1)(H1(m′k′))dk′,

where ρ1 is the ρ-function for M ′, and T
(ω)
σ̃′ =

∑nω
j=1 T

(ω)∗
j T

(ω)
j . [Here

{T (ω)
j }j=1,... ,qω is an orthonormal basis of HomM(Vω, Vσ̃′), qω is the multi-

plicity of σ̃′ in ω|M , and qω ≥ nω, in general.]
Substituting this in (4.8) gives

ϕU
σ′ν′

τ (x) =
dτ
dσ̃′

∫
K×K′

τ(k′(xk)k1(µ(xk)k′))Tσ̃′τ((kk′)−1)

× e(−µ1−ρ1)(H1(µ(xk)k′))+(iν′−ρ′)(H′(xk))dk dk′,(4.10)

where we have used

Tσ̃′ =
∑
ω∈K̂′

pω∑
j=1

P
(ω)∗
j T

(ω)
σ̃′ P

(ω)
j ,

which is easy to prove by Frobenius Reciprocity.
Using (4.5) and (4.3)-(4.4), one can show that ∀x ∈ G, ∀k ∈ K, and

∀k′ ∈ K ′,
k′(xk)k1(µ(xk)k′) = k(xkk′),

H1(µ(xk)k′) = H1(µ(xkk′)).

Making the change of variables kk′ = k̃ in the integral overK in (4.10), we see
that the integral overK ′ drops out, and we obtain (4.7), since a = a1⊕a′, and
(by (4.4)) (−µ1−ρ1)(H1(µ(xk))) = (−µ1−ρ1)(H(xk)), (iν′−ρ′)(H ′(xk)) =
(iν′ − ρ′)(H(xk)), while the ρ-functions satisfy ρ = ρ1 + ρ′.

We can now prove our main result.

Theorem 4.3. Let G/K be a Riemannian symmetric space of the noncom-
pact type. For τ ∈ K̂, let Eτ be the homogeneous vector bundle over G/K
associated with τ , and define C∞0 (G, τ) and L2(G, τ) in the usual way. Let
G = KAN be an Iwasawa decomposition of G, let M be the centralizer of A
in K, and let P = MAN be the corresponding minimal parabolic subgroup
of G. Define the Helgason Fourier transform of f ∈ C∞0 (G, τ) as the map
f̃ : a∗C ×K → Vτ given by

f̃(λ, k) =
∫
G

F iλ̄−ρ(x−1k)∗f(x)dx, λ ∈ a∗C, k ∈ K,
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where F µ(x) is given by (3.10), and ∗ denotes adjoint.
Let P ′ be a cuspidal parabolic subgroup of G such that P ′ ⊇ P and A′ ⊆ A,

where P ′ = M ′A′N ′ is a Langlands decomposition of P ′. Let K ′ = K
⋂
M ′ be

maximal compact in M ′, and let M ′ = K ′A1N1 be an Iwasawa decomposition
of M ′ so that A = A′A1 and N = N ′N1. Given σ′ in the discrete series
of M ′, choose parameters σ̃′ ∈ M̂ and µ1 ∈ a1

∗ by the Subrepresentation
Theorem, so that σ′ is infinitesimally equivalent with a subrepresentation of
indM

′

MA1N1
(σ̃′ ⊗ eµ1 ⊗ 1) (see [6]).

Let Uσ′ν′ denote the representation indGP ′(σ
′ ⊗ eiν

′ ⊗ 1) in the unitary
principal P ′-series with parameters σ′ and ν ′ ∈ a′∗ (the real dual of the
Lie algebra of A′). If τ ⊂ Uσ′ν′ |K, define Tσ̃′ as in Proposition 4.2. Let
dµ(Uσ′ν′) = pσ′(ν ′)dν ′ be the Plancherel measure associated with Uσ′ν′, where
dν ′ is a properly normalized Euclidean measure on a′∗. Then, for a suitable
normalization of the relevant Haar measures and for suitable constants cP ′ >
0, the following inversion formula holds

f(x) =
∑
P ′
cP ′

∑
σ′

1
dσ̃′

∫
a′∗

∫
K

F iν′+µ1−ρ(x−1k)Tσ̃′ f̃(ν ′ − iµ1, k) pσ′(ν ′)dν ′dk.

(4.11)

Here the sum
∑
P ′ is over all cuspidal parabolic subgroups P ′ of G such that

P ′ ⊇ P and A′ ⊆ A, and the sum
∑
σ′ is over all discrete series σ′ of M ′

such that Uσ′ν′ |K ⊃ τ . [These are in finite number only, since each ω in τ |K′
can only be contained in finitely many σ′, see [5], Corollary 12.22, p. 455.]

Proof. We write the Plancherel (inversion) formula on G as (see, e.g., [7],
Theorem 13.4.1 or [5], Theorem 13.11)

f(x) =
∑
P ′
cP ′

∑
σ′

∫
a′∗

Θσ′ν′(f ◦ Lx)pσ′(ν ′)dν ′, f ∈ C∞0 (G),(4.12)

where Θσ′ν′ is the global character of Uσ′ν′ , and the sum
∑
σ′ is over all

discrete series of M ′. For f ∈ C∞0 (G, τ) we find from (4.12) and Proposition
2.1

f(x) =
1
dτ

∑
P ′
cP ′

∑
σ′

∫
a′∗

(ϕU
σ′ν′

τ ∗ f)(x) pσ′(ν ′)dν ′.

From (4.7) we find (by the same proof as in Proposition 3.3)

ϕU
σ′ν′

τ (x−1y) =
dτ
dσ̃′

∫
K

F iν′−µ1−ρ(x−1k)Tσ̃′F iν′+µ1−ρ(y−1k)∗dk

=
dτ
dσ̃′

∫
K

F iν′+µ1−ρ(x−1k)Tσ̃′F iν′−µ1−ρ(y−1k)∗dk.
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It follows that

(ϕU
σ′ν′

τ ∗ f)(x) =
∫
G

ϕU
σ′ν′

τ (x−1y)f(y)dy

=
dτ
dσ̃′

∫
K

F iν′+µ1−ρ(x−1k)Tσ̃′ f̃(ν ′ − iµ1, k)dk.(4.13)

This proves (4.11).

A standard computation, using (4.11), gives the following formula for the
scalar product (1.10) of f1, f2 ∈ C∞0 (G, τ):

〈f1, f2〉
=
∑
P ′
cP ′

∑
σ′

1
dσ̃′

∫
a′∗

∫
K

〈Tσ̃′ f̃1(ν ′ + iµ1, k), Tσ̃′ f̃2(ν ′ − iµ1, k)〉 pσ′(ν ′)dν ′dk.

Remark. If rankG = rankK, the contribution of P ′ = G in (4.12) is the
discrete series contribution. In this case the parameter ν′ is trivial and the
integral over a′∗ drops out. The corresponding contribution in (4.11) is

fdiscrete(x) = cG
∑
σ

1
dσ̃

∫
K

F µ1−ρ(x−1k)Tσ̃f̃(−iµ1, k)pσdk,

where the sum is over all discrete series σ of G containing τ , and pσ is the
formal degree of σ. The parameters σ̃ ∈ M̂ and µ1 ∈ a∗ are chosen by the
Subrepresentation Theorem, so that σ is infinitesimally equivalent with a
subrepresentation of indGMAN(σ̃ ⊗ eµ1 ⊗ 1), see [6].

Remark. The Plancherel density pσ′(ν ′) is determined by the asymptotic
form of ϕU

σ′ν′

τ (a) (a ∈ A) at infinity in the positive Weyl chamber. By
proceeding as in the scalar case, we find that

pσ′(ν ′) ∝ (Tr [Cτ
σ′(ν

′)Cτ
σ′(ν

′)∗])−1,

where (cf. (1.4)-(1.5))

Cτ
σ′(ν

′) = lim
t→+∞ a

(−iν′−µ1+ρ)
t ϕU

σ′ν′

τ (at)

=
dτ
dσ̃′

Tσ̃′
∫
N̄

e−(iν′+µ1+ρ)(H(n̄))τ(k(n̄)−1)dn̄.

The integral here converges absolutely as long as <(iν′ + µ1) ∈ a∗+, and it is
defined by meromorphic continuation for the other values of ν ′.
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5. The spherical transform.

Let f be a compactly supported smooth function on G which is biinvariant
under K, f(kxk′) = f(x), ∀k, k′ ∈ K. It is well known that the Fourier
transform of f reduces to the spherical transform f̂(λ) in this case. Indeed,
using the integral formula for the Cartan decomposition and the identity (cf.
[3], Eq. (7), p. 419)

φλ(x−1) = φ−λ(x)

in (1.2), we find for f K-biinvariant

f̃(λ, b) = f̂(λ) ≡
∫
G

φλ(x)f(x)dx.(5.1)

From (1.8) we obtain

(f ∗ φλ)(x) = f̂(−λ)φ−λ(x−1) = f̂(−λ)φλ(x).(5.2)

Using (5.1) in (1.3), or (5.2) in (1.6), gives the inversion formula for the
spherical transform

f(x) = w−1

∫
a∗
f̂(λ)φλ(x−1)|c(λ)|−2dλ

= w−1

∫
a∗
f̂(−λ)φλ(x)|c(λ)|−2dλ.

We want to generalize this to vector bundles. First we need to find the
analog of K-biinvariant functions.

5.1. Radial systems of sections.
By a radial system of sections of Eτ we mean a map F : G → End(Vτ )

such that

F (k1gk2) = τ(k−1
2 )F (g)τ(k−1

1 ), ∀g ∈ G, ∀k1, k2 ∈ K.(5.3)

For any v ∈ Vτ , the vector valued function f(g) = F (g)v satisfies (1.9),
and defines a radial section of Eτ . [We follow here Badertscher and Reimann
[1], who studied vector fields over the real hyperbolic spaces.]

The radial systems of sections generalize the notion of K-biinvariant func-
tions on G. They are called radial because they are determined by their
restriction to the vector subgroup A, due to the Cartan decomposition
G = KAK.

We denote by C∞0 (G, τ, τ) and by L2(G, τ, τ) the obviously defined spaces
of radial systems of sections, with scalar product

〈F1, F2〉 =
∫
G

Tr [F1(x)F2(x)∗] dx,
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where ∗ denotes adjoint. For F1, F2 ∈ C∞0 (G, τ, τ), define the convolution by

(F1 ∗ F2)(x) =
∫
G

F1(y−1x)F2(y)dy.

This definition is arranged so that F1 ∗ F2 ∈ C∞0 (G, τ, τ).
The convolution algebra C∞0 (G, τ, τ) may be identified with a certain sub-

algebra of C∞0 (G), which we now define. Let I0,τ (G) denote the set of those
f ∈ C∞0 (G) which satisfy

f(kxk−1) = f(x), x ∈ G, k ∈ K

(i.e., f is K-central), and

dτ χ̄τ ∗ f = f = f ∗ dτ χ̄τ .(5.4)

Then I0,τ (G) is a subalgebra of C∞0 (G), and it is (anti)-isomorphic to
C∞0 (G, τ, τ). Indeed given F ∈ C∞0 (G, τ, τ) define

fF (x) ≡ dτ Tr F (x).

It follows from (5.3) that fF is K-central, and moreover it satisfies (5.4).
Thus fF ∈ I0,τ (G). Viceversa, given f ∈ I0,τ (G) put

Ff (x) ≡
∫
K

τ(k)f(kx)dk.(5.5)

Then Ff is in C∞0 (G, τ, τ). We have the following result (see [8], Vol. II, p.
3, Example 1).

Proposition 5.1. The map f → Ff is a linear bijection of I0,τ (G) onto
C∞0 (G, τ, τ). Its inverse is the map F → fF . These maps satisfy

Ff1∗f2 = Ff2 ∗ Ff1 ,

fF1∗F2 = fF2 ∗ fF1 .

5.2. Spherical functions of type τ on G.
Our objective is to find the analog of Eq. (5.2) for the convolution ϕUτ ∗f ,

when f is a radial section of Eτ , and U is in the tempered spectrum of G.
In order to do this, we go back to the notations of Section 2.

Fix a representative (U,HU) of [U ] ∈ Ĝ(τ). Let Hτ = PτHU (Pτ given by
2.1). We identify Hτ with Vτ ⊗CξU , by means of

fvξ ↔ v ⊗ eξ, v ∈ Vτ , ξ = 1, . . . , ξU ,
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where {eξ}ξ=1,... ,ξU is a (fixed) orthonormal basis of CξU . (Recall that ξU =
m(τ, U).)

For O ∈ End(Vτ ⊗CξU ), let Tr |VτO ∈ End(CξU ) denote the partial trace
of O with respect to Vτ . Put

ΦU
τ (g) ≡ 1

dτ
Tr |VτΨU

τ (g).

For each g ∈ G, ΦU
τ (g) is the element of End(CξU ) with matrix coefficients

〈ΦU
τ (g)eξ, eξ′〉 =

1
dτ

dτ∑
a=1

〈U(g)faξ, faξ′〉

=
1
dτ

Tr [Pξ′U(g)P ∗ξ ].

Notice that ΦU
τ (e) = 1, and

ψUτ (g) = dτ Tr ΦU
τ (g).(5.6)

The functions ΨU
τ and ΦU

τ are related as follows.

Lemma 5.2. Let the Haar measure on K be normalized by
∫
K dk = 1. Then

∀x ∈ G ∫
K

ΨU
τ (kxk−1)dk = 1⊗ ΦU

τ (x),(5.7)

d2
τ

∫
K

τ(k)⊗ ΦU
τ (xk−1)dk = ΨU

τ (x),(5.8)

where 1 in (5.7) denotes the identity operator in Vτ .

Proof. Let ΨU
τ,K(x) denote the left-hand side of (5.7). We have

ΨU
τ,K(x) =

∫
K

τU(k)ΨU
τ (x)τU(k−1)dk.(5.9)

Since ΨU
τ,K(x) commutes with all the τU(k), k ∈ K, it must be of the form

ΨU
τ,K(x) = 1⊗ Φ(x),(5.10)

where Φ is a function on G with values in End(CξU ). Taking the trace of
both sides of (5.10) with respect to Vτ , and using (5.9), gives

Tr |VτΨU
τ,K(x) = Tr |VτΨU

τ (x) = dτΦ(x).
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Thus Φ(x)=ΦU
τ (x), and (5.7) is proved. In order to prove (5.8), we calculate

the matrix coefficients of the left-hand side of (5.8). For v,v′ ∈ Vτ , we have

d2
τ

∫
K

〈τ(k)⊗ ΦU
τ (xk−1) v ⊗ eξ,v′ ⊗ eξ′〉dk

= d2
τ

∫
K

〈τ(k)v,v′〉〈ΦU
τ (xk−1)eξ, eξ′〉 dk

= dτ

∫
K

〈τ(k)v,v′〉
dτ∑
a=1

〈U(xk−1)faξ, faξ′〉dk

= dτ

dτ∑
a,b=1

〈U(x)fbξ, faξ′〉
∫
K

〈τ(k)v,v′〉〈τ(k−1)va,vb〉dk

=
∑
a,b

〈U(x)fbξ, faξ′〉〈v,vb〉〈v′,va〉

= 〈U(x)fvξ, fv′ξ′〉.

We have used the Schur orthogonality relations for the matrix coefficients of
τ(k). This proves (5.8).

It is clear from (5.7) that ΦU
τ is K-central. Moreover, taking the partial

trace in (5.8) with respect to Vτ , gives

dτχτ ∗ ΦU
τ = ΦU

τ = ΦU
τ ∗ dτχτ .

For f ∈ C∞0 (G), let U(f) denote the operator

U(f) =
∫
G

f(x)U(x)dx.

Then, as is well known, U(f)Pτ = U(f ∗ dτ χ̄τ ), PτU(f) = U(dτ χ̄τ ∗ f), and

PτU(f)Pτ = U(dτ χ̄τ ∗ f ∗ dτ χ̄τ ).

In particular, for f ∈ I0,τ (G) we have the following result.

Proposition 5.3. Let f ∈ I0,τ (G), and let [U ] ∈ Ĝ(τ). Then

PτU(f)Pτ = U(f),

U(f)U(k) = U(k)U(f), k ∈ K.

Let Uτ (f) denote the restriction of U(f) to Hτ . Then the set of operators
Uτ (f), f ∈ I0,τ (G), is the centralizer of the representation k → τU(k) of K
on Hτ .
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Proof. See [8], Vol. I, p. 307 and Prop. 4.5.1.7, p. 310.

It follows from this proposition and from (5.7), that for f ∈ I0,τ (G)

Uτ (f) =
∫
G

f(x)ΨU
τ (x)dx =

∫
G

∫
K

f(kxk−1)ΨU
τ (x)dkdx

=
∫
G

∫
K

f(y)ΨU
τ (k−1yk)dkdy = 1⊗

∫
G

f(x)ΦU
τ (x)dx,

and that
ΘU(f) ≡ Tr U(f) = Tr Uτ (f) =

∫
G

f(x)ψUτ (x)dx.

Since
U(f1 ∗ f2) = U(f1)U(f2),

we see that the map f → f̂(U) ∈ End(CξU ), where

f̂(U) ≡
∫
G

f(x)ΦU
τ (x)dx,(5.11)

is a representation of the algebra I0,τ (G) on CξU ,

̂(f1 ∗ f2)(U) = f̂1(U)f̂2(U), f1, f2 ∈ I0,τ (G).

It is not difficult to show that this representation is irreducible (see [8], Vol.
I, p. 310, the remark).

In summary, the function x → Φ(x) ≡ ΦU
τ (x) ∈ End(CξU ) satisfies the

following three conditions:

(i) Φ(kxk−1) = Φ(x), x ∈ G, k ∈ K;(5.12)

(ii) dτχτ ∗ Φ = Φ (= Φ ∗ dτχτ );(5.13)

(iii) The map f→
∫
G

f(x)Φ(x)dx is an irreducible

representation of I0,τ (G).

Definition 5.4. (See [8], Vol. II, p. 14.) Let τ ∈ K̂ be fixed. A quasi-
bounded (cf. [8], Vol. II, p. 6) continuous function Φ on G with values in
End(E) (E a finite-dimensional vector space) is called a spherical function
of type τ on G, if it satisfies (i)-(iii) above. We say that Φ is of positive
type if E admits the structure of a Hilbert space such that for all positive
integers n, all x1, . . . , xn in G, and all c1, . . . , cn in C,

∑
i,j cic̄jΦ(x−1

i xj) is
a positive operator.
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The connection between spherical functions of type τ and representations
of G is as follows. Let U be a topologically completely irreducible (TCI)
Banach representation of G (see [8], Vol. I, p. 228 for the definition of TCI).
Suppose that τ occurs in U |K , and define ΨU

τ , ΦU
τ by means of Eqs. (2.2),

(5.7). Then ΦU
τ is a spherical function of type τ on G. Conversely, if Φ is a

spherical function of type τ on G, there exists a TCI Banach representation
U of G such that Φ = ΦU

τ . [See [8], Vol. II, p. 15.] The spherical functions
of positive type may be characterized as follows.

Proposition 5.5. Let Φ be a spherical function of type τ on G. Then:
(1) Φ is of positive type if and only if the scalar-valued function x →

Tr Φ(x) is positive definite on G;
(2) If Φ is of positive type, there exists [U ] ∈ Ĝ(τ) such that Φ = ΦU

τ .
Conversely, if [U ] ∈ Ĝ(τ) then ΦU

τ is of positive type.

Proof. See [8], Vol. II, p. 15, the remark.

Let H denote the set of all spherical functions of type τ on G, and let HP
denote the subset of spherical functions of positive type.

Definition 5.6. The spherical transform f̂ of f ∈ I0,τ (G) is the (operator-
valued) function on H defined by

f̂(Φ) =
∫
G

f(x)Φ(x)dx, Φ ∈ H.(5.14)

For Φ = ΦU
τ ∈HP ([U ] ∈ Ĝ(τ)), the function f̂ on HP defined by (5.14) is

called the spherical Fourier transform of f , and we use the notation f̂(ΦU
τ ) =

f̂(U) (cf. (5.11)). For Φ ∈ H (Φ : G→ End(E)), let Ψ(x) ∈ End(Vτ ⊗E) be
given by the left hand side of (5.8) (with ΦU

τ → Φ), and define the spherical
transform F̂ of F ∈ C∞0 (G, τ, τ) by

F̂ (Φ) =
1
dτ

∫
G

Tr |Vτ [Ψ(x)(F (x)⊗ 1E)] dx ∈ End(E),(5.15)

where 1E is the identity operator in E, and Tr |Vτ means the partial trace
in Vτ ⊗ E with respect to Vτ . For [U ] ∈ Ĝ(τ), write F̂ (U) in place of
F̂ (ΦU

τ ) ∈ End(CξU ).

Lemma 5.7. In the notations of Proposition 5.1 we have, for all Φ ∈ H,

F̂ (Φ) = f̂F (Φ), f̂(Φ) = F̂f (Φ).(5.16)
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Proof. Using (5.8) in (5.15) we obtain

F̂ (Φ) = dτ

∫
G

∫
K

Tr |Vτ
[
(τ(k)⊗ Φ(xk−1))(F (x)⊗ 1E)

]
dk dx

= dτ

∫
K

∫
G

Tr [F (xk−1)]Φ(xk−1)dx dk

= dτ

∫
G

Tr [F (y)]Φ(y)dy

=
∫
G

fF (y)Φ(y)dy = f̂F (Φ).

Reading the argument backwards, proves the second equality in (5.16).

5.3. The functional equation.
As in the scalar case, spherical functions of type τ on G satisfy a certain

functional equation.

Theorem 5.8. Let Φ be a spherical function of type τ on G. Then Φ
satisfies the functional equation∫

K

Φ(xkyk−1)dk = Φ(x)Φ(y), x, y ∈ G.(5.17)

Conversely, let Φ be a nonzero quasi-bounded continuous function on G with
values in End(E) (E a finite-dimensional vector space), which satisfies (5.17)
together with the conditions (i) and (ii) in the definition of spherical function
of type τ . Then the map f → ∫

G f(x)Φ(x)dx is a representation of the alge-
bra I0,τ (G) on E. If this representation is irreducible, then Φ is a spherical
function of type τ on G.

Proof. For f ∈ C∞0 (G) put

fK(x) =
∫
K

f(kxk−1)dk,

and f τ = dτ χ̄τ ∗ f ∗ dτ χ̄τ , i.e., explicitly,

f τ (x) = d2
τ

∫
K×K

f(k1xk2)χτ (k1)χτ (k2)dk1dk2.

It is easy to see that (fK)τ = (f τ )K . Put f# = (f τ )K . Then the map
f → f# is a projection of C∞0 (G) onto I0,τ (G).
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Let Φ be a spherical function of type τ onG, and put Φ(f) =
∫
G f(x)Φ(x)dx

(f ∈ C∞0 (G)). Let f1, f2 be in C∞0 (G). Since the map f → Φ(f) is a repre-
sentation of I0,τ (G), we have

0 = Φ(f#
1 ∗ f#

2 )− Φ(f#
1 )Φ(f#

2 )

=
∫
G

(f#
1 ∗ f#

2 )(z)Φ(z)dz −
∫
G

f#
1 (x)Φ(x)dx

∫
G

f#
2 (y)Φ(y)dy

=
∫
G×G

f#
1 (zy−1)f#

2 (y)Φ(z)dydz −
∫
G×G

f#
1 (x)f#

2 (y)Φ(x)Φ(y)dxdy

=
∫
G×G

[Φ(xy)− Φ(x)Φ(y)] f#
1 (x)f#

2 (y)dxdy.

A straightforward calculation, using the definition of f# and (5.12), (5.13),
shows that the latter expression equals∫

G×G

[∫
K

Φ(xkyk−1)dk − Φ(x)Φ(y)
]
f1(x)f2(y)dxdy.

This proves (5.17), since f1, f2 are arbitrary in C∞0 (G).
Conversely, suppose that Φ : G → End(E) satisfies (5.12), (5.13), and

(5.17). It is easy to show that the map f → ∫
G f(x)Φ(x)dx is a representation

of I0,τ (G). Therefore if this representation is irreducible, then Φ is a spherical
function of type τ on G. For a different proof see [8], Vol. II, p. 16.

Theorem 5.9. Let Φ be a spherical function of type τ on G. Then Φ(e) = 1,
and for all f ∈ I0,τ (G) ∫

G

Φ(xy)f(y)dy = Φ(x)f̂(Φ).(5.18)

Conversely, let Φ be a quasi-bounded continuous function on G with values
in End(E) (E a finite-dimensional vector space ), satisfying (5.12), (5.13),
and Φ(e) = 1. Suppose that for any f ∈ I0,τ (G) there exists an element
f̂(Φ) of End(E), such that (5.18) holds. Then f̂(Φ) =

∫
G f(x)Φ(x)dx, and

the map f → f̂(Φ) is a representation of I0,τ (G) on E. If this representation
is irreducible, then Φ is a spherical function of type τ on G.

Proof. Let Φ be a spherical function of type τ on G. Then (5.17), together
with the irreducibility of the representation f → ∫

G f(x)Φ(x)dx of I0,τ (G),
implies Φ(e) = 1. Therefore (5.18) holds at x = e. For x 6= e we have∫

G

Φ(xy)f(y)dy =
∫
G

∫
K

Φ(xy)f(k−1yk)dkdy
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=
∫
G

∫
K

Φ(xkzk−1)f(z)dkdz

= Φ(x)
∫
G

Φ(z)f(z)dz = Φ(x)f̂(Φ),

where we have used the functional Equation (5.17).
Conversely, let Φ satisfy (5.12), (5.13), Φ(e) = 1, and (5.18). Setting

x = e in (5.18) gives f̂(Φ) =
∫
G f(x)Φ(x)dx. Let f1, f2 ∈ I0,τ (G). Then

̂(f1 ∗ f2)(Φ) =
∫
G

Φ(z)(f1 ∗ f2)(z)dz =
∫
G

∫
G

Φ(z)f1(zy−1)f2(y)dydz

=
∫
G

∫
G

Φ(xy)f1(x)f2(y)dydx =
∫
G

Φ(x)f̂2(Φ)f1(x)dx

= f̂1(Φ)f̂2(Φ),

where we have used (5.18). Therefore the map f → f̂(Φ) is a representa-
tion of I0,τ (G), and Φ is a spherical function of type τ provided that this
representation is irreducible.

5.4. The inversion formula.
The inversion formula for the spherical transform on I0,τ (G) follows easily

from the Plancherel formula on the group G.

Theorem 5.10. The spherical transform (5.14) is inverted by

f(x) = dτ

∫
Ĝ(τ)

Tr
[
ΦU
τ (x−1)f̂(U)

]
dµ(U), f ∈ I0,τ (G),(5.19)

where dµ(U) is the Plancherel measure on Ĝ (suitably normalized ).

Proof. By reasoning as in the proof of Proposition 2.1, we find for any
f ∈ I0,τ (G)

f(x) =
∫
Ĝ

ΘU(f ◦ Lx)dµ(U)

=
∫
Ĝ(τ)

ΘU,τ (f ◦ Lx)dµ(U)

=
∫
Ĝ(τ)

∫
G

ψUτ (y)f(xy)dydµ(U)

=
∫
Ĝ(τ)

∫
G

ψUτ (x−1y)f(y)dydµ(U).(5.20)

Taking the trace in Eq. (5.18) and using (5.6), we find for all f ∈ I0,τ (G)∫
G

ψUτ (x−1y)f(y)dy = dτ Tr
[
ΦU
τ (x−1)f̂(U)

]
.(5.21)
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Using (5.21) in (5.20) gives (5.19).

From Theorem 5.10, we obtain the following inversion formula for radial
systems of sections of Eτ .

Corollary 5.11. Let F ∈ C∞0 (G, τ, τ). Then the spherical transform F →
F̂ , defined in (5.15), is inverted by

F (x) =
1
dτ

∫
Ĝ(τ)

Tr |CξU

[
ΨU
τ (x−1)(1⊗ F̂ (U))

]
dµ(U),(5.22)

where 1 is the identity operator in Vτ , and Tr |CξU means the partial trace
in Vτ ⊗CξU with respect to CξU .

Proof. We apply the map f → Ff (see Prop. 5.1) to f(x) given by (5.19).
Using Eq. (5.16), we have

Ff (x) =
∫
K

τ(k)f(kx)dk

= dτ

∫
K

∫
Ĝ(τ)

τ(k) Tr
[
ΦU
τ (x−1k−1)F̂f (U)

]
dµ(U) dk

= dτ

∫
Ĝ(τ)

∫
K

Tr |CξU

[
τ(k)⊗ ΦU

τ (x−1k−1)F̂f (U)
]
dk dµ(U)

= dτ

∫
Ĝ(τ)

Tr |CξU

[(∫
K

τ(k)⊗ ΦU
τ (x−1k−1)dk

)
(1⊗ F̂f (U))

]
dµ(U)

=
1
dτ

∫
Ĝ(τ)

Tr |CξU

[
ΨU
τ (x−1)(1⊗ F̂f (U))

]
dµ(U),

where we have used (5.8) in the last step. The result now follows from Prop.
5.1 (the map f → Ff being onto).

The Plancherel theorem for the spherical transform follows now from the
inversion formula by well known standard arguments.

Corollary 5.12. Let L2(Ĝ(τ), dµ(U)) denote the set of all functions F̂ on
Ĝ(τ) with values in the set

⋃∞
n=1 End(Cn) satisfying

1) F̂ (U) ∈ End(CξU ), for all [U ] ∈ Ĝ(τ),

2) ‖F̂‖2 ≡
∫
Ĝ(τ)

Tr
[
F̂ (U)F̂ (U)∗

]
dµ(U) < +∞.
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L2(Ĝ(τ), dµ(U)) is a Hilbert space, with the inner product

〈F̂1, F̂2〉 =
∫
Ĝ(τ)

Tr
[
F̂1(U)F̂2(U)∗

]
dµ(U).

Then the spherical Fourier transform F → F̂ extends to an isometry
of the Hilbert space L2(G, τ, τ) of radial systems of sections of Eτ onto
L2(Ĝ(τ), dµ(U)).

The relation between the spherical transform and the Helgason Fourier
transform of a radial section can now be made clear. First we have:

Proposition 5.13. Let F ∈ C∞0 (G, τ, τ), and let ϕUτ ([U ] ∈ Ĝ(τ)) be the
τ -spherical function given by (2.4) or (2.3). Then

(ϕUτ ∗ F )(x) = Tr |CξU

[
ΨU
τ (x−1)(1⊗ F̂ (U))

]
,(5.23)

the convolution being defined in (2.6). Therefore (2.5) reduces to (5.22) in
this case.

Proof. Multiplying in (5.8) by 1 ⊗ f̂F (U), taking the partial trace with
respect to CξU , and using (5.21) and (2.4), we obtain

Tr |CξU

[
ΨU
τ (x)(1⊗ f̂F (U))

]
= d2

τ

∫
K

τ(k) Tr [ΦU
τ (k−1x)f̂F (U)]dk

= dτ

∫
K×G

τ(k)ψUτ (k−1xy)fF (y)dy dk

=
∫
G

ϕUτ (xy)fF (y)dy =
∫
G

ϕUτ (xy)F (y)dy.

The last step is a trivial computation (let y → yk, integrate in dk, and use
(5.5)). This proves (5.23).

Eq. (5.23) generalizes (5.2) to the case of bundles. Notice that we have
not used, so far, the structure theory of semisimple Lie groups, and we have
kept the notations as general as possible. In fact the theory of spherical
functions of type τ on G and the corresponding spherical transform can be
formulated for any pair (G,K) of a locally compact unimodular Lie group G
and a compact subgroup K ⊂ G, provided that every U ∈ Ĝ is K-finite (see
[2], Section 3). If G admits a uniformly large compact subgroup K (see the
definition in [8], Vol. I, p. 305), then the inversion formula (5.19) holds (by
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the same proof given here). This includes all reductive pairs and all motion
groups [8].

We now specialize the inversion formula (5.22) to the semisimple case.
For P ′ cuspidal parabolic, consider the generalized unitary principal P ′-
series Uσ′ν′ (see Section 4), and suppose that ν ′ is regular, so that Uσ′ν′ is
irreducible. If τ ⊂ Uσ′ν′ |K put, as usual, ΨUσ

′ν′

τ (x) = PτU
σ′ν′(x)Pτ , and

define ΦUσ
′ν′

τ (x) as in (5.7). Then ΦUσ
′ν′

τ is a spherical function of type τ
on G of positive type. Let F̂ (Uσ′ν′) be the spherical Fourier transform of
F ∈ C∞0 (G, τ, τ) relative to Uσ′ν′ , given by (see (5.14), (5.15), and (5.16))

F̂ (Uσ′ν′) =
∫
G

fF (x)ΦUσ
′ν′

τ (x)dx.(5.24)

Then the inversion formula (5.22) takes the form

(5.25) F (x)

=
1
dτ

∑
P ′
cP ′

∑
σ′

∫
a′∗

Tr |
C
ξ
Uσ
′ν′

[
ΨUσ

′ν′

τ (x−1)(1τ ⊗ F̂ (Uσ′ν′))
]
pσ′(ν ′)dν ′

(same notations as in Theorem 4.3). This formula holds for any K-type τ .
It can also be obtained from (4.11), by specializing to a radial section.

In order to see this, we compute the Helgason Fourier transform of a radial
section. Going back to the notations of Section 3, consider the (nonunitary)
minimal principal series Uσµ of G defined in (3.1). If σ ⊂ τ |M (with mul-
tiplicity mσ), define ΨUσµ

τ and ΦUσµ

τ in the usual way (cf. (2.2) and (5.7)).
These functions admit integral representations similar to (3.9). For example
ΦUσµ

τ is given as follows. Let Φτ
σ(k) be the spherical function of type σ on

K associated with τ . This is the function from K to End(Cmσ) defined by∫
M

Ψτ
σ(mkm−1)dm = 1σ ⊗ Φτ

σ(k),

where Ψτ
σ(k) = Pστ(k)Pσ, and Pσ is the projection from Vτ onto Hσ '

Vσ⊗Cmσ (the subspace of vectors of Vτ which transform under M according
to σ). The function ΦUσµ

τ is then found to be

ΦUσµ

τ (x) =
∫
K

tΦτ
σ(k(k−1xk))eµ(H(xk))dk ∈ End(Cmσ),(5.26)

where tO denotes the transpose of O ∈ End(Cn).
By the Subquotient Theorem, every TCI Banach representation U of G

is infinitesimally equivalent to a subquotient representation of a principal
series Uσµ, for suitable σ ∈ M̂ , and µ ∈ a∗C. By a similar argument as in the
proof of Proposition 4.2, we find that every (nonzero) spherical function of
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type τ on G can be written as TΦUσµ

τ T , where σ ⊂ τ |M , µ ∈ a∗C, and T is a
suitable projection operator in Cmσ (see, e.g., Eq. (5.29) below).

Given F ∈ C∞0 (G, τ, τ) define F̂σ : a∗C → End(Cmσ) (σ ⊂ τ |M) by

F̂σ(λ) = F̂ (ΦUσ,iλ−ρ
τ ) =

∫
G

fF (x)ΦUσ,iλ−ρ
τ (x)dx, λ ∈ a∗C.(5.27)

Let f(g) = F (g)v (v ∈ Vτ ) be a radial section of Eτ . An easy calculation
shows that the Helgason Fourier transform of f is given by

f̃(λ, k) =
∑
σ

[1σ ⊗ tF̂σ(λ)]Pστ(k−1)v, λ ∈ a∗C, k ∈ K,(5.28)

where the sum is over all inequivalent M -types contained in τ |M . Eq. (5.28)
generalizes (5.1) to vector bundles.

In particular, consider the principal P ′-series Uσ′ν′ , and suppose that
τ ⊂ Uσ′ν′ |K . Using the same notations as in Proposition 4.2, we find that
the spherical function ΦUσ

′ν′

τ is given by

ΦUσ
′ν′

τ (x) = Tn ΦU σ̃
′,iν′+µ1−ρ

τ (x)Tn,(5.29)

where Tn projects onto the first n coordinates in Cm. [Recall that m =
m(σ̃′, τ) ≥ n = m(τ, Uσ′ν′).] The spherical Fourier transform F̂ (Uσ′ν′) of
F ∈ C∞0 (G, τ, τ) is then found to be

F̂ (Uσ′ν′) = Tn F̂σ̃′(ν ′ − iµ1)Tn.(5.30)

Calculating the term Tσ̃′ f̃(ν ′− iµ1, k) in (4.11) for a radial section f(g) =
F (g)v as above, we find from (5.28) and (5.30)

Tσ̃′ f̃(ν ′ − iµ1, k) = [1σ̃′ ⊗ tF̂ (Uσ′ν′)]Tσ̃′τ(k−1)v.

Using this in (4.11) gives the inversion formula (5.25) (by an easy computa-
tion).

Conversely, the inversion formula (4.11) for the Helgason Fourier trans-
form can be deduced from the spherical inversion formula (5.25). The proof
of this is an adaptation of [8], Lemma 9.2.1.6. to the bundle case. [One uses
Eq. (5.25) for the function Fg ∈ C∞0 (G, τ, τ) given by

Fg(x) =
∫
K

(f(gkx)⊗ v) τ(k)dk,

where g ∈ G, f ∈ C∞0 (G, τ), v ∈ Vτ , together with the formula TrFg(e) =
〈f(g), v̄〉.]
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