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A LOEWNER-TYPE LEMMA FOR WEIGHTED
BIHARMONIC OPERATORS

Miroslav Englǐs

In the present note we give a simpler proof of the recent
result of Hedenmalm that the Green function for the weighted
biharmonic operator ∆|z|2α∆, α > −1, on the unit disc D with
the Dirichlet boundary conditions is positive. The main ingre-
dient, which in the special case of the unweighted biharmonic
operator ∆2 is due to Loewner and which is of an indepen-
dent interest, is a lemma characterizing, for a positive C2

weight function w, the second-order linear differential opera-
tors which take any function u satisfying ∆w−1∆u = 0 into a
harmonic function. Another application of this lemma con-
cerning positivity of the Poisson kernels for the biharmonic
operator ∆2 is also given.

Let Ω be a bounded domain in the complex plane with smooth boundary,
w a function which is C2-continuous and positive on Ω except for a finite
set S of isolated singularities in Ω, where it can have a zero or become
+∞ (or even not be defined at all); such functions will be termed weights.
We will be interested in the weighted biharmonic operators ∆w−1∆ on Ω,
where ∆ stands for the Laplacian. For brevity, let us call the above w-
biharmonic operators, and similarly a function u satisfying ∆w−1∆u = 0
will be called a w-biharmonic function. The latter means, by definition,
that u is a C2 function on Ω \ S such that w−1∆u extends by continuity to
a harmonic function on all of Ω. The w-biharmonic Green function U(x, y)
is the solution to the boundary value problem

∆x

1
w(x)

∆xU(x, y) = δ(x− y) (the delta function),

U(x, y) =
∂U

∂nx
(x, y) = 0 for x ∈ ∂Ω,

where ∂/∂n denotes differentiation in the outward normal direction. The
first equation must again be understood in the sense that, for fixed y, U is
in C2(Ω \ S \ {y}) and w−1∆U = Γ( · , y) + hy where Γ(x, y) is the ordinary
Green function (for the Laplace operator) on Ω and hy is harmonic on all of
Ω. Quite recently, a lot of attention has been attracted by the problem of
positivity of these Green functions, for various weights w. The motivation
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for this comes mainly from applications in the theory, initiated by Heden-
malm, of contractive zero divisors and factorization of functions in Bergman
spaces, cf. [DKSS1], [DKSS2], [H-jram], [H-OpP]. For w ≡ 1, i.e. the
unweighted biharmonic operator, the Green function is related to bending
of a clamped plate and to the creeping flow on Ω, and the question concern-
ing its positivity comes back to Hadamard and Boggio (see the discussion
in [H-Duke] for more details and references). In that case, the answer is
known to be positive for a few domains (e.g. a disc, or Pascal’s limaçon)
and negative for many others (sufficiently eccentric ellipses [Gar], [ShT],
sufficiently elongated rectangles [NS], all annuli [E-Pee]; also, granted we
relax the condition that Ω be bounded, the infinite strip [Duff]). For general
weight w and Ω the unit disc D, various results were obtained by Heden-
malm [H-Duke], [H-OpP], Shimorin [Shi1], [Shi2], and Stessin [Ste]; see
also [H-BVP]. Observe that, if Ω is simply connected and φ is a conformal
map of D onto Ω, the pullback via φ of the Green function for ∆2 on Ω is the
Green function for ∆|φ′|−2∆ on D; thus, some of the results just mentioned
(i.e., for general weight w on D) can also be interpreted as results about
unweighted biharmonic operators on different domains (which are images of
D under a conformal map).

The main result of [H-Duke] is a proof of the positivity of the Green
function U for the operator ∆|z|−2α∆, α > −1, on D. Although an explicit
formula for U is given for α an integer ([H-Duke], Theorem 4.6), the posi-
tivity is not completely obvious directly from it; instead, it is obtained for all
α as a consequence of the positivity of the Green function for the operator
∆ exp(−2αIm z)∆ on the upper half-plane, which in turn is reduced, by a
skillful and quite involved explicit computation using the above-mentioned
formula for integer α, to the positivity of a certain integral, and the last fi-
nally follows by an argument based on Pólya’s lemma (see [H-Duke, p. 71]).
The purpose of this note is to present a simpler proof, which, essentially, uses
little beyond the ordinary maximum principle for harmonic functions. Its
basic ingredient is the following lemma, which may be of some indepen-
dent interest and whose special case w ≡ 1 goes essentially back to Charles
Loewner [Loe].

Lemma 1 (Fundamental Lemma). Assume that w is C2 and positive
on an open set V. Let m be a function on V satisfying

1
w

∆m = const.(1)

∂
1
w
∂m = ∂

1
w
∂m = 0
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and form the second-order linear differential operator

(2) Lu :=
1
w

[m∆u−∇m · ∇u+ u∆m].

Then L transforms every w-biharmonic function on V into a harmonic func-
tion. Conversely, every second order linear differential operator sending an
arbitrary w-biharmonic function on V into a harmonic one must be of the
form (2) with m satisfying (1).

Here and elsewhere, ∇m ·∇u stands for the scalar product of the complex
gradients

∇m · ∇u = ∂m · ∂u+ ∂m · ∂u
where ∂ ≡ ∂/∂z, ∂ ≡ ∂/∂z (the Wirtinger operators). Also we employ a
slightly nonstandard definition of the Laplacian

∆ := ∂∂ =
1
4

(
∂2

∂x2
+

∂2

∂y2

)
(z = x+ yi),

which differs from the usual one by a factor of 4.

Proof. We begin with the converse part. Assume that L, which we choose
to write in the form

(3) Lu =
1
w

[m∂∂u+ b ∂∂u+ c ∂∂u] +A∂u+B ∂u+ Cu,

sends an arbitrary w-biharmonic function into a harmonic one. Expanding
we have

(4) ∆Lu = m∆
1
w

∆u+ b∆
1
w
∂∂u+ c∆

1
w
∂∂u+ terms of lower order.

Since the only relation between the derivatives of u up to the fourth order
is given by ∆w−1∆u = 0, we see already from (4) that

b = c = 0,

and we can thus write (3) in the form

(5) Lu =
1
w
m∆u+A∂u+B ∂u+ Cu.

Hence we have

(6)

∆Lu = ∆m · 1
w

∆u+m ·∆ 1
w

∆u+ ∂m · ∂ 1
w

∆u+ ∂m · ∂ 1
w

∆u

+ ∆A · ∂u+A ·∆∂u+ ∂A ·∆u+ ∂A · ∂∂u
+ ∆B · ∂u+B ·∆∂u+ ∂B ·∆u+ ∂B · ∂∂u
+ ∆C · u+ C ·∆u+ ∂C · ∂u+ ∂C · ∂u.
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Here we have used the formula

(7) ∆(fg) = f∆g + g∆f + ∂f · ∂g + ∂f · ∂g
which will be of great service to us also later on.

Now, first of all, ∆Lu must vanish for harmonic u. For ∆u = 0, the
right-hand side of (6) reduces to

∆A · ∂u+ ∂A · ∂∂u+ ∆B · ∂u+ ∂B · ∂∂u+ ∆C · u+ ∂C · ∂u+ ∂C · ∂u.
Since the only relation between the derivatives of u up to the second order
is ∆u = 0, we must have

(8) ∆A+ ∂C = 0, ∆B + ∂C = 0, ∆C = 0, ∂A = 0, ∂B = 0.

From the last two conditions we see that ∆A = ∆B = 0; the first two then
give ∂C = ∂C = 0, and we conclude that

C ≡ const.,(9)

∂A = ∂B = 0.(10)

Feeding this back into (6) and using again the formula (7), we obtain

(11) ∆Lu = ∆m · 1
w

∆u+m ·
= 0︷ ︸︸ ︷

∆
1
w

∆u+

+ ∂m · ∂
( 1
w

)
·∆u+ ∂m · 1

w
∂∆u+ ∂m · ∂

( 1
w

)
·∆u+ ∂m · 1

w
∂∆u+

+A ·∆∂u+B ·∆∂u+ (∂A+ ∂B) ·∆u+ C ·∆u.

Comparing the coefficients at ∆∂u, ∆∂u, and ∆u, respectively, we see that
for ∆Lu to vanish for arbitrary w-biharmonic function u it is necessary that

A+
1
w
∂m = 0, B +

1
w
∂m = 0,(12)

1
w

∆m+ ∂m · ∂
( 1
w

)
+ ∂m · ∂

( 1
w

)
+ ∂A+ ∂B + C = 0.(13)

From (12) we have

∂A = −∂
( 1
w

)
· ∂m− 1

w
∆m, ∂B = −∂

( 1
w

)
· ∂m− 1

w
∆m,

∂A = −∂ 1
w
∂m, ∂B = −∂ 1

w
∂m,
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so we may rewrite (13) as

0 =
1
w

∆m− 1
w

∆m− 1
w

∆m+ C

or

1
w

∆m = C,(14)

and (10) as

0 = ∂
1
w
∂m = ∂

1
w
∂m.(15)

Our operator m must therefore be of the form

Lu =
1
w
m∆u− 1

w
∂m · ∂u− 1

w
∂m · ∂u+

1
w

∆m · u,

which is (2), with m satisfying (9), (14), and (15), which is (1).
Conversely, let L be any operator of the form (5), with A and B given by

(12), which satisfies (9), (14), and (15). Then it follows from the formulas
(6) and (11) that

∆Lu = m ·∆ 1
w

∆u,

and so L sends an arbitrary w-biharmonic function into a harmonic one.
This completes the proof.

Corollary 2. If m is a real-valued function satisfying

∆m = w, ∂
1
w
∂m = 0,

then the operator (2) transforms w-biharmonic functions into harmonic ones.

Indeed, for real-valued m, ∂w−1∂m = ∂w−1∂m = 0, and so (1) is fulfilled.
As an application, we prove the promised positivity result for a weighted

biharmonic Green function.

Theorem 3. Let α > −1. Then the Green function for the weighted
biharmonic operator ∆|z|−2α∆ on the unit disc D is positive.

Proof. Since w = |z|2α, the hypotheses (1) of the Fundamental Lemma (or,
rather, of its Corollary) are satisfied for

m =
|z|2(α+1) − 1

(α+ 1)2
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on the open set V = D \ {0} where w is C2 and positive. Indeed, ∆m =
(α+ 1)−2∂∂(zα+1zα+1 − 1) = w, and

∂
1
w
∂m = ∂

(
1
|z|2α ·

z|z|2α
α+ 1

)
=

1
α+ 1

∂z = 0.

Hence, on D \ {0}, the conclusion of the Lemma holds true for the operator

(16)
Lu =

m

w
∆u−

(
∂m

w
∂u+

∂m

w
∂u

)
+ u

=
m

w
∆u− 1

α+ 1
(z ∂u+ z ∂u) + u.

Suppose now to the contrary that the Green function U(x, y) ≤ 0 for some
x, y ∈ D. Since the function U( · , y) vanishes on ∂D, it must attain its
minimum at some interior point x0 ∈ D, and U(x0, y) ≤ 0. Let us take
U( · , y) as the function u in (16). The function v := Lu is then harmonic on
D \ {0, y}. We claim that it is, in fact, harmonic on all of D \ {y}. Indeed,
in view of the definition of u,

1
w(z)

∆u(z) = log
∣∣∣∣ z − y1− yz

∣∣∣∣2 + hy(z)

with hy harmonic on D. Thus, if y 6= 0,

∆u(z) = |z|2α · a function real-analytic at the origin.

Consequently,

u(z) = |z|2(α+1)f1(z) + h(z)

and

∂u(z) = z|z|2αf2(z) + f3(z)

with f1(z), f2(z), f3(z) real-analytic at the origin and h(z) harmonic on D.
In particular, as α > −1, it follows that u(z), z ∂u(z) and z ∂u(z) = z ∂u(z)
are continuous at the origin, and, consequently, so is v. By the removable
singularities theorem for harmonic functions, the harmonicity of v on D \
{0, y} therefore implies that v is harmonic on all of D \ {y}.

Now on the unit circle, both u and ∇u vanish (by the definition of the
Green function) and so does m; hence, v = 0 on ∂D. At y, u and z∂u+ z∂u
are continuous, while w(z)−1∆u(z) ∼ log |z − y|2 tends to −∞; it follows



WEIGHTED BIHARMONIC OPERATORS 349

that v(y) = +∞. By the maximum principle, v ≥ 0 in D \ {y}, and actually
v > 0 since an equality at any point would imply that v ≡ 0, contradicting
the fact that v have a logarithmic singularity at y. 1 Thus, in particular,
v(x0) > 0; since u(x0) ≤ 0 by assumption and, x0 being a local minimum of
u, ∇u(x0) vanishes, we get

0 < v(x0) = u(x0) +
m

w
∆u(x0) ≤ m

w
∆u(x0).

If x0 6= 0, this implies ∆u(x0) < 0 (∆u(x0) = −∞ if x0 = y), which is
contradictory to x0 being a local minimum of u. So x0 = 0. That is, the
only place where U( · , y), y ∈ D, can have a local minimum is the origin.
Owing to the symmetry of the Green function (U(z, y) = U(y, z)), we can
apply the same reasoning to the function u(y) = U(y, 0) = U(0, y), which
leads to the conclusion that if U(x, y) ≤ 0 for some x, y ∈ D, then U must
have its global minimum at the point (0, 0).

On the other hand, by the definition of the Green function we have

∆zU(z, 0) = |z|2α(log |z|2 + h0(z))

for some harmonic function h0. In view of the rotational symmetry, h0(z)
depends only on the modulus |z|, and so must be a constant function. An
easy integration therefore gives

U(z, 0) = 1
(α+1)2 |z|2(α+1)(log |z|2 − 2

α+1
+ h0) + h1(z)

with another harmonic function h1 (which again reduces to a constant, for
the same reason). Thus

U(r, 0)− U(0, 0) = (α+ 1)−2r2(α+1)(log r2 + h0 − 2
α+1

) < 0

for sufficiently small r > 0, which however shows that U(0, 0) cannot be a
local — not to say global — minimum for U( · , 0). Thus we have arrived at
a contradiction, which completes the proof.

If φ is a biholomorphic mapping of Ω1 onto Ω2 and G is the Green function
for ∆w−1∆ on Ω2, it is easily seen that G ◦ φ must be the Green function
for ∆[|φ′|2(w ◦φ)]−1∆ on Ω1. Using conformal mapping, we therefore imme-
diately obtain the following result.

Corollary 4. Let Ω be a simply connected domain and φ a Riemann
mapping of Ω onto D. Then the Green function for the operator ∆[|φ′|2 ·
|φ|2α]−1∆, α > −1, on Ω is positive.

1In fact, one must have, quite explicitly, v(z) = m(y) log |(z − y)/(1− yz)|2.



350 MIROSLAV ENGLIS

In particular, the Green function for the operator

∆
∣∣(z − a)α/(1− az)α+2

∣∣−2
∆ (a ∈ D, α > −1)

on D is positive.

We conclude by another result which can be obtained along the same vein.
Recall that the function

D(ξ, y) :=
1

w(ξ)
∆ξU(ξ, y), ξ ∈ ∂Ω, y ∈ Ω,

plays the role of the Poisson kernel for the operator ∆w−1∆. That is, for f
a function on ∂Ω, the function

F (y) := −
∫
∂Ω

f(ξ)D(ξ, y) dσ(ξ)

is w-biharmonic in Ω and has boundary values F = 0, ∂F/∂n = f . In other
words, D(ξ, y) solves the boundary value problem

∆y

1
w(y)

∆yD(ξ, y) = 0, y ∈ Ω,

D(ξ, y) = 0, y ∈ ∂Ω,
∂

∂ny
D(ξ, y) = −δ(y − ξ), y ∈ ∂Ω.

(See e.g. [E-Pee], Section 5, or [H-Duke], [H-BVP].) It is easy to see that
if U(x, y) ≥ 0 on Ω × Ω, then D(ξ, y) ≥ 0 on ∂Ω × Ω. In fact, D(ξ, y) < 0

implies that
∂2

∂n2
ξ

U(ξ, y) = ∆ξU(ξ, y) = w(ξ)D(ξ, y) < 0, and as U(ξ, y) =

∂

∂nξ
U(ξ, y) = 0, it would follow that U(x, y) < 0 for all x lying sufficiently

close to ξ on the inward normal from ξ. It is an open question whether
D(ξ, y) > 0 on ∂Ω× Ω does not actually imply that already U(x, y) > 0 on
Ω×Ω. The general opinion seems to be that more likely this is not the case;
a small contribution in favour of the opposite is provided by the assertion
below. Loosely speaking, its sense is that if U(x, y) has a negative minimum
for x “not far” from y, then D( · , y) has to take negative values somewhere
on the boundary.

Proposition 5. Let Ω be a bounded domain whose boundary consists of
finitely many Jordan curves and let U(x, y) be the Green function for the
unweighted biharmonic operator ∆2 on Ω. If U(x, y) < 0 is a local minimum
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for some x, y which lie in a disc B(z0, r) contained wholly in Ω, then there
is ξ ∈ ∂Ω for which D(ξ, y) < 0.

Proof. Since w ≡ 1, we can take

m(z) = |z − z0|2 − r2

as our function m, and u(z) = U(z, y) as the function u in (2). This choice
of m satisfies

m(y) < 0, m > 0 on ∂Ω, m(x) < 0.

From the Fundamental Lemma we conclude that

v(z) := m(z)∆zU(z, y)−∇m · ∇zU(z, y) + U(z, y)

is harmonic on Ω\{y}. For z = x, v(x) = m(x)∆xU(x, y)+U(x, y) is negative
by assumption. Since v(y) = +∞ (by a similar argument as in the proof of
Theorem 3), we must have v(ξ) < 0 at some point ξ on ∂Ω. But in view of
the definition of the Green function, v(z) = m(z)∆zU(z, y) = m(z)D(z, y)
on ∂Ω, so D(ξ, y) < 0 as well.

We close with a few comments regarding the solvability of the system (1):

(17)

1
w

∆m = C,

∂
1
w
∂m = ∂

1
w
∂m = 0,

where C is a complex constant. Obviously, m ≡ const. is a solution for any
w. On the other hand, we have seen that for w = |f ′|2, with f a holomorphic
function, one gets a nontrivial solution m = |f |2. It turns out that these are
essentially the only possibilities that can happen.

Proposition 6. Let w be positive and C2 on a simply connected open set V.
Then the system (17) has nontrivial solutions if and only if the function logw
is harmonic. In that case, we can write w = |H ′|2 where H is a holomorphic
function on V whose derivative does not vanish, and all solutions to (17) are
given by

m = C|H|2 + αH + βH + γ,

where α, β, γ are arbitrary complex numbers.

Proof. Let m be a solution of (17). Owing to the second equation in (17),
we must have

(18) ∂m = fw, ∂m = gw
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for some functions f, g holomorphic on V. Applying ∂ to the first and ∂ to
the second equation and using the first equation in (17), we obtain

(19) f
∂w

w
+ f ′ = g

∂w

w
+ g′ = C.

If f = g ≡ 0, (18) shows that m is a constant; so let us assume that, for
instance, g is not identically zero. Then (19) gives

∂w

w
=
C − g′
g

.

The right-hand side is a meromorphic function on V, whereas the left-hand
side is continuous by hypothesis. Hence ∂w/w must be a holomorphic func-
tion on V, and so

0 = ∂
∂w

w
= ∂ (∂ logw) = ∆ logw,

as asserted.
Conversely, if logw is harmonic, then owing to the simple connectivity of

V we can write logw = F + F with F holomorphic on V. Thus w = |H ′|2
where H is any primitive of the holomorphic function eF . Since ∆|H|2 = w,
any solution m to (17) must satisfy

m = C|H|2 + f + g

for some holomorphic functions f and g. Feeding this into the second equa-
tion in (17) gives

1
H ′

(
g′

H ′

)′
=

1
H ′

(
f ′

H ′

)′
= 0,

so both f ′/H ′ and g′/H ′ must be constant functions. It follows that f +
g = αH + βH + γ for some constants α, β, γ, which is what we needed to
prove.

Corollary 7. Let w be positive and C2 on an open set V. Then a nontrivial
solution to (17) exists if and only if w = |H ′|2 and

(20) m = C|H|2 + αH + βH + γ

for some complex numbers α, β, γ and some (possibly multi-valued) analytic
function H on V for which the expression (20) is single-valued and the deriva-
tive H ′ does not vanish.
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