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CHARACTERISTIC CLASSES FOR THE DEGENERATIONS
OF TWO-PLANE FIELDS IN FOUR DIMENSIONS

Maxim Kazarian, Richard Montgomery and Boris Shapiro

Given a distribution of k-planes on a manifold, consider
the degeneration locus ΣI consisting of points where the dis-
tribution has Lie-bracket growth vector less than or equal I,
a fixed integer vector. We calculate the characteristic classes
associated to the ΣI for a generic two-plane distribution on a
four-manifold.

1. Results and Background.

1.1. Generalities, Setting and Results.
A distribution D of k-planes on an n-dimensional manifold Q can be

thought of as either a subbundle D ⊂ TQ of the tangent bundle or as a
locally free sheaf of smooth vector fields. We use the same notation for
both. Write D2 = D + [D,D] and more generally Dj+1 = Dj + [D,Dj].
These are sheaves of modules of vector fields (over the ring of smooth func-
tions). We are interested in distributions such that for r large enough we
obtain all vector fields by this procedure:

Dr = T

where T denotes the sheaf of all vector fields. These are called completely
nonholonomic distributions. We thus have a filtration

D ⊂ D2 ⊂ . . . ⊂ Dr = T

by subsheaves of the sheaf of all vector fields. Write Dj(q) ⊂ TqQ for the
vector subspace obtained by evaluating all vector fields in Dj at the point
q ∈ Q, and

nj(q) = dim(Dj(q)).
The first r such that Dr(q) = TqQ is called the degree of nonholonomy at q
and the nondecreasing list of dimensions

I(q) = (n1(q), n2(q), . . . , nr(q))
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is called the growth vector at q. If the nj(q) are constant in a neighborhood
of q then the Dj correspond to vector bundles of this rank (in this neigh-
borhood) which we will also denote by Dj. In this case, we say that q is a
regular point for the distribution. Otherwise, some of the ranks nj jump as
we pass through q and we have to think of the corresponding Dj as sheaves.

Example. A contact distribution has growth vector (k, k + 1) with k even.

Definition. An Engel distribution is a rank two distribution on a 4-dim-
ensional manifold whose growth vector is (2, 3, 4) everywhere.

What makes Engel distributions remarkable is that they are topologically
stable, and topologically stable distributions are quite rare, occuring only
in dimensions (k, n) = (1, n), (n − 1, n) and (2, 4). The only stable regular
distributions are the line fields, the contact fields, an odd-rank analogue of
contact (sometimes called pseudo-contact) and the Engel distribution. (See
the next section, for the definition of stability, and some details.)

If one slightly perturbs any given distribution of 2-plane fields on a 4-
manifold then it will become Engel on an open dense subset ([11], [4]). On
the other hand (see Propositon 1 below) if an oriented 4-manifold admits an
oriented Engel distribution, then that manifold is parallelizable. Thus there
are topological obstructions to making the 2-plane field globally
Engel. Our goal is to understand these obstructions.

A basic notion in this endeavour will be the degeneraion locus of a dis-
tribution. We will first need to establish a partial order for growth vectors.
Declare that J = (m1,m2, ,ms = n) ≤ I = (n1, n2, . . . , nr = n) if and only
if mi ≤ ni for i = 1, . . . , r. Note that the two vectors may have a different
number of components. For fixed k = n1 and n there is exactly one maximal
growth vectors. Its components, except for possibly the last one nr = n
are the dimensions of the subspaces of the standard grading of the free Lie
algebra on k elements. For typical distributions the growth vector will be
maximal at most points of the manifold.

Definition. The degeneration locus of a distribution D on a manifold
Q is the set of all points Σ = Σ(D) ⊂ Q whose growth vector is less than
maximal. The degeneration locus of type I, denoted ΣI = ΣI(D) ⊂ Q, is
the subset of all points q ∈ Q at which the growth vector is less than or
equal I.

The Thom transversality theorem implies that for typical D all of the ΣI

are nice subvarieties. They stratify the manifold.
The Engel growth vector (2, 3, 4) is the maximal growth vector for a rank

two distribution in 4-space. The smaller growth vectors I1 = (2, 2, 4), I2 =
(2, 3, 3, 4) are not ordered relative to each other. All other growth vectors
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are dominated by these two. Consequently:

Σ = Σ1 ∪ Σ2.

The following alternative descriptions of the Σi may be more transparent:

Σ1 = {q : dim(D2(q)) ≤ 2}
Σ2 = {q : dim(D3(q)) ≤ 3}.

Zhitomirskii has shown that generically each piece Σi is a smooth 2-dimensi-
onal surface. Our question becomes, what is the topological meaning of the
degeneration locus Σ and its pieces Σ1 and Σ2? The situation is compli-
cated by the fact that when the two pieces do intersect, they never do so
transversally, but rather along a curve, denoted by C below.

In general, the condition that the growth vector I(q) is less than or equal to
some I = (n1, ..., nr) defines a natural DiffQ-invariant subsetMI in the space
of r-jets of sections of the bundle Gk,n(TQ)→ Q whose fibers Gk,n(TqQ) are
the Grassmannians of k-planes in the n-dimensional tangent spaces TqQ,
and where DiffQ denotes the group of diffeomorphisms of Q. ΣI(D) is the
pullback of the intersection of the r-jet extension of D with MI . When we
say ‘typical’ and ‘generic’ for D, this means that the r-jet extension of D is
transversal to the MI . By results of Thom, (see [5]) for a generic D there
exists a universal formula for the Stiefel-Whitney and, in the appropriate
setting, the Chern classes which are Poincare dual to ΣI(D) in terms of the
characteristic classes of D and Q. In this paper we obtain this formula for
the Engel degenerations. The main result of this note is as follows.

Theorem 1. Let D be a real oriented 2-plane field on a closed oriented
4-manifold Q. Then the obstructions to D being Engel are the Chern classes
c1(D⊥) and c1(D∗). Here D⊥ = TQ/D and D∗ denotes the dual bundle. For
generic D the first class is represented by Σ1 ⊂ Σ which is a smooth 2-surface
(except for possibly a finite number of points) with a global co-orientation.
The second class is represented by Σ with a certain co-orientation on Σ \ C
where C = Σ1 ∩ Σ2. The 1-cycle C is homologous to zero in Σ1.

Remark. Σ1 is canonically co-oriented as the class representing c1(D⊥).
In fact it is the zero locus of a section of D⊥ which is transverse to the
zero section. The co-orientation which Σ1 receives as part of the cocycle Σ
representing c1(D∗) reverses as the curve C is crossed. See Figure 1 below.

If the distribution D or the underlying manifold Q are not oriented then
the degeneration loci will not yield well-define integer homology classes, but
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rather only classes mod 2. Let wi(ξ) denote the ith Steiffel-Whitney class
of a real vector bundle, and write wi(Q) = wi(TQ).

Theorem 2. The Z2-homology classes of Σ1, Σ2, Σ1 ∪Σ2 and Σ1 ∩Σ2 are
dual to w2

1(D) + w2(D) + w2(Q), w2
1(D) + w1(Q)w1(D) + w2

1(Q) + w2(Q),
w2(D) +w2

1(Q) +w1(D)w1(Q) and w1(D)(w2
1(D) +w2(D) +w2(Q)) respec-

tively.

Two of us (M. Kazarian and B. Shapiro), have found corresponding du-
ality formulae for the case of generic distributions of arbitrary rank k in n
dimensions, and plan to publish this in a future paper.
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NSF, grant number DMS 9400515 and the University of California at Santa
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1.3. Properties of rank two distributions on 4-manifolds.
We formulate some known properties of rank two distributions D on a

4-manifold Q.
An oriented 4-manifold Q admits an oriented 2-plane distribution D if

and only if χ[Q] ≡ 0 mod 2 and χ[Q] = τ [Q] mod 4. Here χ is the Euler
class and τ the signature. This condition is equivalent to requiring that the
manifold admit two almost complex structures, one consistent with the given
orientation, and the other consistent with the opposite orientation. (See [2]
and also [7] and references therein.)

If the distribution D has rank two then it is locally spanned by two non-
vanishing vector fields X and W . Locally:

D2 = span{X,W, [X,W ]}

and

D3 = span{X,W, [X,W ], [X, [X,W ]], [W, [X,W ]]}.
It follows that D is Engel if and only if for some functions a, b the vector fields
X,W, [X,W ] and a[X, [X,W ]] + b[W, [X,W ]] form a basis for the tangent
space.

Engel’s Theorem. (See [10], [3, p. 50].) If D is Engel at the point q ∈ Q
then it admits a local frame X and W and Q admits coordinates (x, y, z, w)
centered at q such that W = ∂

∂w
and X = ∂

∂x
+ w ∂

∂y
+ y ∂

∂z
.
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To clarify the special nature of Engel distributions, we recall the notion of
“stability” in singularity theory. A distribution germ is called stable if every
sufficiently nearby distribution germ is diffeomorphic to it, sufficiently near
being measured in the Cr-topology for some r.

Stability Theorem. (See [10] and also [6].) The only stable distribution
germs occur in dimensions (k, n) = (1, n), (n − 1, n) or (2, 4). In each case
there is a unique stable regular representative. These are the line fields,
contact (or even-contact) fields, and the Engel distributions.

The generic degenerations of Engel structures were classified, up to codi-
mension 3, by Zhitomirskii [11]. The first degeneracies occur in codimension
2. There are two of them, one for Σ1, and one for Σ2. Both are stable.
Corresponding normal forms were found by Zhitomirskii and are repeated
below. The main result of Zhitomirskii’s which we will be using is that for a
Whitney open and dense set of rank two distributions on a 4-manifold, the
degeneration loci Σ1 and Σ2 are smooth 2-dimensional embedded surfaces.
Outside the intersection of Σ1 and Σ2, this follows from Thom’s transversal-
ity theorem ([1, p. 38], and references therein).

We will also require the normal forms and higher singularities however.
There are two types of codimension 3 degenerations. One occurs along C =
Σ1 ∩ Σ2 which is typically a curve when nonempty. The other occurs along
a curve L in Σ2 which separates the degenerating Engel line field near Σ2

into hyperbolic and elliptic degenerations. The corresponding normal forms
are given in terms of 1-forms ω1, ω2 which frame the forms annihilating D.
They are

Σ1 : ω1 = dx1 + x2
3dx4, ω2 = dx3 + x3x4dx4(1)

Σ2 : ω1 = dx1 + x3dx4, ω2 = dx3 +
1
3

(x2
3 + x3x4)dx4(2)

or

Σ2 : ω1 = dx1 + x3dx4, ω2 = dx3 + x2
3x4dx4.(3)

The two normal forms for Σ2 correspond to the two regions of Σ2 separated
by the curve L. For the points of C and L there is a single functional modulus
f. Their normal forms are:

C : ω1 = dx1 + x2
3dx4, ω2 = dx2 + x3(x1 + f)dx4(4)

L : ω1 = dx1 + x3dx4, ω2 = dx2 + x3fdx4.(5)

There are also codimension 4 singularities which occur along the curves C
and L as isolated points. Fortunately we will not need explicit normal forms
for them. (None have been calculated!)
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We re-iterate the main picture. Σ is a smooth 2-dimensional surface away
from the curve C. Near C it is diffeomorphic to the interstion of two 2-planes
in 4-space which intersect on a line. See Figure 1 below.

1.4. The Engel line field and parallelizability.
We recall why Engel manifolds are parallelizable, up to orientation prob-

lems.
It will help to recall the basic Lie algebra structure associated to a distri-

bution. Let [, ] denote the operation of Lie bracket of vector fields. If f and
g are smooth functions on an open set U ⊂ Q and X ∈ Dj(U), Y ∈ Dk(U)
then

[fX, gY ] = fg[X,Y ] mod (Dl)(U)

where l = max(j, k). In other words, Lie bracket induces well-defined maps
Dj ⊗Dk → T/Dl where T denotes the (sheaf of the) tangent bundle.

Associate to our filtration D ⊂ D2 ⊂ ... ⊂ T the corresponding graded
object:

Gr(T ) := D ⊕ V2 ⊕ V3 ⊕ ...⊕ Vr

where the

Vi = Di/Di−1

are the quotient sheaves. According to the remarks above, Gr(T ) inherits the
structure of a sheaf of graded nilpotent Lie algebras. Here “graded” means
that

[Vi, Vj] ⊂ Vi+j.
If the point q is regular for D then the dimensions ni(q) are constant near

q so that the sheaves Di correspond to smooth subbundles of the tangent
space. In this case Gr(T ) corresponds to a bundle of Lie algebras. (The
simply connected Lie group corresponding to a particular fiber Gr (Tq) is
called the nilpotentization of (D, Q) at q.) In the Engel case we have

Gr(T ) = D ⊕ V2 ⊕ V3

where V2 and V3 are real line bundles.
Fix a nonzero element δ ∈ V2(q). Then the Lie bracket defines a map

D(q)→ V3(q) ∼= R, namely v → [v, δ]. The kernel of this map is intrinsically
defined and forms a line in the planeD(q). Said differently, in a neighborhood
of any point where the distribution D is Engel there is a distinguished line
field

L ⊂ D



CHARACTERISTIC CLASSES FOR TWO-PLANE FIELDS 361

characterized by the fact that

[L,D2] = 0(modD2).

We call L the Engel line field. It is the span of the vector field W of Engel’s
theorem above.

Proposition 1. (See [4].) If an oriented 4-manifold admits an oriented
Engel structure D then the manifold is parallelizable.

Proof. At every point q of such a 4-manifold Q we have the complete flag
L(q) ⊂ D(q) ⊂ D2(q) ⊂ TqQ in the tangent bundle. If we show that
this flag is canonically oriented then we will be done. (A parallelization
{E1, E2, E3, E4} is then be obtained by putting a Riemannian metric on Q
and hence on each element of the flag. Then take E1 to be the positive unit
vector spanning L, {E1, E2} to be the positive orthonormal basis for D, etc.)

Write A ∈ Λ2D for the choice of orientation of D. Locally A = X ∧ Y for
X,Y nonvanishing sections of D. Then

δ1 = [X,Y ] (modD)(6)

is a well-defined section of T/D independent of the choices of representation
X and Y. By the assumption on the growth vector it is non-vanishing and its
span is the real line bundle V2. So δ1 defines an orientation on V2. Observe
that for any triple of linear spaces, (S, T, T/S) with S ⊂ T , an orientation
on any two spaces canonically determines an orientation on the third.

Using this observation we obtain an orientation on D2. Applying the
observation again we obtain an orientation on V3. Finally, consider the map
adδ : D → V3 defined by bracketing with δ. Its kernel is L so that adδ
induces an isomorphism V3

∼= D/L and so an orientation on D/L. Applying
the observation again, we finally obtain the orientation on L.

Example 1. If Q is closed and simply connected then it does not admit any
Engel structure. This is because its Euler class is nonzero, and hence it does
not admit a single nonvanishing vector field.

Example 2. If a 4-manifold admits one Engel structure, then it typically
admits a continuous family of inequivalent such structures. For if we perturb
the given structure, then we perturb its Engel line field. But line fields on
closed manifolds typically have continuous moduli. For specific examples of
families of inequivalent Engel structures, see [4]. The Engel situation is to
be contrasted with the case of contact structures on a three-manifold, where
the moduli space of inequivalent structures is a discrete set.
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2. Obstruction theory and proofs.

Our proofs rely on the following basic fact from topology. (See Bott and
Tu, for example.) If E → Q is a real oriented rank 2 vector bundle and if
s : Q → E is a section of E which is transverse to the zero section
Z ⊂ E then the section’s zero locus represents the first Chern class c1(E)
of E. (Bott and Tu call this the Euler class.) Transversality implies that
this zero locus s−1(Z) = {q : s(q) = 0} is a canonically co-oriented smooth
submanifold of Q. It represents a cohomology class [s−1(Z)] via intersection
theory. The value of [s−1(Z)] on a 2-cycle is obtained by picking a repre-
sentative for the cycle, jiggling it until it is transverse to s−1(Z) and then
counting intersections.

The section δ1 of Equation 1:

q 7→ [X,Y ](q) modDq

is a well-defined section of D⊥ = TQ/D regardless of whether or not Σ is
empty. Its zero locus is precisely Σ1. Once we have proved transversality
we will have established

Lemma 1. Let D be a generic oriented rank 2 distribution on an oriented
4-manifold Q. Then Σ1 is canonically co-oriented and represents the first
Chern class c1(D⊥) of the oriented rank 2 real vector bundle D⊥ = TQ/D.

Proof. It remains to prove transversality of δ1. Away from C = Σ1 ∩ Σ2 the
full growth vector is (2, 2, 4), meaning that [X, [X,Y ]] and [Y, [X,Y ]] (mod
D) span D⊥. It follows that by differentiating δ1 in the D-directions we
obtain all of D⊥. In other words, δ1 is transverse to Z at these points and
we only need to differentiate along D to achieve transversality.

At generic points of Σ1 ∩ Σ2 we will need to differentiate in directions
other than D, but transversality still holds. It follows from Zhitomirskii’s
normal form along C ((4) above) that

X1 = ∂3(7)

and

X2 = ∂4 − x2
3∂1 − x3(x1 + f)∂2(8)

frame D near points p of the intersection. Here p has coordinates (0, 0, 0, 0)
and f is a function satisfying f(0) = df(0) = 0. We may assume that the
orientation of D is given by A = X1 ∧X2 since a nonzero scalar factor will
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not affect transversality considerations. The fields ∂1 and ∂2 form a local
frame for D⊥. Modulo D we have:

δ1 = −2x3∂1 − (x1 + f + x3∂3(f))∂2(9)

and

Σ1 = {x3 = 0 = x1 + f}(10)

near p. One calculates at p = 0: ∂3δ1 = −2∂1, ∂1δ1 = −∂2, mod D. Since
∂1, ∂2 span D this proves transversality.

Finally, we need to worry about the codimension 4 points. These form
a finite set, some of which may lie along the curve Σ1 ∩ Σ2. Σ1 may have
singularities at these points. But these points do not effect cohomology. If
a representative of a 2-cycle intersects such a codimension 4 point it can be
homotoped to miss it. And the co-orientation is defined everywhere on Σ1

away from these points.

To obtain the other class, define a section δ2 of the vector bundle
Hom(D,Λ2D⊥) by

δ2(q)(v) = δ1(q) ∧ ([ṽ, δ̃1](q)(modDq)).

Here v ∈ Dq and ṽ denotes any extension of v to a local section of D:
ṽ(q) = v. And δ̃1 is any local vector field with the property that δ̃1 =
δ1(modD). One easily checks that δ2(q)(v) is well-defined, independent of
these choices. It is clear that D fails to be Engel exactly at those points q
for which δ2(q)(v) = 0 for all v, that is to say at δ−1

2 (0). Thus

Σ := Σ1 ∪ Σ2 = δ−1
2 (0)

D and TQ are oriented, so that Λ2D⊥ is trivial and Hom (D,Λ2D⊥) ∼= D∗.
Thus δ2 defines a section of D∗. If this section were transverse to the zero
section we would be done, as described at the beginning of this section.
However the section δ2 cannot be transverse to the zero section at points
of C = Σ1 ∩ Σ2 because Σ is not a manifold at such points. In this case
further analysis is needed and this complicates the proof of Theorem 1. The
theorem follows from

Lemma 2. For a generic distribution D the section δ2 is transverse to
the zero section away from the curve C = Σ1 ∩ Σ2. The δ2-induced co-
orientations on either Σi, i = 1, 2 reverses as C is crossed. See Figure
1. C is homologous to zero within Σ1 but might not be homologous to zero
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within Σ2. Σ, being a Whitney stratified set with “cohomologically consis-
tent co-orientations” (see discussion below) on its principal strata, defines a
cohomology class. This class represents the first Chern class c1(D∗) of the
dual to D bundle D∗.

a) local structure of the zero locus b) the zero locus after the perturbation

+

-

-

+

-

+

Figure 1. Local coorientation of Σ = Σ1 ∪ Σ2.

We postpone the proof of the lemma for a discussion of the business of
Whitney stratified sets defining cohomology classes. It follows from Zhit-
omirskii’s normal forms (Eq. (1), (2), (3), (4), (5)) that Σ is a Whitney
stratified subset of Q of a rather tame sort. Its strata are the isolated codi-
mension 4 points {p1, . . . , pN} (their normal forms have functional moduli
and are not given by Zhitomirskii), the curve C minus points of codimension
4 and the connected components of Σ \ C. These latter are the principal
strata. They intersect along C in a manner locally diffeomorphic to that of
two 2-planes in 4-space intersecting along a line.

We now describe how co-oriented Whitney stratified sets may be used to
define cohomology classes. This idea is extensively used by Vassiliev and
we refer the reader to his book [9], especially the introduction and §8.4.
Let Q be a smooth compact manifold and W ⊂ Q be a Whitney stratified
compact subset. Suppose that the principal strata of W are co-oriented k-
dimensional submanifolds. Given an (n−k)-cycle in Q we perturb it slightly
so that it intersects the principal strata of W transversally and then count
these intersection points with a plus or minus sign depending on whether
the orientation of the cycle there agrees or disagrees with the co-orientation.
In this way it appears that W yields an integer-valued function on cycles.
However this number may depend on the perturbation and may not be well-
defined on the level of homology. In other words, we must somehow insure
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that if a cycle Z is a boundary then this intersection number is zero. By
cellular or simplicial approximation we may break Z, and also the (n−k+1)-
cycle B which it bounds into a sum of cycles each one of which is supported in
an arbitrarily small neighborhood of Q. First suppose the intersection B∩W
lies entirely on a principal stratum. Since we may assume that it is arbitrarily
small, this intersection is diffeomorphic to an oriented line segment and
Z ∩W consists of two points with opposite orientations. Consequently its
intersection numbers add to zero as desired. If B intersects a stratum R
of dimension k − 1 we must impose a cohomological consistency condition,
to be spelled out momentarily, on W near R. If B intersects a stratum of
dimension k − 2 or less then we may slightly perturb it while keeping its
boundary fixed, and in this way reduce to the case of intersection with a
strata of dimension k or k − 1.

Cohomological Consistency Condition: The link L of any stratum
of dimension k− 1 is cohomologically trivial within the sphere of dimension
n− k. See Figure 2.

This link is a finite collection of co-oriented points on the (n− k)-sphere.
The condition is then that the sum of co-orientations is zero. In particular
the number of points in the link must be even.

Our case: S
¯
ee the right hand picture of Figure 2. In our case k = 2 so

k − 1 = 1. The 1-dimensional stratum consists of the smooth points of C,
that is all the points of C except the points of codimension 4 not covered in
Zhitomirskii’s paper. The link of C consists of 4 points, representing the 4
‘pieces’ of Σ \ C near C. The cohomological condition is that two of these
points have plus signs and two have minus signs.

Figure 2. Local coorientations for the case n− k = 1 and n− k = 2.

We recall that the notion of the link L of a singular stratum R. R is a piece
of a submanifold of dimension r, where r ≤ k − 1. Intersect R transversally
at a point p with a small piece of an (n− r)-manifold V. Intersect the result
with an (n − r − 1)-sphere S ⊂ V surrounding p. We call L, or the pair
(L, S) the link of R at p. By the definition of a stratified set, V ∩W is
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diffeomorphic to the cone C(L) over L, and a p admits a neighborhood N
and a diffeomorphism which takes the pair (W ∩N,N) to (U×C(L), U×V )
for some open set U in R.

Lemma 3. The cohomological condition insures that W is a well-defined
cohomology class.

Proof. It remains to show that if the small (n − k + 1)-cycle B intersects
a stratum of dimension k − 1 then the intersection number of its bound-
ary Z with W is zero. We may take the cycle B to be ball intersecting R
transversally. Its boundary can be homotoped so as to form the sphere S
used to define the link L of R. Then the intersection Z ∩W is the sum of
the points L with appropriate intersection numbers, which we have assumed
to be zero.

Proof of Lemma 2. If δ2 is transverse to the zero section away from C as
claimed, and if the induced co-orientations on Σ \ C reverse as C is crossed
while travelling along a fixed Σi, then the cohomological consistency condi-
tion follows directly. For the link consists of four points and this reversal
implies they come in pairs which cancel, one pair for each Σi. See Figure 2.

The claim regarding the Chern class also follows directly. To see this
imagine a cycle K and its intersection number with Σ as we have just defined
it. The intersection points with K lie outside some small neighborhood
U of C. By Sard’s theorem, we may perturb the section δ2 so that the
resulting section s is transverse to the zero section Z of D∗. Moreover, this
perturbation may be concentrated within U so that s agrees with δ2 outside
of U. Then the intersection number of K with Σ equals that of K with s−1(0).
The later represents the first Chern class of D∗ since s is a transverse section.
See Figure 1 again.

It remains to check the transversality claims. We will only check them
near C. For points of Σ away from C or L transverality follows from the
normal forms (1), (2), (3) given above. The calculation follows the lines we
follow below, but are significantly simpler. For points along L the calculation
is similar to that below and is also omitted. We would use the form (5).

For points along C we use (1) in the dual form of equations (7) - (10)
which follow Lemma 1. We have

[X1, δ1] = −2∂1 − (2∂3f + x3∂
2
3f)∂2

and

[X2, δ2] = {X2[f + x3∂3f ]− δ1[x3(x1 + f)]}∂2 = {∂4f +O(2)}∂2.
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If x ∈ Σ1 then δ1 must be proportional to [X1, δ1]. Multiplying our ex-
pression for [X1, δ1] by 2x3 and refering back to Equation (9) for δ1 we see
that this means that:

x1 + f = x3h(11)

where h is a certain function vanishing to 1st order. Also we must have
[X2, δ1] = 0 when x3 6= 0 since in this case δ1 has a ∂1-component whereas
[X2, δ1] has only a ∂2-component. Now we may assume, by genericity, that
d(∂4f) 6= 0 so that the leading term of this ∂2-component is ∂4f . We may
then write [X2, δ2] = x̄4∂2 where x̄4 = ∂4f +O(2) is a new coordinate. Also
set

x̃1 = x1 + f.

Generically we have dx̃1 ∧ dx2 ∧ dx3 ∧ dx̄4 6= 0 so that (x̃1, x2, x3, x̄4) form
coordinates near p. Observe that Σ1 can equally well be expressed as the
locus of points with x3 = 0 and x̃1 − x3h = 0. Set

x̄1 = x̃1 − x3h.

Thus locally

Σ1 = {x3 = 0, x̄1 = 0},
Σ2 = {x̄1 = 0, x̄4 = 0},

and

C = {x3 = 0, x̄1 = 0, x̄4 = 0}.
Note that this expresses the intersection C as a line obtained by intersecting
two 2-planes in 4-space as claimed.

The section δ2 is a fiber-linear map which is given on the basis {X1, X2}
by Xi 7→ δ1 ∧ [Xi, δ1]. Using the above formulae we compute that we can
represent δ2 as the 2-vector:

δ2 = (−2x̄1 + x3g,−2x3x̄4)(12)

where g is function vanishing to 1st order at p. We have also dropped off
the basis vector coefficient ∂1 ∧ ∂2 from δ2. (Here (1, 0), (0, 1) represent the
dual basis to X1, X2.) Then near p we have:

∂

∂x̄1

δ2 = (−2, 0),

∂

∂x3

δ2 = (g,−2x4).
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If X1 ∧X2 represents the orientation of D then {(1, 0), (0, 1)} represent the
corresponding oriented frame for Hom (D,Λ2D) = D∗. Observe that the
normal bundle to Σ1 near p is framed by ∂

∂x̄1
and ∂

∂x3
. It follows from

our expressions for the derivatives of δ2 that the δ2-induced co-orientation
of Σ1 \ C is given by the frame { ∂

∂x̄1
, x̄4

∂
∂x3
}. The induced co-orientation

reverses as we cross C travelling on Σ1, since C is defined on Σ1 by x̄4 = 0.
Also, the section δ2 is transverse to the zero section for points of Σ1 away
from C.

To complete the proof we compute:

∂

∂x̄4

δ2 = (0,−2x3).

The vector fields ∂
∂x̄1

and ∂
∂x̄4

frame the normal bundle to Σ2 near p. For
the same reasons as above we see that the δ2-induced co-orientation of Σ2

is given by the frame { ∂
∂x̄1

, x3
∂
∂x4
}. On Σ2, the curve C is given by x3 = 0.

Again the induced co-orientation reverses as we cross C and the section is
transverse away from C.

Remark. The co-orientability of Σ2 depends on the orientability of the
3-distribution D3|Σ2 . One can check that the subvariety in the 2-jets of
germs of 2-distributions corresponding to the growth vector (2, 3, 3) is not
coorientable.

Proof of Theorem 2. The construction of the sections δ1 and δ2 can be ad-
justed to the nonoriented case to define sections of bundles
Hom (Λ2D,D⊥) and Hom (D,Λ2(D⊥)) such that Σ1 and Σ = Σ1 ∪ Σ2 are
the zero loci of these sections. Therefore, these cycles are dual to the Stiefel-
Whitney classes of the corresponding bundles which can be calculated by
using standard methods of the theory of characteristic classes. In particular,
we have,

[Σ1] = w2(Hom(Λ2D,D⊥)) = w2
1(D) + w2(D) + w2(Q);

[Σ1 ∪ Σ2] = w2(Hom(D,Λ2(D⊥))) = w2(D) + w2
1(Q) + w1(D)w1(Q);

[Σ2] = [Σ1] + [Σ1 ∪ Σ2] = w2
1(D) + w1(Q)w1(D) + w2

1(Q) + w2(Q).

If the restriction of D to Σ1 is orientable then the arguments at the be-
ginning of this section show that Σ1 ∩ Σ2 is a boundary. Therefore Σ1 ∩ Σ2

represents the homology class on Σ1 dual to w1(D|Σ1). (Using a bundle ho-
momorphism which is essentially given by δ2 one can explicitly find a bundle
over Σ2 isomorphic to Λ2D|Σ1 and a section of it for which Σ1∩Σ2 is the zero
locus.) Hence, we can apply the Gysin formula to compute the cohomology
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class dual to Σ1 ∩ Σ2 as follows

[Σ1 ∩ Σ2] = i∗([Σ1 ∩ Σ2|Σ1 ]) = i∗(w1(D|Σ1)) = w1(D)i∗(1) = w1(D)[Σ1].

Here [Σ1∩Σ2|Σ1 ] denotes the class dual to the cycle Σ1∩Σ2 in the cohomology
group of Σ1, i : Σ1 → Q is the natural inclusion and i∗ is the corresponding
Gysin homomorphism in cohomology.

3. Open problems.

Problem 1. Does every closed parallelizable 4-manifold admit an Engel
structure? (The proof suggested in [4] is incomplete.)

This problem, the converse to the parallelizability proposition, is the basic
open question in the area. The vanishing of the obstructions c1(D⊥) and
c1(D∗) of our main theorem implies the parallelizability of Q. On the other
hand, a parallelizable Q typically admits countably many homotopically
distinct 2-distributions D satisfying these vanishing conditions. The next
problem is a stronger version of Problem 1.

Problem 2. Suppose that the rank two distribution D satisfies c1(D⊥) =
c1(D∗) = 0. Can we homotope D to an Engel distribution?
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