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A LOEWNER-TYPE LEMMA FOR WEIGHTED
BIHARMONIC OPERATORS

MIiroSLAV ENGLIS

In the present note we give a simpler proof of the recent
result of Hedenmalm that the Green function for the weighted
biharmonic operator A|z|**A, a > —1, on the unit disc D with
the Dirichlet boundary conditions is positive. The main ingre-
dient, which in the special case of the unweighted biharmonic
operator A? is due to Loewner and which is of an indepen-
dent interest, is a lemma characterizing, for a positive C?
weight function w, the second-order linear differential opera-
tors which take any function u satisfying Aw='Au = 0 into a
harmonic function. Another application of this lemma con-
cerning positivity of the Poisson kernels for the biharmonic
operator A? is also given.

Let 2 be a bounded domain in the complex plane with smooth boundary,
w a function which is C?-continuous and positive on € except for a finite
set S of isolated singularities in €2, where it can have a zero or become
+oo (or even not be defined at all); such functions will be termed weights.
We will be interested in the weighted biharmonic operators Aw='A on €,
where A stands for the Laplacian. For brevity, let us call the above w-
biharmonic operators, and similarly a function u satisfying Aw='Au = 0
will be called a w-biharmonic function. The latter means, by definition,
that u is a C? function on 2\ S such that w™'Au extends by continuity to
a harmonic function on all of Q. The w-biharmonic Green function U(z,y)
is the solution to the boundary value problem

Am(l)AIU(az, y) =9z —y) (the delta function),
w(x

ou
U(x,y)—a—nz(a:,y)—o for =z € 09,

where 0/0n denotes differentiation in the outward normal direction. The
first equation must again be understood in the sense that, for fixed y, U is
in C?(Q\ S\ {y}) and w AU =T(-,y) + h, where I'(z, y) is the ordinary
Green function (for the Laplace operator) on € and h,, is harmonic on all of
Q. Quite recently, a lot of attention has been attracted by the problem of
positivity of these Green functions, for various weights w. The motivation
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for this comes mainly from applications in the theory, initiated by Heden-
malm, of contractive zero divisors and factorization of functions in Bergman
spaces, cf. [DKSS1], [DKSS2], [H-jram], [H-OpP]. For w = 1, i.e. the
unweighted biharmonic operator, the Green function is related to bending
of a clamped plate and to the creeping flow on €2, and the question concern-
ing its positivity comes back to Hadamard and Boggio (see the discussion
in [H-Duke] for more details and references). In that case, the answer is
known to be positive for a few domains (e.g. a disc, or Pascal’s limagon)
and negative for many others (sufficiently eccentric ellipses [Gar], [ShT],
sufficiently elongated rectangles [NS], all annuli [E-Pee]|; also, granted we
relax the condition that  be bounded, the infinite strip [Duff]). For general
weight w and ) the unit disc D, various results were obtained by Heden-
malm [H-Duke|, [H-OpP], Shimorin [Shil], [Shi2]|, and Stessin [Ste]; see
also [H-BVP]. Observe that, if 2 is simply connected and ¢ is a conformal
map of D onto 2, the pullback via ¢ of the Green function for A% on 2 is the
Green function for A|¢'|72A on D; thus, some of the results just mentioned
(i.e., for general weight w on D) can also be interpreted as results about
unweighted biharmonic operators on different domains (which are images of
D under a conformal map).

The main result of [H-Duke] is a proof of the positivity of the Green
function U for the operator Alz|72*A, a > —1, on D. Although an explicit
formula for U is given for o an integer ([H-Duke], Theorem 4.6), the posi-
tivity is not completely obvious directly from it; instead, it is obtained for all
« as a consequence of the positivity of the Green function for the operator
Aexp(—2alm z)A on the upper half-plane, which in turn is reduced, by a
gkillful and quite involved explicit computation using the above-mentioned
formula for integer «, to the positivity of a certain integral, and the last fi-
nally follows by an argument based on Pélya’s lemma (see [H-Duke, p. 71]).
The purpose of this note is to present a simpler proof, which, essentially, uses
little beyond the ordinary maximum principle for harmonic functions. Its
basic ingredient is the following lemma, which may be of some indepen-
dent interest and whose special case w = 1 goes essentially back to Charles
Loewner [Loe].

Lemma 1 (Fundamental Lemma). Assume that w is C* and positive
on an open set V. Let m be a function on V satisfying

1
(1) —Am = const.
w

ﬁlam = glgm =0
w w
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and form the second-order linear differential operator

! [mAu — Vm - Vu + uAm)].

T ow

(2) Lu

Then L transforms every w-biharmonic function onV into a harmonic func-
tion. Conversely, every second order linear differential operator sending an
arbitrary w-btharmonic function on V into a harmonic one must be of the
form (2) with m satisfying (1).

Here and elsewhere, Vm - Vu stands for the scalar product of the complex
gradients
Vm - Vu = 0m-0u+ 0m - Ou
where 0 = 0/9z, @ = 8/0z (the Wirtinger operators). Also we employ a
slightly nonstandard definition of the Laplacian

_ 1/ 0? 0? .

which differs from the usual one by a factor of 4.

Proof.  We begin with the converse part. Assume that £, which we choose
to write in the form

1 ~ — _
(3) Eu:E[m@@u—i—b@@u—l—ca@u]+Ac’?u+B<9u+Cu,

sends an arbitrary w-biharmonic function into a harmonic one. Expanding
we have

4) ALu= mAlAu + bAlaau + cAl%u + terms of lower order.
w w w

Since the only relation between the derivatives of v up to the fourth order
is given by Aw™'Au = 0, we see already from (4) that

b=c=0,

and we can thus write (3) in the form

1 _
(5) Lu=—mAu+ Adu+ Bou+ Cu.

w
Hence we have
1 1 —1 _ 1
ALu=Am- - —Au+m- -A=Au+90m-0—Au+0m-0—Au
w w w w
(6) +AA-Ou+A-Adu+0A-Au+ 0A-90u
+AB-0u+B-Adu+90B-Au+ 0B -00u
+AC-u+C-Au+0C-0u+ 0C - du.
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Here we have used the formula
(7) A(fg) = fAg+gAf+08f-0g+0f -9y

which will be of great service to us also later on.
Now, first of all, ALu must vanish for harmonic u. For Au = 0, the
right-hand side of (6) reduces to

AA-Ou+0A-900u+ AB-0u+ 0B -900u+ AC -u+ 0C - Ou + OC - Ou.

Since the only relation between the derivatives of u up to the second order
is Au = 0, we must have

(8) AA+3C=0, AB+3dC=0, AC=0, 9A=0, OB =0.

From the last two conditions we see that AA = AB = 0; the first two then
give C = 9C = 0, and we conclude that

9) C = const.,
(10) O0A =0B=0.

Feeding this back into (6) and using again the formula (7), we obtain

=0
—

1 1
(11) ALu=Am- -—Au+m-A—Au+
w w
/1 1— — 1 — 1
+8m-8(—)-Au+8m-—6Au+8m-8(—)-Au—{—@m-—@Au—l—
w w w w
+A-Adu+ B-Adu+ (0A+0B) - Au+C - Au.

Comparing the coefficients at Adu, Adu, and Au, respectively, we see that
for ALu to vanish for arbitrary w-biharmonic function u it is necessary that
1- 1
(12) A+ —0m =0, B+ —0m =0,
w w
1 —/1 = 1 _
(13) —Am+0m - 9(—) +0m-0(—) + 94+ 0B +C =0.
w w w
From (12) we have

DA = —8(%) - Om — %Am, OB = —5( 1) - Om — %Am,

94— 9 om, 9B — —9 L om,
w w
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so we may rewrite (13) as

1 1 1
0=—Am——Am—- —Am+C
w w w

or
1
(14) —Am =C,
w
and (10) as
1= 1
(15) 0=0—0m=0—0m.
w w
Our operator m must therefore be of the form
1 1- 1 1
Lu=—mAu— —9Im-0u— —0m-0u+ —Am - u,
w w w w

which is (2), with m satisfying (9), (14), and (15), which is (1).

Conversely, let £ be any operator of the form (5), with A and B given by
(12), which satisfies (9), (14), and (15). Then it follows from the formulas
(6) and (11) that

1
ALu=m- - A—Au,
w

and so £ sends an arbitrary w-biharmonic function into a harmonic one.
This completes the proof. [l

Corollary 2. Ifm is a real-valued function satisfying
1
Am = w, 0—0m =0,
w

then the operator (2) transforms w-biharmonic functions into harmonic ones.

Indeed, for real-valued m, dw=*dm = dw—19m = 0, and so (1) is fulfilled.
As an application, we prove the promised positivity result for a weighted
biharmonic Green function.

Theorem 3. Let a > —1. Then the Green function for the weighted
biharmonic operator Alz|?*A on the unit disc D is positive.

Proof. Since w = |z[**, the hypotheses (1) of the Fundamental Lemma (or,
rather, of its Corollary) are satisfied for

‘Z|2(a+1) -1

(a4 1)2
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on the open set ¥V = D\ {0} where w is C*? and positive. Indeed, Am =
(a+1)7200(z2 1z — 1) = w, and

1 1 Z|z|2e 1
aam=a< 2l ): 9z = 0.
w |z|?* a+1 a+1

Hence, on D\ {0}, the conclusion of the Lemma holds true for the operator

Lu=—Au— (amau—l-am8u> +u
w w

(16)

u —

m
w
m
w

1
a+1(28u+28u)+u.

Suppose now to the contrary that the Green function U(zx,y) < 0 for some
x,y € D. Since the function U(-,y) vanishes on 0D, it must attain its
minimum at some interior point xy € D, and U(zg,y) < 0. Let us take
U(-,y) as the function w in (16). The function v := Lu is then harmonic on

D\ {0,y}. We claim that it is, in fact, harmonic on all of D \ {y}. Indeed,
in view of the definition of u,

2

LAu(z) = log + hy(2)

w(z)

=Y
1 -7z

with A, harmonic on D. Thus, if y # 0,
Au(z) = |2|** - a function real-analytic at the origin.

Consequently,
u(z) = [2[**Y fi(2) + h(z)

and

Ou(z) = 2|2 fa(2) + f3(2)

with fi(z), f2(2), f3(z) real-analytic at the origin and A(z) harmonic on D.
In particular, as o > —1, it follows that u(z), z du(z) and z du(z) = 2 u(z)
are continuous at the origin, and, consequently, so is v. By the removable
singularities theorem for harmonic functions, the harmonicity of v on D \
{0, y} therefore implies that v is harmonic on all of D\ {y}.

Now on the unit circle, both v and Vu vanish (by the definition of the
Green function) and so does m; hence, v = 0 on dD. At y, u and Z0u + z0u
are continuous, while w(z) 'Au(z) ~ log|z — y|? tends to —oo; it follows
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that v(y) = +o0. By the maximum principle, v > 0 in D\ {y}, and actually
v > 0 since an equality at any point would imply that v = 0, contradicting
the fact that v have a logarithmic singularity at y. ! Thus, in particular,
v(xo) > 0; since u(xy) < 0 by assumption and, z, being a local minimum of
u, Vu(xo) vanishes, we get

0 < v(zo) = u(zo) + %Au(mo) < %Au(mo).

If zg #0, this implies Au(xy) < 0 (Au(zy) = —o0 if g = y), which is
contradictory to zy being a local minimum of u. So zo =0. That is, the
only place where U(-,y), y € D, can have a local minimum is the origin.
Owing to the symmetry of the Green function (U(z,y) = U(y, z)), we can
apply the same reasoning to the function u(y) = U(y,0) = U(0,y), which
leads to the conclusion that if U(z,y) < 0 for some x,y € D, then U must
have its global minimum at the point (0,0).
On the other hand, by the definition of the Green function we have

A.U(2,0) = [2[**(log |2]* + ho(2))

for some harmonic function hg. In view of the rotational symmetry, ho(z)
depends only on the modulus |z|, and so must be a constant function. An
easy integration therefore gives

U(z,0) = (ainz |22+ (log |2|* — a%l + ho) + hi(2)
with another harmonic function h; (which again reduces to a constant, for
the same reason). Thus

U(r,0) — U(0,0) = (a + 1)"2r2@+Y(log r? + hy — 25)<0

for sufficiently small » > 0, which however shows that U(0,0) cannot be a
local — not to say global — minimum for U(-,0). Thus we have arrived at
a contradiction, which completes the proof. [l

If ¢ is a biholomorphic mapping of 2; onto 25 and G is the Green function
for Aw='A on Q,, it is easily seen that G o ¢ must be the Green function
for Al|¢'*(wo )] 'A on Q. Using conformal mapping, we therefore imme-
diately obtain the following result.

Corollary 4. Let Q be a simply connected domain and ¢ a Riemann
mapping of 0 onto D. Then the Green function for the operator Al|¢'|? -
|6]2*]PA, a > —1, on Q is positive.

'In fact, one must have, quite explicitly, v(z) = m(y)log|(z — y)/(1 — Fz)|*.
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In particular, the Green function for the operator
A‘(z—a)“/(l—ﬁz)“”rzA (aeD,a > —1)
on D 1is positive.

We conclude by another result which can be obtained along the same vein.
Recall that the function

D(&,y) = wé)AsU(f,y), £, yeq,

plays the role of the Poisson kernel for the operator Aw='A. That is, for f
a function on 912, the function

F@>:>—Agf@ﬂxaynw@>

is w-biharmonic in €2 and has boundary values F' = 0, 0F/dn = f. In other
words, D(&,y) solves the boundary value problem

1
A, —A,D = Q
yw(y) Yy (gay) 07 y € 9
D(&,y) =0, y € 09,
0
%D(&y) = —6(y —§), y € 0Q.

(See e.g. [E-Pee], Section 5, or [H-Duke], [H-BVP].) It is easy to see that
if U(z,y) > 0 on 2 x €, then D(§,y) > 0 on 92 x . In fact, D(&,y) <0
2

0
implies that -+ U(€y) = AU(Ey) = w(©D(E,y) < 0, and as U(€.y) =
4

0
a—U(f,y) = 0, it would follow that U(z,y) < 0 for all x lying sufficiently

3
close to & on the inward normal from &£. It is an open question whether
D(&,y) > 0 on 09 x  does not actually imply that already U(z,y) > 0 on
Q x Q. The general opinion seems to be that more likely this is not the case;
a small contribution in favour of the opposite is provided by the assertion
below. Loosely speaking, its sense is that if U(x,y) has a negative minimum
for  “not far” from y, then D(-,y) has to take negative values somewhere

on the boundary.

Proposition 5. Let © be a bounded domain whose boundary consists of
finitely many Jordan curves and let U(x,y) be the Green function for the
unweighted biharmonic operator A on Q. If U(z,y) < 0 is a local minimum



WEIGHTED BIHARMONIC OPERATORS 351

for some x,y which lie in a disc B(zy,r) contained wholly in ), then there
is & € 02 for which D(&,y) < 0.

Proof. Since w = 1, we can take
m(z) = |z — z|* — 72

as our function m, and u(z) = U(z,y) as the function u in (2). This choice
of m satisfies

m(y) <0, m >0 on 0, m(z) < 0.
From the Fundamental Lemma we conclude that
v(z) == m(2)AU(z,y) — Vm - V. U(z,y) + U(z,y)

is harmonic on Q\{y}. For z = z, v(z) = m(z)A,U(z,y)+U(z,y) is negative
by assumption. Since v(y) = +oo (by a similar argument as in the proof of
Theorem 3), we must have v(§) < 0 at some point £ on 0. But in view of
the definition of the Green function, v(z) = m(2)A.U(z,y) = m(z)D(z,y)
on 09, so D(§,y) < 0 as well. u

We close with a few comments regarding the solvability of the system (1):

lAm =C,

(17) ) w L

0—0m =0—0m =0,
w w

where C' is a complex constant. Obviously, m = const. is a solution for any
w. On the other hand, we have seen that for w = |f’|?, with f a holomorphic
function, one gets a nontrivial solution m = |f|?. It turns out that these are
essentially the only possibilities that can happen.

Proposition 6. Let w be positive and C? on a simply connected open set V.
Then the system (17) has nontrivial solutions if and only if the function logw
is harmonic. In that case, we can write w = |H'|* where H is a holomorphic
function on V whose derivative does not vanish, and all solutions to (17) are
given by

m = C|H|> + aH + 8H + 7,

where «, 3,7 are arbitrary complexr numbers.

Proof. Let m be a solution of (17). Owing to the second equation in (17),
we must have

(18) om = fw, Om = gw
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for some functions f, g holomorphic on V. Applying 0 to the first and 9 to
the second equation and using the first equation in (17), we obtain

T — ow ,
(19) f—+f=9—+49=C.
w w

If f =g =0, (18) shows that m is a constant; so let us assume that, for
instance, g is not identically zero. Then (19) gives

v _C—

w g
The right-hand side is a meromorphic function on V, whereas the left-hand
side is continuous by hypothesis. Hence Ow/w must be a holomorphic func-
tion on V, and so

0 :E%U = 0 (dlogw) = Alogw,
as asserted.
Conversely, if log w is harmonic, then owing to the simple connectivity of
V we can write logw = F + F with F holomorphic on V. Thus w = |H'|?
where H is any primitive of the holomorphic function . Since A|H|? = w,
any solution m to (17) must satisfy

m=C|H*+ f+7

for some holomorphic functions f and g. Feeding this into the second equa-

tion in (17) gives
1<9’)' _ L <f> —0
H'\H') H \H')

so both f'/H' and ¢’/H’' must be constant functions. It follows that f +
G = oH + SH + ~ for some constants «, 3,7, which is what we needed to
prove. [l

Corollary 7. Let w be positive and C* on an open set V. Then a nontrivial
solution to (17) exists if and only if w = |H'|* and

(20) m=C|H|*+aH + H +~

for some complex numbers «, 3,7 and some (possibly multi-valued) analytic
function H on'V for which the expression (20) is single-valued and the deriva-
tive H' does not vanish.
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