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CLOSED COMMUTANTS OF THE BACKWARD SHIFT
OPERATOR

Daniel Suárez

We characterize the closed operators with domain con-
tained in the Hardy space H2 that commute with the back-
ward shift. Also, we give necessary and sufficient conditions
for such an operator to be a Toeplitz operator with symbol
the complex conjugate of a function in H2. In particular, we
show that this fact depends only on the domain.

Introduction.

Let F be a function in the Hardy space of the unit disk H2. We can define
the unbounded Toeplitz operator TF operating on a suitable linear subman-
ifold of H2 (for instance H∞). In recent years many questions have been
raised about the behavior of these operators. Most of these problems appear
naturally when studying the algebra of multipliers or the backward shift in-
variant subspaces of the so-called de Branges-Rovnyak spaces (see [11] and
[17]). If S∗ denotes the backward shift operator on H2, it is not difficult to
see that TF commutes with S∗. More generally, if Q is a closed operator on
some linear submanifold of H2 that commutes with S∗, then the domain of
Q, D(Q) is dense in some (closed) S∗ invariant subspace of H2. Therefore
Beurling’s theorem assures that D(Q) is dense in H2 or in (uH2)⊥ = H(u),
for some inner function u.

If Q is a bounded operator on H2 that commutes with S∗, it is easy to see
that Q = Tϕ with ϕ ∈ H∞. The analogous result for bounded operators on
H(u) that commute with S∗u = S∗/H(u) is a well known theorem of Sarason
[14]. Moreover, we can choose ϕ ∈ H∞ so that Q = Tϕ/H(u) and ‖ϕ‖∞ =
‖Q‖.

There are two natural questions appearing at this point. What are the
closed operators that commute with S∗ (or with S∗u)? Do the above results
for bounded operators have analogous versions for closed operators? The
purpose of this paper is to answer these questions in both cases, when D(Q)
is dense in H2 and in H(u), for some inner function u. In particular, we find
necessary and sufficient conditions for such an operator Q to have the form
TF (or TF/H(u)) with F ∈ H2. As a byproduct of this result we also obtain
a short proof of Sarason’s theorem.
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1. Closed operators with domain dense in H2.

In what follows, a linear subspace of H2 will be called a linear manifold; a
‘closed’ subspace will be simply called a subspace. Let Q : D(Q) ⊂ H2 → H2

be a closed operator such that D(Q) is S∗ invariant and S∗Q = QS∗. It is
easy to prove that if ϕ ∈ H∞ then TϕD(Q) ⊂ D(Q) and TϕQ = QTϕ (see for
instance [17], Lemma 6.3). It follows immediately that if h ∈ D(Q) ∩ H(u)
(for u an inner function) then Qh ∈ H(u), because TuQh = QTuh = 0.
Therefore the restriction of Q to D(Q) ∩ H(u) is a closed operator that
commutes with S∗u, with domain and rank in H(u).

Definition. Let Q be a closed operator with domain D(Q) dense in H2

such that S∗D(Q) ⊂ D(Q) and S∗Q = QS∗. We say that the operator Q
is S∗-commuting . If u is an inner function and Q is a closed operator such
that D(Q) ⊂ H(u) is dense, S∗uD(Q) ⊂ D(Q) and S∗uQ = QS∗u, we say that
Q is S∗u-commuting.

Consider the Hilbert space H2
2 = H2 × H2. For ϕ ∈ L∞, (Tϕ)2 denotes

the matrix operator from H2
2 into H2

2 given by (Tϕ)2 = Tϕ.I, where I is the
identity matrix. It is clear that if the operator Q is S∗ or S∗u-commuting, then
its graph G(Q) is a (S∗)2 invariant subspace of H2

2 . So, a first approach to
understand our operators is to classify all the (S∗)2 invariant subspaces M of
H2

2 . This was done by Lax in [9]. The strategy is as follows, beginning with
Lax’s characterization of the subspaces M , we study the extra conditions
required to assure that M is a graph. Also, we distinguish two cases, when
M ⊂ H(u) × H(u) for some inner function u, or when this inclusion does
not hold for any inner function u.

Let M2(H∞) be the algebra of 2×2-matrices with entries in H∞. We will
think of σ ∈M2(H∞) as a multiplication operator on H2

2 . So, even when we
write σ = (aij), 1 ≤ i, j ≤ 2, the adjoint operator is σ∗ = (Taji). That is,
we identify aij with Taij when aij ∈ H∞.

A matrix σ ∈M2(H∞) is called an inner matrix if for almost every eiθ ∈
∂D the complex matrix σ(eiθ) is a partial isometry of C2 with fixed initial
space (i.e., not depending on eiθ). Let S be the forward shift operator on
H2. The theorem of Lax asserts that N is a (S)2 invariant subspace of H2

2

if and only if N = σH2
2 , for some inner matrix σ. Since (S)∗2 = (S∗)2, the

(S∗)2 invariant subspaces of H2
2 are precisely the orthogonal complements of

the (S)2 invariant subspaces. Thus, M ⊂ H2
2 is a (S∗)2 invariant subspace if
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and only if there is an inner matrix σ such that M = (σH2
2 )⊥ = Ker σ∗. Let

σ =

[
a b
c d

]
∈M2(H∞), and put τ =

[
d −b
−c a

]
.

A simple calculation shows that if v = det σ, then στ = τσ = vI. There-
fore τ ∗σ∗ = σ∗τ ∗ = (Tv)2, implying that Ker σ∗ ⊂ Ker (Tv)2. Hence, if
M = Ker σ∗ (for σ an inner matrix) is a (S∗)2 invariant subspace of H2

2 not
contained in H(u) × H(u) for any inner function u, then σ(eiθ) must be a
partial isometry of C2 with nontrivial initial space for almost every eiθ ∈ ∂D.
Otherwise, σ(eiθ) is an isometry for a.e. eiθ ∈ ∂D, and then v = det σ 6= 0.
Since v is an inner function, then Ker σ∗ ⊂ H(v)×H(v). So, if Q is a non-
trivial S∗-commuting operator, then G(Q) = Ker σ∗ for some inner matrix
σ, where σ(eiθ) is a partial isometry with nontrivial initial space for a.e.
eiθ ∈ ∂D.

An elementary argument shows that if (α1, α2) ∈ C2 is normal, then the
complex matrix of a partial isometry with initial space spanned by (α1, α2)
has the form

ν =

[
λα1 λα2

βα1 βα2

]
,

where λ, β ∈ C and |λ|2 + |β|2 = 1. We are now ready to prove our first
result.

Theorem 1.1. The operator Q is S∗-commuting if and only if G(Q) =
{(f, g) ∈ H2

2 : Tbg = −Taf}, where
(i) a, b ∈ H∞ satisfy |a(eiθ)|2 + |b(eiθ)|2 = 1 a.e. on ∂D, and

(ii) b is an outer function.
Moreover, A = {(Tbh, −Tah) : h ∈ H2} is dense in G(Q).

Proof. The previous comments say that if Q is a S∗-commuting operator
then G(Q) = Ker σ∗, where

σ =

[
aα1 aα2

bα1 bα2

]
∈M2(H∞),(1.1)

for some a, b satisfying (i) and some normal vector (α1, α2) ∈ C2. Then

(f, g) ∈ Ker σ∗ ⇔ Taf + Tbg = 0.(1.2)

Additionally, Ker σ∗ is a graph if and only if (0, g) ∈ Ker σ∗ only when g = 0,
or equivalently, if and only if Tb is one-to-one. So, the graph condition for
Ker σ∗ is that b is an outer function. Conversely, for any matrix σ as before,
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Ker σ∗ is the graph of some closed operator Q that commutes with S∗. So,
we must show that

D(Q) = {f ∈ H2 : (f, g) ∈ Ker σ∗ for some g ∈ H2}
is dense in H2. It is clear from (1.2) that A is contained in Ker σ∗. Since
the set {Tbh : h ∈ H2} of first components of elements in A is dense in H2,
so is D(Q).

We use the symbol 〈, 〉 to denote the inner product in H2 or H2
2 . Let

(f, g) ∈ Ker σ∗ 	A. Then for every h ∈ H2,

0 = 〈(f, g), (Tbh, −Tah)〉 = 〈f, Tbh〉+ 〈g, −Tah〉
= 〈bf − ag, h〉,(1.3)

implying that bf = ag. Multiplying this equality by a and using that |a|2 +
|b|2 = 1, we obtain b(af + bg) = g ∈ H2. On the other hand, since (f, g) ∈
Ker σ∗, Taf + Tbg = 0, and consequently af + bg = F ∈ H2

0, the orthogonal
complement of H2 in L2. Thus zF ∈ H2 and b(zF ) = zg ∈ H

2

0 (here z
denotes the function z(eiθ) = eiθ). Hence Tb(zF ) = 0, and since b is outer,
F = 0. Therefore g = 0 = f and A is dense in Ker σ∗.

When Q, a and b satisfy the theorem, we say that the pair (a, b) defines
the operator Q.

2. The operators TF with F ∈ H2.

The Cauchy transform of a function f ∈ L1 = L1(∂D) is defined by the
formula

K(f)(z) =
∫ 2π

0

f(eiθ)
(1− e−iθz)

dθ

2π
(z ∈ D).

It is well known that this function is in Hp for every 0 < p < 1. Thus
K(f)(z) has nontangential finite limit for almost every eiθ ∈ ∂D (see [4],
pp. 17 and 39). Most of the time it will be convenient to think of K(f) as
its boundary function. When f ∈ L2, K(f) coincides with the projection
of f on H2, i.e., K(f) = P+(f), where P+ : L2 → H2 is the orthogonal
projection. For F ∈ H2 we define the operator (=linear transformation)
TFh = K(Fh) whenever h ∈ H2 is such that K(Fh) ∈ H2. Thus, TF is an
operator from D(TF ) = {h ∈ H2 : K(Fh) ∈ H2} into H2, and we think
of D(TF ) as the domain of TF . We need several elementary facts about the
operator TF .

Lemma 2.1. Let F ∈ H2 and h ∈ D(TF ). Then for every integer n ≥ 0,

〈TFh, einθ〉 =
∫ 2π

0

Fhe−inθ
dθ

2π
.
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Proof. The lemma is a direct consequence of the identities

〈(
Fh
)
, einθ

〉
= K̂(Fh)(n) =

1
n!

(
d

dz

)n∣∣∣∣
z=0

K
(
Fh
)

(z),

where (
d

dz

)n
K
(
Fh
)

(z) = n!
∫ 2π

0

F (eiθ)h(eiθ)e−inθ

(1− e−iθz)n+1

dθ

2π
.

Lemma 2.2. The operator TF is S∗-commuting.

Proof. Since H∞ ⊂ D(TF ) then D(TF ) is dense in H2. Using the formula
(S∗f)(z) = (f(z) − f(0))/z (f ∈ H2) with f(z) = K(Fh)(z), it is a simple
calculation to show that S∗D(TF ) ⊂ D(TF ) and that S∗ and TF commute
on D(TF ). So, we only have to prove that TF is closed.

Suppose that {hk} ⊂ D(TF ) is a sequence satisfying hk
H2−→ h and TFhk

H2−→
t. By the Cauchy-Schwarz inequality, Fhk−→Fh in L1-norm. Since einθ ∈
L∞, for n ≥ 0 we have:

〈Fh, einθ〉 = lim〈Fhk, einθ〉 = lim〈K(Fhk), einθ〉
= 〈t, einθ〉,

where the second equality holds by Lemma 2.1. Then

〈Fh− t, einθ〉 = 0 for all n ≥ 0,

and therefore Fh − t ∈ H
1

0. Since K(H
1

0) = 0 and K coincides with the
identity on H2, then 0 = K(Fh− t) = K(Fh)− t and t = TFh.

Lemma 2.3. Let F ∈ H2, ϕ ∈ H∞ and h ∈ D(TF ). Then TFTϕh = TFϕh.

Proof. As stated at the beginning of Section 1 (see [17]) Tϕh ∈ D(TF ) and
Tϕ commutes with TF .

Let P− : L2 → H
2

0 be the orthogonal projection. Then

TFϕh = K(Fϕh) = K[FTϕh+ FP−(ϕh)]

= TFTϕh+K[FP−(ϕh)],

where the last summand vanishes because FP−(ϕh) ∈ H1

0.
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Lemma 2.4. Let F = uF0 ∈ H2, where u is inner and F0 is outer (F0 6= 0).
Then h ∈ D(TF ) if and only if Tuh ∈ D(TF 0

), in which case TFh = TF 0
(Tuh).

Furthermore, Ker TF = H(u).

Proof. For h ∈ H2 we have:

K(Fh) = K[F 0(uh)] = K{F 0[P+(uh) + P−(uh)]}
= K[F 0(Tuh)] +K[F 0P−(uh)],

where the last summand vanishes regardless of h, because F 0P−(uh) ∈ H1

0.
This proves the first part of the lemma. So, to prove that Ker TF = H(u) we
only have to show that TF 0

is one-to-one. Let k ∈ Ker TF 0
, then for every

polynomial p:
0 = 〈TF 0

k, p〉 = 〈F 0k, p〉 = 〈k, F0p〉,
where the second equality is from Lemma 2.1. Since F0 is outer, Beurling’s
theorem asserts that {pF0 : p polynomial} is dense in H2, and then k =
0.

Now we study conditions for a S∗-commuting operator Q to be of the form
TF with F ∈ H2. Although our first result lies near the surface, it will be
fundamental in the sequel.

Proposition 2.5. Let Q be a S∗-commuting operator defined by the pair
of functions (a, b). Then there is F ∈ H2 such that D(Q) ⊂ D(TF ) and
Q = TF/D(Q) if and only if 1/b ∈ H2. In that case, F = −a/b.
Proof. Since for almost every point in ∂D,

|a|2
|b|2 =

1− |b|2
|b|2 =

1
|b|2 − 1,

then a/b ∈ L2 if and only if 1/b ∈ L2. Moreover, since b is an outer func-
tion (Theorem 1.1), it is not difficult to see that the above conditions are
equivalent to a/b ∈ H2 and 1/b ∈ H2, respectively. So, actually the four
conditions are equivalent.

By Theorem 1.1, A = {(Tbh, −Tah) : h ∈ H2} is dense in G(Q). There-
fore the set of pairs (Tbh, −Tah) with h ∈ H∞ is also dense in G(Q). Con-
sequently, F ∈ H2 satisfies D(Q) ⊂ D(TF ) and Q = TF/D(Q) if and only
if

TFTbh+ Tah = 0 for all h ∈ H∞.(2.1)

Since by Lemma 2.3, TFTbh + Tah = TFb+ah for every h ∈ H∞, (2.1) is
equivalent to the inclusion of H∞ in Ker TFb+a. By Lemma 2.4 this happens
only when Fb+ a = 0, that is, when F = −a/b ∈ H2.
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It is not difficult at this point to show the existence of S∗-commuting
operators others than the Toeplitz-like operators TF for any F ∈ H2. Let
ν : ∂D → [0, 1] be a function such that log ν and log(1 − ν) belong to L1

but ν−1 6∈ L1. The first two conditions assure the existence of functions
a, b ∈ H∞, b outer, so that |b|2 = ν and |a|2 = 1 − ν almost everywhere
on ∂D. The last condition on ν says that 1/b is not in L2. So, if Q is the
S∗-commuting operator defined by (a, b), Proposition 2.5 says that Q has
not the form TF , with F ∈ H2.

Theorem 2.6. Let Q be a S∗-commuting operator. Then the following
conditions are equivalent.
(i) There is F ∈ H2 such that D(Q) ⊂ D(TF ) and TF/D(Q) = Q.
(ii) There is F ∈ H2 such that D(Q) ⊃ D(TF ) and Q/D(T

F
) = TF .

(iii) There is F ∈ H2 such that D(Q) = D(TF ) and Q = TF .
The function F in (i), (ii) and (iii) is the same.

Proof. Clearly (iii) implies (i) and (ii). Suppose that (i) holds. Suppose
that Q and TF are defined by the two pairs of functions (a, b) and (aF , bF ),
respectively. By Proposition 2.5, 1/b, 1/bF ∈ H2 and F = −a/b = −aF/bF .
Then, on ∂D,

|F |2 =
1− |b|2
|b|2 =

1− |bF |2
|bF |2 ,

implying that |b| = |bF | a.e. on ∂D. Since b and bF are outer functions,
b = λbF for some λ ∈ C, |λ| = 1. Hence, a/λbF = a/b = aF/bF and then
a = λaF . Since clearly the pair (aF , bF ) defines the same operator as the
pair (λaF , λbF ) = (a, b), (iii) follows.

Now suppose that (ii) holds and let (a, b) be a pair that defines Q. By
Theorem 1.1 the set B = {(Tbh, −Tah) : h ∈ H∞} is dense in G(Q). On the
other hand, since b and h are in H∞, then Tbh ∈ D(TF ). Thus B is contained
in G(TF ) and therefore G(Q) ⊂ G(TF ), which is precisely (i).

It is worth noticing that Theorem 2.6 simply says that if F ∈ H2, then
no S∗-commuting operator is a proper extension or restriction of TF .

3. Closed operators on H(u).

Let u be a nonconstant inner function. As in Section 1, Lax’s theorem will
be the main tool to characterize the graph of S∗u-commuting operators.

First notice that if σ ∈M2(H∞) is an inner matrix so that Ker σ∗ is the
graph of a S∗u-commuting operator, then σ(eiθ) must be an isometry of C2

for almost every eiθ ∈ ∂D. Otherwise, we are in the situation described by
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Theorem 1.1. Elementary calculations show that if τ ∈M2(C) is the matrix
of an isometry of C2, then

τ =

[
α1 β2

β3 α4

]
, where(3.1)

(i) |α1|2 + |β2|2 = 1,
(ii) |α1| = |α4| and |β2| = |β3|, and

(iii) α1β3 + β2α4 = 0.
Hence, if σ ∈M2(H∞) and Ker σ∗ is the graph of a S∗u-commuting operator,
then the boundary values of σ satisfy the above conditions for almost every
point in ∂D.

We need some general facts about the spaces H(u) (u inner). The function
h ∈ H2 is in H(u) if and only if uh ∈ H

2

0, or equivalently, if and only if
h1 = zuh ∈ H2 (as before z denotes the function z(eiθ) = eiθ). Then, uh1 =
zh ∈ H2

0, and consequently h1 ∈ H(u). This means that the transformation
Cuh = zuh is a conjugation on H(u).

Let u = wv, where w and v are inner functions. Then we have the
decomposition H(u) = vH(w) ⊕ H(v), where the sum is orthogonal. Take
h ∈ H(v), then Cuh = zuh = w(zvh) = wCv(h), and since Cv : H(v)→ H(v)
is onto, we obtain Cu(H(v)) = wH(v). Since Cu is a conjugation, also
Cu(wH(v)) = H(v).

If we consider the inner functions normalized by the condition that the
first nontrivial Taylor coefficient at z = 0 is positive, then the maximum
common divisor between two inner functions is well defined. Therefore, for
f, g ∈ H∞ such that f 6= 0 6= g we denote by (f : g) the maximum common
divisor between the inner factors of f and g. Also, we say that f and g are
coprime when (f : g) = 1.

Theorem 3.1. Let u be a nonconstant inner function and Q be a nontrivial
S∗u-commuting operator. Then G(Q) = Ker σ∗, where

σ =

[
wa −vb
wb va

]
,(3.2)

(1) w, v are inner functions and u = wv,

(2) a, b ∈ H(zv) and |a|2 + |b|2 = 1 a.e. on ∂D, and
(3) (a : b) = (wb : va) = 1.
Reciprocally, if σ is a matrix as before, then Ker σ∗ is the graph of a non-
trivial S∗u-commuting operator.
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Moreover, A = {(Tbh, −Tah) : h ∈ H(v)} + {(ak, bk) : k ∈ H(w)} is
dense in Ker σ∗.

Proof. Let σ ∈M2(H∞) be an inner matrix such that for some nonconstant
inner function u, Ker σ∗ is the graph of a S∗u-commuting operator. Then
σ(eiθ) has the form (3.1) for a.e. eiθ ∈ ∂D, where its entries satisfy (i), (ii)
and (iii). Hence

σ =

[
wa1 b2

wb3 a4

]
with w, a1, a4, b2, b3 ∈ H∞,

where almost everywhere on ∂D :
(i) |a1|2 + |b2|2 = 1,
(ii) |a1| = |a4| and |b2| = |b3|,
(iii) a1b3 + b2a4 = 0, and
(iv) w is an inner function and (a1 : b3) = 1.
Actually, condition (iv) says that w is the maximum common divisor between
the inner factors of the first and third entries of σ. We distinguish w when
writing the matrix σ only because it will simplify further notation. Observe
that condition (iv) also assumes that a1 6= 0 6= b3. Otherwise, it is easy to see
that Ker σ∗ must be the graph of the trivial operator on H(u). Multiplying
(iii) by b3a4 we obtain

a1a4|b3|2 + b2b3|a4|2 = 0,

and since |b3|2 + |a4|2 = 1, then

a1a4 − b2b3 =
−b2b3

|b3|2 =
a1a4

|a4|2 = v inner.

Therefore, b2 = −vb3b3/b3 = −vb3 and a4 = va1a1/a1 = va1. So, vb3 and va1

belong to H∞ ⊂ H2, which means that (zv)b3, (zv)a1 ∈ H2

0, or equivalently,
b3, a1 ∈ H(zv). Thus, if we put a = a1 and b = b3, then

σ =

[
wa −vb
wb va

]
,

where v is inner, a, b ∈ H(zv), |a|2 + |b|2 = 1, w is inner and (a : b) = 1.
Hence, Ker σ∗ is formed by the pairs (f, g) ∈ H2

2 such that

Twaf + Twbg = 0(3.3)
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and

Tvbf − Tvag = 0.(3.4)

Since Ker σ∗ is a graph, then (0, g) ∈ Ker σ∗ only when g = 0. Looking at
this condition in terms of the equalities (3.3) and (3.4), we see that Ker σ∗ is
a graph if and only if whenever g ∈ H2 satisfies Twbg = 0 = Tvag then g = 0,
or equivalently, Ker Twb ∩Ker Tva = {0}. Since Ker Twb = H(u1), where u1

is the inner factor of wb, and Ker Tva = H(u2), where u2 is the inner factor
of va, then H(u1) ∩H(u2) = 0, meaning that (wb : va) = (u1 : u2) = 1.

Since detσ = wv, the remarks of Section 1 say that Ker σ∗ ⊂ H(wv) ×
H(wv); therefore Ker σ∗ is formed by the pairs (f, g) ∈ H(wv)×H(wv) that
satisfy equalities (3.3) and (3.4). We claim that the linear manifold

L = {f ∈ H(wv) : there is g ∈ H(wv) with (f, g) ∈ Ker σ∗}

is dense in H(wv). Let h ∈ H(wv), then (f, g) = (Twbh, −Twah) clearly
satisfies (3.3). Besides

Tvbf − Tvag = TvbTwbh+ TvaTwah

= Twv|b|2h+ Twv|a|2h

= P+[wv(|b|2 + |a|2)h]

= Twvh = 0.

Consequently (f, g) also satisfies (3.4), and then (f, g) ∈ Ker σ∗. In a
completely analogous way, (Tvah, Tvbh) ∈ Ker σ∗ for h ∈ H(wv). So, the
linear manifold

{(Twbh+ Tvak, −Twah+ Tvbk) : h, k ∈ H(wv)}(3.5)

is contained in Ker σ∗. Then

TwbH(wv) + TvaH(wv) ⊂ L.(3.6)

Write wb = u1b1 and va = u2a2, where u1 = (wb : wv) and u2 = (va : wv).
The graph condition for Ker σ∗ (i.e.: (wb : va) = 1) implies that (u1 : u2) =
1. Since u1 and u2 divide wv, there are inner functions v1 and v2 such that
u1v1 = u2v2 = wv. Henceforth, by the comments preceding the theorem,

TwbH(wv) = Tb1Tu1 [u1H(v1)⊕H(u1)] = Tb1H(v1).

Besides, since u1 = (wb : wv), then (b1 : v1) = 1. It is well known that if
b1 and v1 are coprime, then Tb1H(v1) is dense in H(v1) (an easy argument
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involving the F. and M. Riesz theorem shows that the orthogonal comple-
ment of Tb1H(v1) in H(v1) is trivial). Analogously, TvaH(wv) = Ta2H(v2) is
dense in H(v2). So, by (3.6), L∩ (H(v1) +H(v2)) is dense in H(v1) +H(v2),
and consequently our claim will follow if H(v1) +H(v2) is dense in H(wv).
In what follows, C denotes the conjugation of H(wv). Also, the orthogonal
complements are taken with respect to H(wv). We have

(H(v1) +H(v2))⊥ = H(v1)⊥ ∩H(v2)⊥ = v1H(u1) ∩ v2H(u2),

and

C[v1H(u1) ∩ v2H(u2)] = C[v1H(u1)] ∩ C[v2H(u2)] = H(u1) ∩H(u2).

Thus (H(v1) + H(v2))⊥ = C(H(u1) ∩ H(u2)), and since (u1 : u2) = 1 then
H(u1) ∩H(u2) = 0.

We have proved that if σ ∈ M2(H∞) satisfies the conditions of the the-
orem, then Ker σ∗ is the graph of some closed operator Q that commutes
with S∗ (because σ is an inner matrix), and such that D(Q) = L ⊂ H(wv)
is dense. That is, Q is S∗u-commuting for u = wv.

Summing up, if Q is a nontrivial S∗u-commuting operator, then by Lax’s
theorem G(Q) = Ker σ∗ for some inner matrix σ ∈M2(H∞). Moreover, we
have shown that σ must satisfy conditions (2) and (3) of the theorem, and
since D(Q) = L is dense in both H(u) and H(wv) (in H(u) by hypothesis),
then u = wv.

Reciprocally, if σ ∈ M2(H∞) is a matrix as before, the above reasoning
also shows that Ker σ∗ is the graph of some S∗u-commuting operator.

To finish our proof we must show that A ⊂ Ker σ∗ is dense. Let B =
{(Twbh, −Twah) : h ∈ H(wv)}. We already saw that B is contained in
Ker σ∗. The decomposition H(wv) = wH(v) +H(w) immediately leads to
B = {(Tbh, −Tah) : h ∈ H(v)}. The theorem will follow if we show that

Ker σ∗ 	 B = {(ak, bk) : k ∈ H(w)}.

Suppose that (f, g) ∈ Ker σ∗ is orthogonal to B. Then for every h ∈ H(v),

0 = 〈(f, g), (Tbh, −Tah)〉 = 〈f, Tbh〉 − 〈g, Tah〉
= 〈Tbf − Tag, h〉,(3.7)

Thus, bf − ag ∈ H(v)⊥ = vH2, or equivalently,

v(bf − ag) ∈ H2.(3.8)
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Since (f, g) ∈ Ker σ∗, (3.4) and (3.8) imply that 0 = Tvbf − Tvag = v(bf −
ag). On the other hand, (3.3) says that waf + wbg ∈ H2

0. Then

bH
2

0 3 b(waf + wbg) = wabf + w|b|2g
= w(|a|2g + |b|2g) = wg.

Thus, g = bwG with G ∈ H2
0 . So,

0 = bf − ag = bf − abwG = b(f − awG),

which implies that f = awG. Besides,

TzbwG = P+(zbwG) = P+(zg) = 0,

and consequently G ∈ H(wzub), where ub is the inner factor of b. By the
same reason G ∈ H(wzua), where ua is the inner factor of a. Since (ua :
ub) = 1,

G ∈ H(wzub) ∩H(wzua) = H(wz),

and since also G ∈ H2
0 , then G ∈ zH(w). Thus G = zF with F ∈ H(w) and

(f, g) = (awzF , bwzF ).
The map F 7→ wzF is the conjugation Cw of H(w), so wzF = k ∈ H(w),

and we have that every (f, g) ∈ Ker σ∗ 	 B has the form (f, g) = (ak, bk)
with k ∈ H(w), as claimed.

Now we can reverse this process. Take k ∈ H(w) and (f, g) = (ak, bk) =
(Tvavk, Tvbvk). Since vk ∈ vH(w) ⊂ H(wv), the functions f and g belong
to H(wv). It is immediate to verify that (f, g) satisfies (3.3) and (3.4), so
(f, g) ∈ Ker σ∗. Furthermore, bf −ag = 0 and then (3.7) implies that (f, g)
is orthogonal to B.

Definition. Let u be an inner function andQ be a nontrivial S∗u-commuting
operator. If σ ∈ M2(H∞) is a matrix as in Theorem 3.1 such that G(Q) =
Ker σ∗ we say that Q is defined by the 4-tuple (a, b, w, v).

4. The operators TF |D(TF ) ∩H(u).

Lemma 4.1. Let u be an inner function and Q be a S∗u-commuting operator
defined by (a, b, w, v). Then, Q = TF/D(Q) (with F ∈ H2) if and only if
(I) Fb+ a ∈ vH2 and

(II) Fa− b ∈ wH2.

Proof. It is clear from Theorem 3.1 that

A∞ = {(Tbh, −Tah) : h ∈ H(v) ∩H∞}+ {(ak, bk) : k ∈ H(w) ∩H∞}
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is dense in G(Q). Since TF (F ∈ H2) is closed, Q = TF/D(Q) if and only if
A∞ ⊂ G(TF ), that is, if and only if
(i) TFTbh = −Tah for all h ∈ H(v) ∩H∞ and
(ii) TFak = bk for all k ∈ H(w) ∩H∞.
By Lemma 2.3, TFTb = TFb on H∞. So, (i) is equivalent to TFb+ah = 0
for all h ∈ H(v) ∩ H∞, which according to Lemma 2.4, is equivalent to
Fb+ a ∈ vH2. That is, (i) and (I) are equivalent.

Condition (ii) can be rewritten as (Fa− b)k ∈ H2

0 for all k ∈ H(w)∩H∞.
Since the inner functions are normalized, then w is constant only when
w ≡ 1. We consider two cases. First, suppose that w 6≡ 1 and take k = S∗w ∈
H(w). Thus (Fa−b)(w−w(0)) ∈ H2

. Therefore, (Fa−b)(1−w(0)w) ∈ wH2,
and then Fa− b ∈ w(1−w(0)w)−1H

2 ⊂ wH2
. Henceforth, (ii) implies (II).

If w ≡ 1, H(w) = {0} and condition (ii) is trivial. We will see that in this
case, (II) is a consequence of (i). Since (i) implies (I),

Fb+ a = vR, with R ∈ H2.(4.1)

Multiplying by a we obtain aFb + 1 − bb = (av)R. Then (aF − b)b =
(av)R − 1 ∈ H2. Multiplying (4.1) by b we have F (1 − aa) + ba = (bv)R,
from which a(aF − b) = −(bv)R + F ∈ H2. Therefore, azP+(aF − b) and
bzP+(aF − b) belong to H

2

0. Henceforth,

P+(aF − b) ∈ Ker Taz ∩Ker Tbz = H(zua) ∩H(zub),

where ua and ub are the inner factors of a and b respectively. Since by
Theorem 3.1 (a : b) = 1, the last intersection is H(z) = C. So P+(aF − b) ∈
C, meaning that aF − b ∈ H

2
, which proves (II) with w ≡ 1. Since (II)

implies (ii) trivially, then (i) and (ii) are equivalent to (I) and (II) in any
case, and the lemma follows.

Theorem 4.2. Let u be an inner function and Q be a S∗u-commuting
operator defined by (a, b, w, v). Then there is F ∈ Hp (p ≥ 2) such that
Q = TF/D(Q) if and only if there are G, J ∈ Hp such that

(av)G+ (wb)J = 1.(4.2)

If (4.2) holds we can take F = −awJ + (bv)G.

Proof. If Q = TF |D(Q), with F ∈ Hp (for p ≥ 2), then F ∈ H2 and Lemma
4.1 implies that A = bF+a ∈ vH2∩Lp = vHp and B = Fa−b ∈ wH2∩Lp =
wHp. Therefore

aA− bB = abF + |a|2 − bFa+ |b|2 = 1 ∈ (av)Hp + (bw)Hp,
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as claimed. Conversely, suppose that (4.2) holds. Then a(vG − a) = 1 −
wbJ−|a|2 = b(b−wJ), and multiplying by a, (1−|b|2)(vG−a) = ab(b−wJ).
Consequently

(vG− a) = ab(b− wJ) + bb(vG− a)(4.3)

= a|b|2 − abwJ + b(bv)G− a|b|2
= b[−awJ + (bv)G].

So, taking F = −awJ + (bv)G we see that F ∈ Hp and satisfies condition
(I) of Lemma 4.1.

Equality (4.3) allows us to rewrite Condition (4.2) in terms of F , as a(bF+
a) +wbJ = 1. Then baF + bwJ = 1− |a|2 = bb, implying that aF +wJ = b.
Consequently aF − b = −wJ ∈ wH2, which is condition (II) of Lemma 4.1.
So, Q = TF/D(Q) by Lemma 4.1.

Clearly, Theorem 4.2 is related to the problem of characterizing the pairs
of functions h, k ∈ H∞ such that there exist G, J ∈ Hp (for p ≥ 2) so that

hG+ kJ = 1.(4.4)

For p = ∞ the famous corona theorem of L. Carleson [2] asserts that (4.4)
holds if and only if there is δ > 0 such that |h(z)|+ |k(z)| > δ for all z ∈ D.
A pair (h, k) that satisfies this condition is called a corona pair.

If Q is a bounded S∗u-commuting operator defined by (a, b, w, v), then we
know from Sarason’s theorem that Q has the form TF , with F ∈ H∞. Thus,
by Theorem 4.2 and the corona theorem, the boundedness of Q is equivalent
to the fact that (av, wb) is a corona pair. On the other hand, if a, b ∈ H∞
are such that |a|2 + |b|2 = 1, then (a, b) can fail to be a corona pair even if
a and b are outer functions (see [15]).

To the best of the author’s knowledge, the problem for 2 ≤ p < ∞ is
still open, although many information have been obtained in recent years
(see [10]). In order to show the existence of an inner function u and a S∗u-
commuting operator Q not having the form TF/D(Q) for any F ∈ H2, we
need some elementary facts about the above problem for p = 2. For α ∈ ∂D,
the cone with vertex α is

Λ(α) = {z ∈ D : |z − α| < 2(1− |z|)}.

The nontangential maximal function of a function R defined on D is

R∗(α) = sup
z∈Λ(α)

|R(z)| (α ∈ ∂D).
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It is well known that an analytic function R on D is in Hp (0 < p < ∞) if
and only if R∗ is in Lp of ∂D (see [6]). If h, k ∈ H∞ satisfy Equation (4.4)
for some G, J ∈ H2, then by the Cauchy-Schwarz inequality,

R =
1

|h|+ |k| ≤
1

(|h|2 + |k|2)1/2
≤ (|G|2 + |J |2)1/2 ≤ |G|+ |J |.

So,

R∗ =
[

1
|h|+ |k|

]∗
≤ G∗ + J∗ ∈ L2.(4.5)

Thus, R∗ ∈ L2 is a necessary condition for h, k to satisfy (4.4) with p = 2.
In [10] Lin proved that if R∗ ∈ L4+ε for some ε > 0, then h, k satisfy (4.4).

Proposition 4.3. There is a Blaschke product u and a S∗u-commuting
operator Q not of the form TF/D(Q), for any F ∈ H2.

Proof. Let v and w be the Blaschke products whose zeros are zn = 1− 2−n

and ωn = 1 − 2−n + 4−n for n = 2, 3, . . . respectively, where as always
v(0), w(0) > 0. For u = wv let Q be the S∗u-commuting operator defined
by (a, b, w, v) = (1/2,

√
3/2, w, v). Two Blaschke products with disjoint

zero sequences are coprime, and since zn < ωn < zn+1, then (wb : va) =
(w
√

3/2 : v/2) = 1. The other conditions of Theorem 3.1 are trivially
fulfilled. Put R(z) = (|(√3/2)w(z)| + |(1/2)v(z)|)−1 for z ∈ D. According
to the comments preceding the proposition, if R∗ is not in L2 then there are
no functions G, J ∈ H2 such that (1/2)vG + (

√
3/2)wJ = 1. In this case,

Theorem 4.2 implies that Q is not of the form TF/D(Q), for any F ∈ H2. A
simple calculation shows that

|w(zn)| =
∏
j≥2

∣∣∣∣ ωj − zn1− znωj

∣∣∣∣ < ∣∣∣∣ ωn − zn1− znωn

∣∣∣∣
=

1
2(2n − 1) + 2−n

<
1
2n

for all n ≥ 2. Thus,

R(zn) =
2√

3|w(zn)| >
2n+1

√
3
> 2n.(4.6)

For n ≥ 2 let αn = (1 − 4−n) + i2−n(2 − 4−n)1/2 ∈ ∂D. Then zn ∈ Λ(αn),
because

|zn − αn|2 = (1− 2−n − 1 + 4−n)2 + 2−2n(2− 4−n)

= 4−n(3− 2.2−n)

< 4.4−n = [2(1− |zn|)]2.
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This means that αn belongs to the ball centered at zn and radius 2(1−|zn|).
Since the point 1 ∈ ∂D is also contained in this ball, it is geometrically clear
that every point α in the arc-interval (1, αn) ⊂ ∂D is also contained in this
ball, and therefore zn ∈ Λ(α). In particular, if In ⊂ ∂D is the open arc-
interval (αn+1, αn), then zn ∈ Λ(α) for every α ∈ In (for all n ≥ 2). Hence,
if α ∈ In:

R∗(α) = sup
z∈Λ(α)

1∣∣∣√3
2
w(z)

∣∣∣+ ∣∣ 1
2
v(z)

∣∣
≥ 1∣∣∣√3

2
w(zn)

∣∣∣+ ∣∣ 1
2
v(zn)

∣∣ = R(zn) > 2n,(4.7)

by (4.6). Let us denote by m the normalized Lebesgue measure on ∂D. If
In = (αn+1, αn), then

2πm(In) ≥ |αn+1 − αn| ≥ Re αn+1 − Re αn
= 4−n − 4−n−1 = (3/4)4−n.(4.8)

Therefore, m(In) ≥ C4−n for some constant C > 0 independent of n. Finally,
Inequalities (4.7) and (4.8) yield∫

∂D
|R∗|2 dm ≥

∑
n≥2

∫
In

|R∗|2 dm

≥
∑
n≥2

4nm(In) ≥
∑
n≥2

C =∞.

5. Domain conditions for S∗u-commuting operators.

In the last section we characterized the S∗u-commuting operators Q of the
form Q = TF |D(Q), for some F ∈ H2, in terms of the 4-tuple of functions
defining Q. Since the operator Q is not always given by its defining functions,
sometimes the criterion of Theorem 4.2 is not very practical. Even more, if
Q is given by its defining 4-tuple ξ = (a, b, w, v), the test on ξ provided by
Theorem 4.2 is not always easy to perform.

In this section we study domain conditions for Q to be of the desired form.
The fundamental tool is a strong notion of cyclicity.

Let H be a Hilbert space and V : H → H be a bounded operator. An
element x ∈ H is called a cyclic vector for V if the span of x, V x, V 2x, . . . is
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dense in H. The cyclic vectors for S∗ have been characterized by Douglas,
Shapiro and Shields in terms of pseudocontinuation across ∂D [3], where
many other characterizations were obtained as byproduct of this one. The
noncyclic vectors for S∗ are the functions that belong to H(u) for some inner
function u.

It is well known that S∗u is a cyclic vector for the operator S∗u. We intro-
duce now a stronger notion of cyclicity.

Definition. The function h ∈ H(u) is an “exact cyclic” vector for S∗u if for
every k ∈ H(u) there is F ∈ H2 such that TFh = k.

Let h ∈ H(u) be an exact cyclic vector for S∗u and let V ⊂ H(u) be the
subspace generated by h, S∗h, (S∗)2h, . . . By Beurling’s theorem, V = H(v)
for some inner function v that divides u. Thus, whenever TFh is defined
(i.e.: K(Fh) ∈ H2), it belongs to H(v). Since h is an exact cyclic vector for
S∗u then H(v) = H(u), and consequently h is a cyclic vector for S∗u.

To show the existence of exact cyclic vectors for S∗u, we simply observe
that S∗u is one of them. Let k ∈ H(u), then F = Cuk = zuk ∈ H2 and

TF (S∗u) = P+[ukz(S∗u)] = P+(uku)− P+(uku(0))

= P+(k)− u(0)P+(uk) = k.

Let u be an inner function. In the next proposition we simply say cyclic or
exact cyclic vector without mentioning the operator S∗u.

Proposition 5.1. Let u be an inner function and ϕ ∈ H∞.
(1) Let h ∈ H(u) be cyclic. Then Tϕh is cyclic if and only if (ϕ : u) = 1.
(2) Let h ∈ H(u) ∩ H∞ be exact cyclic. Then Tϕh is exact cyclic if and

only if (ϕ, u) is a corona pair.

Proof. (1) Since h is a cyclic vector and (S∗u)nTϕh = Tϕ(S∗u)nh for n ≥ 0,
then Tϕh is a cyclic vector if and only if the range of Tϕ|H(u) is dense in H(u).
As pointed out in the proof of Theorem 3.1, the last condition is known to
be equivalent to (ϕ : u) = 1.

(2) Suppose that there are f, g ∈ H∞ so that fϕ + gu = 1, and let
t ∈ H(u). Since h is an exact cyclic vector, there is F ∈ H2 such that
TFh = t. Then by Lemma 2.3

TFf (Tϕh) = TF (Tfϕh) = TF (T1−guh) = TFh = t,

so Tϕh is an exact cyclic vector.
On the other hand, if Tϕh is exact cyclic, for every t ∈ H(u) there is

F ∈ H2 such that t = TFTϕh = TϕTFh. The second equality holds because
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h ∈ H∞ ⊂ D(TF ). Thus the range of Tϕ|H(u) is H(u), so by part (1) of
the proposition, (ϕ : u) = 1. Then Tϕ|H(u) is one-to-one. That is, Tϕ|H(u)

is invertible. The inverse operator A necessarily commutes with S∗u. So, by
Sarason’s theorem A = Tf |H(u) for some f ∈ H∞. Therefore Tϕf−1|H(u) = 0,
and then ϕf − 1 ∈ uH2 ∩H∞ = uH∞, as claimed.

As a consequence of Proposition 5.1, we obtain that if u is an inner func-
tion other than a finite Blaschke product, then there are cyclic vectors for
S∗u that are not exact cyclic vectors. Just pick ϕ ∈ H∞ so that (ϕ : u) = 1
but (ϕ, u) is not a corona pair, and take TϕS∗u.

Obviously the notion of exact cyclic vector also makes sense for S∗. How-
ever, it is easy to see that S∗ has not exact cyclic vectors at all. Let h ∈ H2

such that TFh = 1 for some F ∈ H2. Then TzFh = S∗TFh = S∗1 = 0, so
h ∈ H(v), where v is the inner factor of zF . Therefore h cannot be an exact
cyclic vector for S∗. Roughly speaking, H2 is too big to admit exact cyclic
vectors for S∗.

Let u be an inner function and F ∈ H2. Put Du(TF ) = D(TF ) ∩ H(u).
Then TF |Du(T

F
) is a S∗u-commuting operator. We proved in Theorem 2.6 that

TF (F ∈ H2) cannot be properly extended or restricted to a S∗-commuting
operator. The same holds for TF |Du(T

F
).

Theorem 5.2. Let u be an inner function and F ∈ H2.
(1) If D ⊂ Du(TF ) is a dense linear submanifold of H(u) such that TF |D

is S∗u-commuting, then D = Du(TF ).
(2) If Q is a S∗u-commuting operator such that D(Q) ⊃ Du(TF ) and

Q|Du(T
F

) = TF |Du(T
F

), then D(Q) = Du(TF ).

Proof. Let us write Du = Du(TF ).
(1) We claim that

K = {(TϕS∗u, TFTϕS∗u) : ϕ ∈ H∞}
is dense in G(TF |Du). Let (a, b, w, v) be a 4-tuple of H∞ functions defining
TF |Du . By Theorem 3.1 and the decomposition H(u) = wH(v) +H(w), the
pairs

(Twbh+ Tvak, −Twah+ Tvbk), h, k ∈ H(u)

form a dense subset of G(TF |Du). Moreover, we can take h and k in any dense
subset of H(u). In particular, we can take h = TpS

∗u and k = TqS
∗u, where

p and q are polynomials (because S∗u is a cyclic vector for S∗u). Henceforth,
the pairs

([TwbTp + TvaTq]S∗u, [−TwaTp + TvbTq]S∗u)

= (Twbp+vaqS
∗u, T−wap+vbqS∗u),
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with p and q polynomials, are dense in G(TF |Du). Taking ϕ = wbp+ vaq ∈
H∞, necessarily TFTϕS

∗u = T−wap+vbqS∗u, and the claim follows.
Now let (a, b, w, v) be a 4-tuple of functions in H∞ that defines TF |D.

By Theorem 4.2 there exist G, J ∈ H2 so that (va)G+ (wb)J = 1. Since for
l ∈ H(u) ∩H∞ the functions h = TJ l and k = TGl belong to H(u), then by
Theorem 3.1 the following pairs belong to G(TF |D):

(Twb(TJ l) + Tva(TGl), −Twa(TJ l) + Tvb(TGl))

= (l, [−TwaTJ + TvbTG]l) = (l, TF l).

Consequently, for every l ∈ H(u) ∩H∞ and every ϕ ∈ H∞:

(Tϕl, TϕTF l) = (Tϕl, TFTϕl) ∈ G(TF |D).

This means that K ⊂ G(TF |D), and since K is dense in G(TF |Du) and
G(TF |D) ⊂ G(TF |Du) is closed, both graphs coincide, implying that D = Du.
(2) The argument is similar. Let (a, b, w, v) be a 4-tuple that defines Q.
Then

{(Twbh+ Tvak, −Twah+ Tvbk) : h, k ∈ H(u) ∩H∞}
is dense in G(Q). Since for h, k ∈ H(u) ∩H∞, Twbh + Tvak is contained in
Du (because wb, va ∈ H∞) and Q coincides with TF on Du, it is immediate
that G(TF |Du) is dense in G(Q). Therefore they coincide.

Theorem 5.2 can be rephrased by saying that if u is an inner function,
and Q is a S∗u-commuting operator, then no restriction or extension of Q has
the form TF |Du(T

F
) for F ∈ H2 unless Q = TF |Du(T

F
).

Theorem 5.3. Let u be an inner function and Q be a S∗u-commuting
operator. Then the following conditions are equivalent.
(1) There is F ∈ H2 such that Q = TF |Du(T

F
).

(2) D(Q) ⊃ H(u) ∩H∞.
(3) D(Q) contains some exact cyclic vector for S∗u.

Proof. Since Du(TF ) ⊃ H(u) ∩H∞ then (1) ⇒ (2), and since S∗u ∈ H(u) ∩
H∞ is exact cyclic for S∗u, then (2) ⇒ (3).

(3) ⇒ (1). Let h ∈ D(Q) be an exact cyclic vector for S∗u. Then there
exists F ∈ H2 so that TFh = Qh. Therefore for p polynomial:

(Tph, TFTph) = (Tph, QTph) ∈ G(Q).(5.1)

Since h is cyclic for S∗u, the set {Tph : p polynomial} is dense in H(u).
Hence, the closure of

F = {(Tph, TFTph) : p polynomial},
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is contained in G(TF |Du) (Du = Du(TF )), and it is the graph of some S∗u-
commuting operator R. So, R = TF |Du by Theorem 5.2, and then (5.1)
implies that Q is a S∗u-commuting extension of TF |Du . Thus, Q = TF |Du by
Theorem 5.2.

As a corollary of Theorem 5.3 we obtain a short proof of Sarason’s theo-
rem. For σ ∈ L2 the Hankel operator with symbol σ is the densely defined
operator on H2 with codomain H

2

0, given by Hσ(f) = (I−K)(σf), whenever
this function is in H

2

0 (K is the Cauchy transform and I is the identity). If
for instance f is in H∞, then Hσ(f) = P−(σf). A famous theorem of Nehari
[12] asserts that Hσ is bounded if and only if there is G ∈ H2 such that
σ − G = ψ ∈ L∞, in which case ψ can be choosen so that ‖Hσ‖ = ‖ψ‖∞
(actually, Hσ = Hψ).

Corollary 5.4 (Sarason). Let u be an inner function and Q : H(u) →
H(u) be a bounded operator that commutes with S∗u. Then there is ϕ ∈ H∞
such that Q = Tϕ|H(u) and ‖ϕ‖∞ = ‖Q‖.
Proof. By Theorem 5.3 there is F ∈ H2 such that Q = TF |Du , where Du =
Du(TF ) = D(Q) = H(u). Consider the conjugation C (= Cu) of H(u), and
put z = eiθ. If g ∈ H(u) ∩ H∞, we write Fg =

∑
−∞<n<∞ cnz

n for the
Fourier series of Fg. The next string of equalities is straightforward

zTF (g) = zP+(Fg) =
∑
n≥0

cnz
n+1

= P−(zFg) = HuF (uzg) = HuF (Cg).

So, for any f ∈ H(u) ∩H∞,

HuF (f) = zTF (Cf) = zQ(Cf).(5.2)

Since C is a conjugation and Q is bounded, (5.2) implies that HuF |H(u) is
bounded, with norm ‖HuF |H(u)‖ = ‖Q‖. Since H2 decomposes into the
orthogonal sum H2 = H(u)⊕ uH2, and HuF |uH2 = 0, then HuF is bounded
and ‖HuF‖ = ‖HuF |H(u)‖. By Nehari’s theorem there are G ∈ H2 and
ψ ∈ L∞ such that uF − G = ψ, where ‖ψ‖∞ = ‖HuF‖ = ‖Q‖. Therefore
ϕ = uψ = F − uG ∈ L∞ ∩H2 = H∞, ‖ϕ‖∞ = ‖Q‖, and clearly Tϕ|H(u) =
TF |H(u) = Q.

6. S∗-commuting operators and the Smirnov class.

This final section is essentially devoted to prove that if Q is a S∗-commuting
operator whose domain contains H∞, then there is F ∈ H2 such that
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Q = TF . The analogous result for S∗u-commuting operators was proved
in Theorem 5.3. It is not possible to imitate the proof of Theorem 5.3 here,
because of the lack of exact cyclic vectors for S∗. We will take a detour
through the spaces H(u). First we establish some general background about
analytic functions. The books of Duren [4] and Garnett [6] are excellent
sources for this material.

Let us write |I| for the normalized Lebesgue measure of an interval I ⊂ ∂D.
If |I| < 1, put

Γ(I) = {z ∈ D : |z| ≥ 1− |I| and z/|z| ∈ I}.
For completeness reasons we take Γ(I) = D if |I| = 1. A positive Borel finite
measure µ on D is called a Carleson measure if µ(Γ(I)) ≤ C|I| for every
interval I ⊂ ∂D, where C denotes a generic constant, not necessarily the
same in each occurrence. It is well known that µ is a Carleson measure if
and only if given 1 ≤ p <∞,∫

D
|f |p dµ ≤ C‖f‖pp for every f ∈ Hp,

where C only depends on p. We say that a sequence {zn} ⊂ D is of type
C if µ =

∑
(1 − |zn|)δzn is a Carleson measure, where δz is the probability

measure with mass at z. Therefore {zn} ⊂ D is of type C if and only if for
a given 1 ≤ p <∞,∑

(1− |zn|)|f(zn)|p ≤ C‖f‖pp (f ∈ Hp).(6.1)

The closed graph theorem tells us that (6.1) holds if and only if the linear
transformation f 7→ {(1− |zn|)1/pf(zn)}n≥1 maps Hp into lp.

The condition for a sequence {zn} ⊂ D to be the zero sequence of a
Blaschke product is

∑
(1− |zn|) <∞. Consequently, every sequence of type

C is the zero sequence of a Blaschke product. Actually, a Blaschke product
B factorizes as a finite product of interpolating and finite Blaschke products
if and only if its zero sequence is of type C. We are not going to use this fact
here. We write I◦ for the interior (respect to ∂D) of an interval I ⊂ ∂D.

Lemma 6.1. Let {Ij : j = 1, 2, . . . } be a collection of intervals in ∂D
with non-void pairwise disjoint interiors, and let zj ∈ Γ(Ij). Then {zj} is a
sequence of type C.

Proof. We must prove that for every interval I ⊂ ∂D,∑
zj∈Γ(I)

(1− |zj|) ≤ C|I|
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for some C > 0. Since I is contained in an open interval of measure at most
2|I|, we can assume I open, say I = (α, β). If zj ∈ Γ(I) then the interior
of Ij meets I. Therefore I◦j ⊂ I or I◦j contains at least one of the points α
or β. Since the family {I◦k : k ≥ 1} is pairwise disjoint, there are at most
one interval Ij0 such that α ∈ Ij0 and one interval Ij1 such that β ∈ Ij1 .
Consequently, whether there are j0 and j1 as before or not,∑

zj∈Γ(I)

(1− |zj|) ≤
∑
I◦
j
⊂I

(1− |zj|) + 2|I| ≤ 3|I|.

The Smirnov class is formed by the functions f = h/k, where h, k ∈
H∞ and k is an outer function. Obviously f is analytic on D and has
nontangential boundary values h(eiθ)/k(eiθ) for almost every eiθ ∈ ∂D. One
of the fundamental features of the Smirnov class is that it contains the spaces
Hp for all p > 0. Besides, a function in the Smirnov class is in Hp (p > 0)
if and only if its boundary function is in Lp of ∂D.

Lemma 6.2. Let f be a function in the Smirnov class and let 1 ≤ p <∞.
Then f ∈ Hp if and only if for every sequence {zn} of type C,∑

(1− |zn|)|f(zn)|p <∞.(6.2)

Proof. The ‘if’ part of the lemma comes from (6.1). So, suppose that f 6∈ Hp.
We will construct a sequence of type C that fails to satisfy (6.2). There is
no loss of generality if we write f = a/b, where a, b ∈ H∞, ‖a‖∞ ≤ 1, b is
outer and b(0) > 0. First we prove the lemma for p = 1.

Suppose that f 6∈ L1 and let I1 ⊂ ∂D be a closed interval such that |I1| < 1
and

∫
I1
|f | dm = ∞, where m is the normalized Lebesgue measure on ∂D.

For N a positive integer consider the outer function

|bN(eiθ)| =
{
|b(eiθ)| if |b(eiθ)| > 1/N
1/N if |b(eiθ)| ≤ 1/N,

where bN(0) > 0. Hence, there exists an integer N = N(I1) such that if
f1 = a/bN , then ∫

I1

|f1| dm > 5.(6.3)

Partition I1 in N closed intervals of measure (1/N)|I1|. So, there is at least
one of these intervals, say I2, such that

∫
I2
|f | dm =∞. Since |f1| = |a/bN | ≤
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N , then
∫
I2
|f1| dm ≤ N |I2| ≤ |I1| < 1. So, (6.3) yields∫

I1\I2
|f1| dm > 4.(6.4)

The set I1 \ I◦2 is formed by one or the union of two disjoint closed intervals.
In any case (6.4) implies that there is one of these intervals, J , so that∫
J |f1| dm > 2. Consider the sequence of functions gn(eiθ) = f1((1− |J|

n
)eiθ),

n ≥ 1. It is immediate from Parseval’s identity that gn → f1 in L2-norm,
and a fortiori in L1-norm. Consequently, there is an integer n1 such that∫

J

|gn1 | dm > 1.(6.5)

Partition J into n1 closed intervals of measure |J |/n1, J1, . . . , Jn1 . Since
gn1 is continuous on Jk, there exists ωk ∈ Jk such that

∫
Jk
|gn1 | dm =

|gn1(ωk)|.|Jk| = |gn1(ωk)|.(|J |/n1) for every 1 ≤ k ≤ n1. Put zk = (1− |J|
n1

)ωk.
Then f1(zk) = gn1(ωk), |zk| = 1− (|J |/n1) and by (6.5),

n1∑
k=1

(1− |zk|)|f1(zk)| =
n1∑
k=1

|J |
n1

|gn1(ωk)| =
n1∑
k=1

∫
Jk

|gn1 | dm

=
∫
J

|gn1 | dm > 1.(6.6)

Observe that zk ∈ Γ(Jk) for every Jk. The function bN is invertible in H∞

and |b−1
N b| ≤ 1 a.e. on ∂D. So, this inequality also holds on D. Then for

z ∈ D,

|f(z)| = |a(z)|
|b(z)| ≥

|a(z)|
|bN(z)| = |f1(z)|.

Thus, (6.6) gives

n1∑
k=1

(1− |zk|)|f(zk)| > 1.(6.7)

Since
∫
I2
|f | dm =∞, we can repeat the above process with I2 instead of I1,

obtaining a closed interval I3 ⊂ I2 that plays with respect to I2 the same
role that I2 plays with respect to I1, and so forth...

In the l−step of this process we have
(I) a closed interval Il+1 ⊂ Il such that

∫
Il+1
|f | dm =∞,

(II) a family J l1, . . . , J
l
nl

of closed subintervals of Il \ I◦l+1 whose interiors
are pairwise disloint, and

(III) a family of points zlk ∈ Γ(J lk) (1 ≤ k ≤ nl) such that
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nl∑
k=1

(1− |zlk|)|f(zlk)| > 1.(6.8)

By (I) and (II) two different intervals of the family {J lk : 1 ≤ k ≤ nl, 1 ≤ l}
have disjoint interiors. Then Lemma 6.1 says that the sequence {zlk}, 1 ≤
k ≤ nl, 1 ≤ l, is of type C. Besides (6.8) implies that∑

l≥1

nl∑
k=1

(1− |zlk|)|f(zlk)| =∞.

This proves the lemma for p = 1. Now suppose that p ≥ 1 and f 6∈ Hp.
Factorize a = a0v, where a0 is outer and v is inner. Since a0 and b are outer
functions, there are analytic p-powers ap0 and bp. For (p) = the smallest
integer greater or equal than p, consider fp = ap0v

(p)/bp. The function fp is
in the Smirnov class and by hypothesis fp 6∈ L1. By the case p = 1 there
exists a sequence {zn} of type C such that∑

(1− |zn|) |a
p
0(zn)v(p)(zn)|
|bp(zn)| =∞.(6.9)

Since |v(z)| ≤ 1 for all z ∈ D and (p) ≥ p, |v(z)|p ≥ |v(z)|(p) = |v(z)(p)|. So,
by (6.9) ∑

(1− |zn|) |a0(zn)v(zn)|p
|b(zn)|p =∞,

and the lemma follows.

Let Q be a S∗-commuting operator; if u is inner and Du(Q) = D(Q)∩H(u)
then Q|Du(Q) is a closed operator that commutes with S∗u. Moreover, if (a, b)
is a pair of functions in H∞ that defines Q, then by Theorem 1.1 Tbh is in
Du(Q) for every h ∈ H(u). Since b is outer, Du(Q) is dense in H(u). That
is, Q|Du(Q) is S∗u-commuting.

Theorem 6.3. Let Q be a S∗-commuting operator and 2 ≤ p ≤ ∞. Then
there is F ∈ Hp such that Q = TF if and only if for every inner function u
there is Fu ∈ Hp such that Du = Du(Q) = Du(TFu) and Q|Du = TFu |Du.

Proof. The necessity is trivial. Suppose that (a, b) is a pair of functions
defining Q. For u an inner function, Theorem 1.1 implies that

{(Tbh, −Tah) : h ∈ H(u)} ⊂ G(Q) ∩ [H(u)×H(u)] ⊂ G(Q|Du).

By hypothesis there exists Fu ∈ Hp such that TFuTbh = −Tah for every
h ∈ H(u). In particular, if h ∈ H(u) ∩ H∞, TFub+ah = 0. By Lemma 2.4
then there is G ∈ H2 so that

bFu + a = uG.(6.10)
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Let us first assume that p = ∞. Suppose that Q is not of the form TF for
any F ∈ H∞; then Proposition 2.5 says that a/b is not in H∞. Hence, there
is a sequence {zn} ⊂ D such that the sequence a(zn)/b(zn), n = 1, 2, . . . is
unbounded. Substracting a suitable subsequence we can assume that {zn}
is the zero sequence of a Blaschke product v (i.e.,

∑
(1− |zn|) <∞). Thus,

choosing u = v in (6.10) and evaluating at zn we have

b(zn)Fv(zn) + a(zn) = v(zn)G(zn) = 0 for n ≥ 1.

Consequently Fv(zn) = −a(zn)/b(zn) is unbounded, which contradicts our
hypothesis Fv ∈ H∞.

Suppose now that 2 ≤ p < ∞. Again, if Q is not of the form TF for any
F ∈ Hp, Proposition 2.5 implies that a/b 6∈ Hp. Henceforth Lemma 6.2 says
that there is a sequence {zn} ⊂ D of type C such that the sequence

(1− |zn|)1/pa(zn)
b(zn)

, n ≥ 1

is not in lp. Let u in (6.10) be the Blaschke product with zeros zn. Then
Fu(zn) = −a(zn)/b(zn) for all n ≥ 1, and consequently

(1− |zn|)1/pFu(zn) = −(1− |zn|)1/pa(zn)
b(zn)

for all n ≥ 1. So, {(1 − |zn|)1/pFu(zn)}n≥1 6∈ lp, which according to Lemma
6.2 contradicts the hypothesis Fu ∈ Hp.

The case p = ∞ of the above theorem is related to a question recently
raised by Lotto and Sarason [11]. They ask if a closed operator R densely
defined on H2 such that R|H(u) is bounded for every inner function u must
be bounded. They were able to solve affirmatively this problem for Hankel
operators with symbol in L2. Theorem 6.3 for p =∞ answers affirmatively
this question when R commutes with S∗. Recently Michael Sand solved
affirmatively the problem for a large class of closed operators [13]. Finally,
an affirmative solution to the general problem was found by the author in
[18]. We finish the paper with the following

Corollary 6.4. Let Q be a S∗-commuting operator. The following condition
are equivalent.
(1) There is F ∈ H2 such that Q = TF .
(2) H∞ ⊂ D(Q).
(3) D(Q) contains all the inner functions.
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Proof. Obviously (1) ⇒ (2) ⇒ (3). So, suppose that (3) holds. Then S∗u ⊂
D(Q) ∩ H(u) = Du(Q) for every inner function u. Since S∗u is an exact
cyclic vector for S∗u, Theorem 5.3 implies that there is Fu ∈ H2 such that
Du(TFu) = Du(Q) and Q|Du(Q) = TFu |Du(Q) for every u. Henceforth (1)
follows from Theorem 6.3.
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