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CLASSIFICATION OF CYCLIC GROUP ACTIONS ON
NONCOMPACT SURFACES

Hongyu Ding

Classification of group actions on surfaces is a question
arising from the Nielsen realization problem. Nielsen gives
a classification theorem for cyclic group actions on a closed,
oriented, connected surface which shows that the actions can
be classified by their fixed point data. This paper consid-
ers certain group actions on noncompact, oriented, connected
surfaces. The main difficulties are that a noncompact surface
may have infinite genus, and the branch set of an action on a
noncompact surface could be infinite. We introduce the end
data and the type of a cluster end, and provide a complete
classification of cyclic group actions on noncompact surfaces
in terms of fixed point data, end data, and cluster end types.

1. Introduction.

We begin with some basic definitions. Throughout this paper, by a surface
we mean a connected, oriented 2-dimensional manifold (without boundary
unless specified); also, we always assume that actions and homeomorphisms
are orientation-preserving.

Let M be a surface, and let G be a finite abelian group. A free G-
action φ on M corresponds uniquely to a G-covering of the orbit space
N = M/φ, which is determined by an epimorphism φ : π1(N, x0)→ G from
the fundamental group of N to the group G. Two free G-actions φ and ψ on
M are equivalent (conjugate) if and only if they have the same orbit space
N and their corresponding G-coverings are equivalent ([S]), that is, if and
only if there is a homeomorphism h : N, x0 → N, x0 such that ψ = φ◦h∗,
where h∗ : π1(N, x0) → π1(N, x0) is the automorphism induced by h. We
may ignore the choice of the base point when G is abelian.

For an effective G-action φ on M , let N = M/φ be its orbit space and let
B ⊂ N be the set of all the branch points (B is called the branch set). The
action φ can be presented by aG-branched covering ofN which is determined
by an epimorphism φ : π1(N − B, x0) → G. For each branch point x ∈ B,
let Dx be a disk on N centered at x which contains no branch points other
than x. Denote φ(x) = φ([∂Dx]) ∈ G where [∂Dx] is the homotopy class of
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∂Dx in π1(N − B, x0). Let Bfinite = {x ∈ B | there are only finite number
of elements y ∈ B such that φ(y) = φ(x)}. Note that B = Bfinite when the
surface is compact.
Definition. The fixed point data of φ is a function D(φ) : Bfinite → G given
by D(φ)(x) = φ(x).

Theorem 1.1 [N]. Let M be a closed surface.
(a) Any two free Z/n-actions on M are equivalent.
(b) Two effective Z/n-actions on M are equivalent if and only if they have

the same fixed point data.

As pointed out in [E], the classification problem of G-actions on a compact
surface with boundary can be converted to the case of G-actions on a closed
surface by gluing an invariant disk along each boundary component. Let φ
be a free or effective action of a finite abelian group G on a compact surface
M with boundary, and let N = M/φ be its orbit space. Then M is a G-
covering or G-branched covering of N . The action φ is determined by an
epimorphism φ : π1(N − B, x0) → G (the branch set B is empty when φ is
free).
Definition. Let γ1, γ2, . . . , γk be the boundary components of the orbit
space N , and let [γi] be the homotopy class of γi in π1(N − B, x0) (i =
1, 2, . . . , k). The boundary data B(φ) is a function from the set of boundary
components of N to the group G, defined by B(φ)(γi) = φ([γi]) for i =
1, 2, . . . , k.

In the case G = Z/n, we obtain a complete classification as a corollary of
Theorem 1.1.

Corollary 1.2. Let M be a compact surface with boundary.
(a) Two free Z/n-actions on M are equivalent if and only if they have the

same boundary data.
(b) Two effective Z/n-actions on M are equivalent if and only if they have

the same fixed point data and boundary data.

Note that the sum of all the images of D(φ) and B(φ) is 0. This is the
only condition for given fixed point data and boundary data to be realizable.

In this paper we consider group actions on noncompact surfaces. Theo-
rem 1.1 and Corollary 1.2 do not extend to the noncompact case. The main
difficulties are that a noncompact surface may have infinite genus, and the
branch set of an action on a noncompact surface could be infinite. We intro-
duce in §2 decompositions of noncompact surfaces and the end data for free
actions to describe the behavior of an action around ends. §3 gives a classifi-
cation theorem of free actions of a cyclic group on a noncompact surface. In
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§4, we define the end data for effective actions, introduce cluster ends and
the type of a cluster end, and give necessary and sufficient conditions for two
cluster ends to be equivalent (Proposition 4.1). §5 discusses classification
of effective actions of a cyclic group on noncompact surfaces. Another new
concept, stable equivalence, is also introduced in §5.

The following are some of our main results. Let M be a noncompact
surface with finitely many ends.
· If a Z/n-action on M has at most finitely many branch points, it is

determined up to conjugate equivalence by its fixed point data and
end data (end data only, if the action is free). The related results are
given in Theorems 3.1 and 5.1.

· If a Z/n-action on M has infinitely many branch points, it is deter-
mined, up to stable equivalence, by its fixed point data, end data,
cluster end types, and the genus of its orbit space (Theorem 5.2 and
5.2′).

Stronger results are also given for actions with only one cluster end (Corol-
lary 5.7).

Theorem 5.4, Corollary 5.5 and Corollary 5.6 describe the relationship
between conjugate equivalence and stable equivalence. More discussion on
stable equivalence can be found in §5.

2. Decomposition of noncompact surfaces and end data.

In this section, we consider free actions of a finite abelian group on a non-
compact surface with finitely many ends.
Definitions. Let M be a noncompact surface. An end component of M
is a nested sequence U1 ⊃ U2 ⊃ · · · of connected open subsets of M which
satisfy the following conditions:
(i) The boundary of Un in M is compact for all n;

(ii) for any compact subset C of M , Un ∩ C = ∅ for n sufficiently large.
Two end components U1 ⊃ U2 ⊃ · · · and U ′1 ⊃ U ′2 ⊃ · · · are equivalent if

and only if for any n, U ′n ⊃ Um and Un ⊃ U ′k for some integers m, k. An end
of M is an equivalence class of end components. (See [R] where the term
ideal boundary is used in place of end.)

We say that an end e is planar if for any end component U e
1 ⊃ U e

2 ⊃ · · ·
at e, U e

n is homeomorphic to a subset of the plane R2 for all sufficiently large
n.

A noncompact surface M is of finite genus if there exists a compact surface
with boundary M ′ ⊂M such that M −M ′ is planar. In this case, the genus
of M is defined to be the genus of M ′ (number of handles). In the contrary
case, M is of infinite genus.
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Let M be a noncompact surface with k ends e1, e2, . . . , ek. [R, Theorem 1]
implies that two orientable noncompact surfaces with finitely many ends are
homeomorphic if and only if they have the same genus and the same number
of planar and nonplanar ends. The surface M is homeomorphic to a sphere
with k punctures and at most countably many handles. We can choose an
end component U ei

1 ⊃ U ei
2 ⊃ · · · at each ei such that the boundary of each

U ei
n in M (denote as ∂U ei

n ) is a simple closed curve and U ei
1 ∩ U ej

1 = ∅ if
i 6= j.

Definition. Let U e1
n , U

e2
n , . . . , U

ek
n be as above, and let Mn = M−⋃ki=1 U

ei
n

for n = 1, 2, . . . . The sequence M1 ⊂ M2 ⊂ · · · is called a decomposition
of M . Here each Mn is a compact surface with k boundary components
∂M e1

n , ∂M
e2
n , . . . , ∂M

ek
n (∂M ei

n = −∂U ei
n ), and

⋃∞
n=1Mn = M .

Given a decomposition M1 ⊂ M2 ⊂ · · · of M with x0 ∈ M1, note that
the homomorphisms induced by the natural inclusions i∗ : π1(Mn, x0) →
π1(M,x0) and j∗ : π1(Mn, x0)→ π1(Mm, x0) (n < m) are injective. Also

π1(M,x0) = lim−→
n

π1(Mn, x0)

with above homomorphisms.
Now let G be a finite abelian group. We consider a free G-action φ on M

with its orbit space N = M/φ which is a noncompact surface with finitely
many ends. Assume that φ : π1(N, x0) → G. Let e be an end of N , and
let N1 ⊂ N2 ⊂ · · · be a decomposition of N with x0 ∈ N1. We claim that
φ([∂N e

n]) = φ([∂N e
n+1]) for n = 1, 2, . . . . Let a1, b1, a2, b2, . . . , ag, bg be the

canonical basis of the part of the surface N which is bounded by the curves
∂N e

n and ∂N e
n+1. Since [∂N e

n]−1[∂N e
n+1] = [a1, b1][a2, b2] · · · [ag, bg] and G is

abelian, we have that φ([∂N e
n]−1[∂N e

n+1]) = 0.
Define φ(e) = φ([∂N e

n]) ∈ G and Gφ(e) =
⋂∞
n=1 φ(π1(U e

n)); here U e
n is

the connected component of N − Nn which corresponds to the end e (so
U e

1 ⊃ U e
2 ⊃ · · · is an end component of N at e), and φ(π1(U e

n)) is the image
of φ|π1(U e

n). One can check easily that φ(e) and Gφ(e) do not depend on the
decomposition of N .

Definition. The end data E(φ) of a free G-action φ is a function from
the set of all ends (with planarities specified) of the orbit space N to G ×
{subgroups of G} given by E(φ)(e) = (φ(e), Gφ(e)).

Remark 2.1. From the definition, we obtain the following properties:
(a) The sum of φ(e), over all the ends e of N , is 0.
(b) If e is a planar end of N , then Gφ(e) = 〈φ(e)〉 is the subgroup of G

generated by the element φ(e).
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(c) If Gφ(e) =
⋂∞
n=1 φ(π1(U e

n)) = H, then φ(π1(U e
n)) = H for sufficiently

large n. This is because j∗ : π1(U e
n+1) → π1(U e

n) which is induced by
the natural inclusion is injective, and G is finite. Furthermore, there is
a subsequence of {U e

n}, still denoted by {U e
n}, such that φ(π1(U e

n+1 −
U e
n)) = H.

(d) The number of the ends on M lifted from e is ne = |G|/|Gφ(e)|, i.e.,
the preimage of U e

n in M has exactly ne connected components when
n is sufficiently large.

3. A classification theorem of free Z/n-actions.

Recall that in the compact case any two free Z/n-actions on a closed surface
are equivalent. This is no longer true in the noncompact case, however.

Theorem 3.1. Let M be a noncompact surface with finitely many ends.
Two free Z/n-actions on M are equivalent if and only if they have the same
end data.

Note that if two free G-actions on M have the same end data, then their
orbit spaces are homeomorphic. This can been shown by the Riemann-
Hurwitz formula and [R, Theorem 1].

Proof of Theorem 3.1. Suppose that φ and ψ are two free Z/n-actions on
M which have the same end data. We may identify the two orbit spaces
M/φ ∼= N ∼= M/ψ. Then φ and ψ can be presented by epimorphisms
φ, ψ : π1(N, x0) → Z/n. Let N1 ⊂ N2 ⊂ · · · be a decomposition of N .
We may assume that the base point x0 is in N1 and omit writing it. Let
φn, ψn : π1(Nn) → Z/n be the compositions of φ and ψ with i∗ : π1(Nn) →
π1(N) respectively, where i∗ is induced by the natural inclusion. Without
loss of generality, we may assume that all φn and ψn are surjective. Then
the corresponding free Z/n-actions φn and ψn act on the same compact
surface with boundary, and their orbit spaces are Nn. Since φ and ψ have
the same end data, we have that φn([∂N e

n]) = ψn([∂N e
n]) for all ends e of N

and sufficiently large n. Thus φn and ψn have the same boundary data, and
they are equivalent by Corollary 1.2. Therefore, there is a homeomorphism
hn on Nn such that φn = ψn◦hn∗ where hn∗ : π1(Nn) → π1(Nn) is induced
by hn.

In order to get a homeomorphism h : N → N and

h∗ : π1(N) = lim−→
n

π1(Nn)→ lim−→
n

π1(Nn) = π1(N)
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such that φ = ψ◦h∗, we need the diagram

π1(Nn) i∗−→ π1(Nn+1)yhn∗ yhn+1∗

π1(Nn) i∗−→ π1(Nn+1)

to be commutative. In fact, we will show that {hn} can be chosen so that
hn+1|Nn = hn.

Now let e be an end of N . Without loss of generality, we may assume
that the base point is in ∂N e

n. By Lemma 3.2 below we can choose each hn
satisfies hn|∂N e

n = Id.
Suppose now that we have the homeomorphism hn on Nn with hn|∂N e

n =
Id and φn = ψn◦hn∗. Let N ′ be the part of the surface N which is bounded by
∂N e

n and ∂N e
n+1, and let φ′ = φ◦i∗ : π1(N ′)→ Z/n where i∗ : π1(N ′)→ π1(N)

is induced by the inclusion N ′ ↪→ N . Similarly, we define ψ′ = ψ◦i∗. We
may also assume that φ′(π1(N ′)) = Gφ(e) and ψ′(π1(N ′)) = Gψ(e) (see
Remark 2.1 (c)). Since φ and ψ have the same end data, Gφ(e) = Gψ(e)
holds for all ends e of N . Denote H = Gφ(e) (= Gψ(e)).

If |H| = n, then H = Z/n. Therefore, both φ′ and ψ′ are surjective. The
corresponding free Z/n-actions φ′ and ψ′ act on the same compact surface
with boundary and have the orbit space N ′. Since φ′ and ψ′ have the same
boundary data, they are equivalent. Therefore, there is a homeomorphism
h′ on N ′ such that φ′ = ψ′◦h′∗.

If |H| < n, we define φ′′, ψ′′ : π1(N ′) → H to be φ′′(x) = φ′(x) and
ψ′′(x) = ψ′(x) respectively for any x ∈ π1(N ′). Then both φ′′ and ψ′′ are
epimorphisms such that φ′ = j◦φ′′ and ψ′ = j◦ψ′′, where j : H → Z/n is
the inclusion homomorphism. Using the same argument used in the case
|H| = n, we can show that there is a homeomorphism h′ on N ′ such that
φ′′ = ψ′′◦h′∗. Therefore, φ′ = ψ′◦h′∗.

Thus in both cases, there is a homeomorphism h′ on N ′ such that φ′ =
ψ′◦h′∗. By Lemma 3.2, we may assume that h′|∂N ′ = Id. Let hn+1 = hn∪h′.
Then hn+1 is a homeomorphism on Nn+1 and hn+1|∂N e

n+1 = Id. We also
need to show that φn+1 = ψn+1◦hn+1∗. This is true since hn+1|∂N e

n = Id
and since every element in π1(Nn+1) can be written as a product of some
elements presented by loops in Nn or N ′.

Now define h : N → N by h|Nn = hn. Then h is a homeomorphism on
N , and h∗ = lim−→

n

hn∗. Therefore φ = ψ◦h∗. This shows that φ and ψ are

equivalent.
The necessity can been seen easily from the definition of the equivalence

and the end data.

The following well-known result is used in the above proof.
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Lemma 3.2. Let N be a compact surface with boundary, and let h be
a homeomorphism on N which keeps each boundary component invariant.
Then there exists a homeomorphism h′ on N such that h′|∂N = Id and
h∗ = h′∗ : π1(N)→ π1(N).

4. Equivalence of cluster ends.

If an action on a noncompact surface is effective, it may have infinitely many
branch points. In this case, the end components of some ends intersect the
branch set infinitely many times. We shall introduce the type and extend
the definition of the end data for this situation.
Definitions. Let M be a noncompact surface with finitely many ends, and
let G be a finite abelian group. If a G-action φ on M has infinitely many
(countable) branch points, then there exist at least one end e of the orbit
space N = M/φ such that: if U e

1 ⊃ U e
2 ⊃ · · · is an end component at e, then

U e
n ∩B 6= ∅ for all n. Such an end e is called a cluster end of φ.
The type of a cluster end e of φ is a subset of the group G which is defined

by
tyφ(e) = {g ∈ G | ∀n ∃x ∈ U e

n ∩B such that φ(x) = g}.
A cluster end is planar (or nonplanar) if it is planar (or nonplanar) as an

end of the orbit space N .
Note that the preimages of cluster ends of N are always nonplanar ends

of M . This is different from the case of finitely many branch points in which
an end on the orbit space has the same planarity as its preimage in M .

Let N1 ⊂ N2 ⊂ · · · be a decomposition of the orbit space N . If an end e of
N is not a cluster end, then φ([∂N e

n]) = φ([∂N e
n+1]) holds for all sufficiently

large n. Therefore, we can still define φ(e) and Gφ(e) as in §2.
For a cluster end e of φ with the type tyφ(e), let 〈tyφ(e)〉 be a subgroup

of G generated by the elements of tyφ(e). Denote by φe the composition of
the quotient homomorphism G→ G/〈tyφ(e)〉 and φ : π1(N −B)→ G. Then
φe : π1(N−B)→ G/〈tyφ(e)〉 is an epimorphism, and it defines a G/〈tyφ(e)〉-
action φe on a noncompact surface with finitely many ends whose orbit space
is N . The end e of N is not a cluster end of φe. Therefore, φe(e) and Gφe(e)
are well-defined.
Definition. Let φ be an effective G-action on a noncompact surface with
finitely many ends, and let N be its orbit space. The function E(φ)(e) =
(φe(e), Gφe(e)) defined on the set of the ends of N (with planarities specified)
is called the end data of φ.

Note that if e is not a cluster end, tyφ(e) = ∅; so φe(e) = φ(e) and
Gφe(e) = Gφ(e).



332 HONGYU DING

Let φ be an effective G-action on a noncompact surface with the orbit
space N , and let e be a cluster end of φ with the type tyφ(e). An admissible
neighborhood U e of e is an element of {U e

1 , U
e
2 , · · · }, where U e

1 ⊃ U e
2 ⊃ · · ·

is an end component at e of N such that (i) the boundary of U e in N is a
simple closed curve, (ii) U e is planar if e is planar, and (iii) if x ∈ U e ∩ B,
then φ(x) ∈ tyφ(e).

Let φ : π1(N − B) → G and ψ : π1(N ′ − B′) → G be two effective G-
actions on a noncompact surface M with finitely many ends and with N
and N ′ as their orbit spaces respectively. Assume that e is an end of φ on
N and e′ an end of ψ on N ′. We say that the end e of φ is equivalent to
the end e′ of ψ provided there exist admissible neighborhoods U e of e in N ,
U e′ of e′ in N ′, and a homeomorphism h : U e, ∂U e → U e′ , ∂U e′ such that
φ|π1(U e) = ψ|π1(U e′)◦h∗.

Proposition 4.1. Let M be a noncompact surface with finitely many ends.
Let φ and ψ be effective Z/n-actions on M with their orbit spaces N and N ′

respectively. A cluster end e of φ is equivalent to a cluster end e′ of ψ if and
only if
(i) tyφ(e) = tyψ(e′), and
(ii) E(φ)(e) = E(ψ)(e′).

Remark 4.2.
(a) The condition (ii) above is not a consequence of the condition (i).
(b) The conditions (i) and (ii) above imply that e and e′ have the same

planarity, and that there exist admissible neighborhoods U e of e and
U e′ of e′ such that

φ([∂U e]) = ψ([∂U e′ ]) + α1g1 + α2g2 + · · ·αsgs
for some g1, g2, . . . , gs ∈ tyφ(e) = tyψ(e′) and α1, α2, . . . , αs ∈ Z. This
can be seen from the definition of the end data. If E(φ)(e) = E(ψ)(e′),
then φe(e) = ψe

′
(e′) in G/〈tyφ(e)〉. Therefore, there exist admissible

neighborhoods U e and U e′ such that φe([∂U e]) = ψe
′
([∂U e′ ]). Hence,

φ([∂U e]) = ψ([∂U e′ ]) + g for some g ∈ 〈tyφ(e)〉.
(c) When G = Z/p (p is a prime), assume that the condition (i) in Propo-

sition 4.1 holds. Then the condition (ii) is true if e and e′ have the
same planarity.

In order to prove Proposition 4.1, we introduce the following lemma.

Lemma 4.3. Let D be a disk with the center O, and let a1, a2, . . . (ai 6= O)
be a sequence of distinct points in the disk D whose only limit point is O.
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Then there exist nonintersecting simple closed curves γ1, γ2, . . . on D such
that
(i) each γn lies in the simple connected region bounded by γn−1;
(ii) an is the only point from the sequence {ai} contained in the region

bounded by γn−1 and γn;
(iii) |γn| → 0 (n→∞) where |γn| = supx∈γn |x−O|.

The proof of the lemma is elementary and will be omitted.
Lemma 4.3 insures that the construction around a cluster end e of φ is

based on tyφ(e) but not on the positions of the branch points. Suppose that
tyφ(e) = { g1, g2, . . . , gr }. Then the situation near e looks as in Figure 4.1.
Here, D is a plane disk with one puncture if e is planar, and D is an once
punctured disk with infinitely many handles if e is nonplanar.

Figure 4.1.

Proof of Proposition 4.1. Necessity follows easily from the definition of the
equivalence of two ends.

For sufficiency, assume that tyφ(e) = {g1, g2, . . . , gr}. The conditions (i)
and (ii) imply that φ([∂U e]) = ψ([∂U e′ ]) + α1g1 + α2g2 + · · ·+ αsgs for any
admissible neighborhoods U e of e and U e′ of e′ (for some gi’s and αi’s —
see Remark 4.2); in particular, there exist admissible neighborhoods U e of
e and U e′ of e′ such that φ([∂U e]) = ψ([∂U e′ ]). Here U e and U e′ are both
planar or nonplanar.

Next we construct a homeomorphism h between U e and U e′ such that
φ|π1(U e) = ψ|π1(U e′)◦h∗. By Lemma 4.3, we may choose an end component
U e = U e

1 ⊃ U e
2 ⊃ · · · at e such that each U e

n is an admissible neighborhood
and each U e

n − U e
n+1 contains at least r branch points x1, x2, . . . , xr with

φ(xi) = gi, for i = 1, 2, . . . , r. Similarly, we choose an end component
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U e′ = U e′
1 ⊃ U e′

2 ⊃ · · · at e′ such that each U e′
n − U e′

n+1 is homeomorphic to
U e
n−U e

n+1 and the fixed point data of ψ on U e′
n −U e′

n+1 is the same as the fixed
point data of φ on U e

n − U e
n+1. Let V e

n = U e
n − U e

n+1 and V e′
n = U e′

n − U e′
n+1.

Now consider the homomorphisms φn = φ◦i∗ : π1(V e
n ) i∗−→π1(N) φ−→Z/n

and ψn = ψ◦i′∗ : π1(V e
n
′)

i′∗−→ π1(N) ψ−→Z/n where i∗ and i′∗ are induced by the
inclusions. We want to show that there is a homeomorphism hn between each
V e
n and V e′

n such that φn = ψn◦hn∗. Denote ty(e) = tyφ(e) (= tyψ(e′)), and
let p be the quotient homomorphism p : Z/n→ (Z/n)/〈ty(e)〉. The condition
(ii) of Proposition 4.1 implies that {U e

n} and {U e′
n } can be chosen such that

p◦φn(π1(V e
n )) = p◦ψn(π1(V e′

n )) = Gφe(e). Then φn(π1(V e
n )) = ψn(π1(V e′

n ))
since ty(e) ⊂ φn(π1(V e

n ))∩ψn(π1(V e′
n )). Also by the constructions of U e

n and
U e′
n , we have that φn([∂U e

n]) = ψn([∂U e′
n ]) and φn([∂U e

n+1]) = ψn([∂U e′
n+1]).

So a homeomorphism hn between V e
n and V e

n
′ such that φn = ψn◦hn∗ can be

obtained in the same way as in the proof of Theorem 3.1. Using the method
of Theorem 3.1 again and passing with hn∗ to the direct limit, we get a
homeomorphism h between U e and U e′ such that φ = ψ◦h∗. This completes
the proof.

From the proof of Proposition 4.1, we also get the following result.

Corollary 4.4. If a cluster end e of φ is equivalent to a cluster end e′ of
ψ, and if admissible neighborhoods U e of e and U e′ of e′ satisfy φ([∂U e]) =
ψ([∂U e′ ]), then φ|π1(U e) ∼ ψ|π1(U e′), that is, there exist a homeomorphism
h : U e, ∂U e → U e′ , ∂U e′ such that φ|π1(U e) = ψ|π1(U e′)◦h∗.

5. Classification of Effective Z/n-actions.

For our convenience, all the sets (subsets) in this section are sets of elements
with multiplicities. For any two sets A and B, let A t B denote the union
of elements with added multiplicities.

Let M be a noncompact surface with finitely many ends, and let φ : π1(N−
B, x0) → Z/n be an effective Z/n-action on M with the orbit space N =
M/φ.

If the branch set B is finite, that is, all the ends of N are not cluster, then
we can choose a decomposition N1 ⊂ N2 ⊂ · · · of N with B ⊂ N1. With the
method used in the proof of Theorem 3.1, one can show that the Z/n-action
is determined by its fixed point data D(φ) and end data E(φ) (note that the
sum of all the images of D(φ) and all the first elements of the images of E(φ)
is 0). If B is finite, then two Z/n-actions on M with the same fixed point
data and end data have homeomorphic orbit spaces.

Theorem 5.1. Let M be a noncompact surface with finitely many ends.
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Two effective Z/n-actions on M with finitely many branch points are equiv-
alent if and only if they have the same fixed point data and end data.

Now we consider Z/n-actions with infinitely many branch points. Our
observation shows that if two effective Z/n-actions have the same orbit space,
same fixed point data, same end data, and same corresponding end types,
then they are stably equivalent (see the definition below).

Let φ be an effective Z/n-action onM with its orbit spaceN (M andN are
both noncompact surfaces with finitely many ends), and suppose that φ has
the cluster ends e1, e2, . . . , er on N with the types ty(e1), ty(e2), . . . , ty(er)
(r ≥ 1).

Definitions. Let S be a finite set of nontrivial elements of Z/n. It is called
a stabilizing data of φ if
(i) each element of S is in

⋃r
i=1 ty(ei), and

(ii) the sum of all the elements of S is 0.
Let S2 be a sphere, and let S = { g1, g2, . . . , gk } be a stabilizing data of φ.

Construct a Z/n-action χ(S) with S2 as its orbit space in the following way:
Pick x1, x2, . . . , xk ∈ S2 as the branch points, and define D(χ(S))(xi) = gi
for i = 1, 2, . . . , k. Note that χ(S) is unique up to (conjugate) equivalence.
The sum of φ and χ(S), denoted by φ#χ(S), is obtained by taking the
connected sum of their orbit spaces (N#S2) along a free orbit. Then φ#χ(S)
is a well-defined effective Z/n-action which still acts on M . Let ψ be another
Z/n-action on M . We say that φ is stably equivalent to ψ if ψ ∼ φ#χ(S) for
some stabilizing data S of φ (S is allowed to be empty).

Clearly, if φ and ψ are stably equivalent, they have the same orbit space,
same fixed point data, same end data, and same corresponding cluster end
types. Stable equivalence is an equivalence relation among effective Z/n-
actions on a noncompact surface M . In particular, if ψ ∼ φ#χ(S), then φ ∼
ψ#χ(S′), here S′ is the set which satisfies that g ∈ S with the multiplicity
k if and only if g ∈ S′ with the multiplicity n− k (n = |Z/n|).

Theorem 5.2. Let M be a noncompact surface with finitely many ends.
Two effective Z/n-actions on M are stably equivalent if and only if they
have the same orbit space, same fixed point data, same end data, and their
corresponding cluster ends are equivalent.

Note that orbit spaces of two effective Z/n-actions on M may not have
the same genus even if they have the same fixed point data, same end data,
and their corresponding cluster ends are equivalent (in the case when all the
ends of their orbit spaces are planar).

By Proposition 4.1, we can rephrase the above theorem as follows.
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Theorem 5.2′. Let M be a noncompact surface with finitely many ends.
Two effective Z/n-actions on M are stably equivalent if and only if they
have the same orbit space, same fixed point data, same end data, and same
corresponding cluster end types.

Proof of Theorem 5.2. Suppose that φ, ψ : π1(N −B)→ Z/n are effective
Z/n-actions on M with the same orbit space N , same fixed point data,
same end data, and corresponding cluster end types ty(e1), ty(e2), . . . , ty(er)
(r ≥ 1). Assume that the cluster end ei of φ is equivalent to ei of ψ, then
there exist admissible neighborhoods U ei

φ of ei with respect to φ and U ei
ψ of

ei with respect to ψ such that

φ([∂U ei
φ ]) = ψ([∂U ei

ψ ]) + αi,1gi,1 + αi,2gi,2 + · · ·+ αi,isgi,is

where gi,j ∈ ty(ei), αi,j ∈ Z, and |αi,j| < n (Remark 4.2). The above formula
actually holds for any admissible neighborhoods U ei

φ and U ei
ψ .

Figure 5.1.

Now we choose admissible neighborhoods U e1
φ , U

e2
φ , . . . , U

er
φ and

U e1
ψ , U

e2
ψ , . . . , U

er
ψ (see Figure 5.1) which satisfy the following conditions.

(i) U ei
φ ∩ U ej

φ = ∅ and U ei
ψ ∩ U ej

ψ = ∅ when i 6= j;
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(ii) N1 = N −⋃ri=1 U
ei
φ and N ′1 = N −⋃ri=1 U

ei
ψ have the same genus;

(iii) N1 ∩B ⊇ Bfinite and N ′1 ∩B ⊇ Bfinite;
(iv) φ|π1(N1) : π1(N1) → Z/n and ψ|π1(N ′1) : π1(N ′1) → Z/n are surjective

and have the same fixed point data.
By the condition (iv) above,

∑r
i=1 φ([∂U ei

φ ]) =
∑r
i=1 ψ([∂U ei

ψ ]). Therefore,∑r
i=1

∑is
j=1 αi,jgi,j = 0.

Let Si be the set of gi,j such that the multiplicity of gi,j in Si is αi,j (if
αi,j > 0), or is n+ αi,j (if αi,j < 0) for i = 1, 2, . . . , r. Now take admissible
neighborhoods V e1

φ , V e2
φ , . . . , V er

φ of φ which satisfy for each 1 ≤ i ≤ r,
(1) V ei

φ ⊂ U ei
φ ,

(2) the genus of U ei
φ − V ei

φ is 0, and
(3) the image set of the fixed point data of φ on U ei

φ − V ei
φ is Si.

Then we have φ([∂V ei
φ ]) = ψ([∂U ei

ψ ]). By Corollary 4.4, φ|π1(V ei
φ ) ∼

ψ|π1(U ei
ψ ).

Note that S =
⊔r
i=1 Si is a stabilizing data of φ. Let N2 = N −⋃ri=1 V

ei
φ .

Then φ|π1(N2) and ψ|π1(N ′1) have the same boundary data, and the fixed
point data of φ|π1(N2) is the union of the fixed point data of ψ|π1(N ′1) and
χ(S). Thus φ|π1(N2) ∼ ψ|π1(N ′1)#χ(S) by Corollary 1.2. Therefore, we
have φ ∼ ψ#χ(S).

Necessity of the theorem is trivial by the definition of the stable equiva-
lence.

The following example shows that two effective Z/n-actions on M which
are stably equivalent are not necessarily conjugate equivalent.

Example. Let N be a noncompact surface with exactly two planar ends.
Let {xn}, {yn} be two sequences of distinct points of N , and let γ be a
simple closed curve as shown in Figure 5.2. Denote B = {x1, y1, x2, y2, . . . }.

Define two Z/3-actions φ, ψ : π1(N −B)→ Z/3 by

φ(xn) = 2, φ(yn) = 1, φ([γ]) = 2

and

ψ(xn) = 2, ψ(yn) = 1, ψ([γ]) = 0

for n = 1, 2, . . . . Both φ and ψ act on a noncompact surface with three
ends, all of which are nonplanar. We have tyφ(e1) = tyψ(e1) = {2} and
tyφ(e2) = tyψ(e2) = {1}. Then (Z/3)/〈tyφ(ei)〉 ∼= {0}, and E(φ)(ei) =
(0, {0}) = E(ψ)(ei) for i = 1, 2. So φ and ψ has the same fixed point data,
same end data, and same corresponding cluster end types. Hence, φ and ψ
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are stably equivalent. In fact, φ ∼ ψ#χ(S) for S = {2, 1}. But φ is not
conjugate equivalent to ψ since φ([γ]) 6= ψ([γ]).

Figure 5.2.

Note that if φ ∼ ψ#χ(S), S is not necessarily unique. It may even happen
that φ ∼ φ#χ(S) holds for some nonempty S. In order to get a reduced
form for stabilizing data and to see when two stably equivalent Z/n-actions
on M are actually conjugate, we need more information.

Let φ be an effective Z/n-action on M with finitely many ends, and let
e1, e2, . . . , er be the cluster ends of φ with the types ty(e1), ty(e2), . . . , ty(er).
Definitions. A stabilizing data E of φ is trivial if it can be written as
E = E1 t E2 t · · · t Ek for some integer k, and if each Ei (i = 1, 2, . . . , k)
satisfies:
(i) All the elements of Ei are in the same tyφ(ej) for some 1 ≤ j ≤ r, and
(ii)

∑
g∈Ei g = 0.

Two stabilizing data S and S′ of φ are equivalent if there exist trivial
stabilizing data E and E′ of φ such that S tE = S′ tE′. A stabilizing data
S of φ is irreducible if no subset of S is equivalent to a trivial stabilizing data
of φ.

We claim that the conjugate equivalency of an effective Z/n-action will
not be affected by adding a trivial stabilizing data. This can be seen from
Corollary 4.4.

Lemma 5.3. If E is a trivial stabilizing data of φ, then φ#χ(E) ∼ φ.

Theorem 5.4. Let φ be an effective Z/n-action on a noncompact surface
with finitely many ends, and let S be a stabilizing data of φ. Then φ is
conjugate equivalent to φ#χ(S) if and only if S is equivalent to a trivial
stabilizing data of φ.

Before proving the theorem, we establish the following corollary first.
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Corollary 5.5. Let φ be an effective Z/n-action on a noncompact surface
with finitely many ends, and let S and S′ be stabilizing data of φ. Then
φ#χ(S) ∼ φ#χ(S′) if and only if S is equivalent to S′.

Proof. If S is equivalent to S′, there are trivial stabilizing data E and E′ of
φ such that S tE = S′ tE′. By Lemma 5.3, φ#χ(S) ∼ (φ#χ(S))#χ(E) =
φ#χ(S t E) = φ#χ(S′ t E′) = (φ#χ(S′))#χ(E′) ∼ φ#χ(S′).

Conversely, suppose that φ#χ(S) ∼ φ#χ(S′). We want to show S is
equivalent to S′. Choose a stabilizing data R of φ such that StR = E where
E is trivial. Then we have φ ∼ φ#χ(E) = φ#χ(StR) = (φ#χ(S))#χ(R) ∼
(φ#χ(S′))#χ(R) = φ#χ(S′tR). Therefore, S′tR is equivalent to a trivial
stabilizing data by Theorem 5.4. That is, there are trivial stabilizing data F
and F ′ such that S′tRtF = F ′. Then StF ′ = StS′tRtF = S′t(EtF ).
Since both F ′ and E t F are trivial, S is equivalent to S′.

Proof of Theorem 5.4. Let N be the orbit space of φ with the cluster ends
e1, e2, . . . , er (r ≥ 1). Choose nonintersecting admissible neighborhoods U i

0

of ei on N (i − 1, 2, . . . , r) such that (N − ⋃ri=1 U
i
0) ∩ B = Bfinite. Let

αi = φ([∂U i
0]) for i = 1, 2, . . . , r.

Figure 5.3.

Now choose another set of admissible neighborhoods U1, U2, . . . , U r on
N such that U i ⊂ U i

0, φ([∂U i]) = αi for i = 1, 2, . . . , r, and the set F =
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{φ(x) | x is a branch point on U i
0 − U i for i = 1, 2, . . . , r} contains S.

Then F is a trivial stabilizing data of φ since φ([∂U i
0]) = φ([∂U i]) for i =

1, 2, . . . , r.
Suppose φ ∼ φ#χ(S). We may assume that the connected sum N#S2 is

performed on N −⋃ri=1 U
i
0. Let V 1, V 2, . . . , V r be the corresponding admis-

sible neighborhoods of U1, U2, . . . , U r on N#S2 under the conjugate equiv-
alence (see Figure 5.3). We may choose U1, U2, . . . , U r small enough so that
each V i is a subset of U i

0. Therefore, φ#χ(S)([∂V i]) = φ#χ(S)([∂U i
0]) = αi

for i = 1, 2, . . . , r. Let E = {φ(x) | x is a branch point of φ#χ(S) on U i
0−

V i, i = 1, 2, . . . , r}. Then E is a trivial stabilizing data of φ, and StE = F .
Thus S is equivalent to a trivial stabilizing data of φ.

On the other hand, if S is equivalent to a trivial stabilizing data of φ, there
exist trivial stabilizing data E and E′ such that StE = E′. By Lemma 5.3,
φ#χ(S) ∼ (φ#χ(S))#χ(E) = φ#χ(S t E) = φ#χ(E′) ∼ φ.
Corollary 5.6. Let φ be an effective Z/n-action on a noncompact surface
M with finitely many ends, and let S be irreducible stabilizing data of φ.
Then φ#χ(S) ∼ φ if and only if S = ∅.

In the following two cases, any stabilizing data of φ is trivial. Therefore,
we have the following results by Theorem 5.2 and Lemma 5.3.

Corollary 5.7. Let M be a noncompact surface with finitely many ends,
and let φ and ψ be two effective Z/n-actions on M with only one cluster
end. Then φ and ψ are conjugate equivalent if and only if they have the
same orbit space, same fixed point data, same end data, and same cluster
end type.

Corollary 5.8. Let M be a noncompact surface with finitely many ends,
and let φ and ψ be two effective Z/n-actions on M such that at least one
cluster end type is Z/n. Then φ and ψ are conjugate equivalent if and only
if they have the same orbit space, same fixed point data, same end data, and
same corresponding cluster end types.
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