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CONFORMAL CAPACITIES AND EXTREMAL METRICS

Jacqueline Ferrand

For any non-compact Riemannian n-manifold M it is proved

that the function λ
1

1−n
M : M ×M → R+ satisfies the triangular

inequality. This result includes a Vuorinen conjecture. It fol-
lows from an extension to generalized condensers of a prop-
erty of extremal functions.

Introduction.

For any non-compact Riemannian manifold M of dimension n ≥ 2 we previ-
ously defined a function λM : M×M → R+ = R+∪{+∞] only dependent on
the conformal structure of M , and proved that for a class of manifolds con-
taining all the proper subdomains of Rn, λ−

1
n

M was a distance on M [F1, F2].
The case of a domain G of Rn has been the object of several investigations

leading to estimations of λG[V1, . . . , V4] and to properties of the λG-Lipschitz
mappings [FMV]. Then by considering the case of a ball M. Vuorinen
has been led to conjecture that λ

1
1−n
G is also a distance. In some way this

improvement of my previous result is the best possible as it was proved
in [AVV] that λ−pG cannot be a metric if p > 1

n−1
. Moreover its interest is

reinforced by the fact that, if n = 2, it is relevant to the Teichmuller’s theory
of quadratic differentials and to the Jenkins’s extremal metrics [J1]. This
conjecture has been proven in [AVV] for G = Bn, by A.Y.Solynin [S] and
J.A. Jenkins [J2] for G = R2 \ {0}, then extended by J.A. Jenkins [J2] to
any plane domain with finite connectivity. But this extension is somewhat
difficult to follow as it involves some families of homotopy groups which are
not easy to define with precision when G is not simply-connected.

In the present paper we will prove the following general result, which
includes the Vuorinen conjecture:

Theorem A. With above notations, and for all n ≥ 2, the function mM =
λ

1
1−n
M satisfies the triangular inequality. Consequently if λM(x, y) is finite

when x 6= y, the function mM is a distance on M .

We must emphasize that when applying this result to a domain G of
Rn, we do not need any condition on the boundary of G, in opposition to
Jenkins’s theorem.
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In fact this result will appear as a corollary of a general property of the
level sets of extremal functions relevant to the theory of conformal capacities
(Theorem B in Section 1).

This property is known in the case of classical condensers only (cf [H]
3.8). We will easily extend it to the case of condensers associated with non-
compact continua by dividing it in two reverse inequalities. Although the
first inequality (2.1) is sufficient for proving Theorem A in Section 3, it will
be useful to set the complete equality in view of other applications [F4].
Then we will interprete our results in terms of moduli (cf. Section 4).

At last in Section 5 we will prove the existence of extremal functions
associated with a pair of points, and in some way the present study may be
considered as an extension to Riemannian manifolds of Jenkins’s theory of
extremal metrics [J1].

1. Preliminaries.

We will use the definitions and notations given in [F3]. Particularly M will
always denote a non-compact Riemannian manifold of dimension n ≥ 2 and
M̂ = M ∪ {∞} its Alexandrov compactification.

A relative continuum of the manifold M is a closed subset C of M without
any compact connected component, or, in other terms: such that C ∪ {∞}
is connected in M̂ .

A function u ∈ C(M) is called monotone if for any relatively compact
domain D of M , the supremum and infimum of u on ∂D are respectively
equal to its supremum and infimum on D.

We denote H(M) = C(M) ∩ L1
n(M) the space of real-valued continuous

functions u on M admitting a generalized gradient ∇u with

I(u,M) =
∫
M

|∇u|n dτ < +∞,

in which dτ is the volume element of M .
Let H∗(M) denote the set of monotone functions u ∈ H(M).
For any pair (C0, C1) of closed subsets of M , the capacity of the condenser

Γ(C0, C1) is defined by

Cap(C0, C1) = inf
u∈A(C0,C1)

I(u,M)

in which A(C0, C1) is the set of those functions u ∈ H(M), called admissible
for Γ(C0, C1), satisfying u = 0 on C0, u = 1 on C1 and 0 ≤ u ≤ 1 everywhere.
If A(C0, C1) = ∅ and, particularly, if C0∩C1 6= ∅, we set Cap(C0, C1) = +∞.

Our study will be based on the following previous result (cf. [F1] Th. 6.5
or [F3] Prop. 3.4):
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Theorem 1.1. Let (C0, C1) be a pair of relative continua of M such that
A(C0, C1) 6= ∅. Then there exists a unique function u ∈ A(C0, C1) satisfying
I(u,M) = Cap(C0, C1).

This function, denoted extr(C0, C1), is monotone on M , hence belongs to
H∗(M), and satisfies the variational condition∫

M

|∇u|n−2∇u.∇v dτ = 0(1.2)

for any function v ∈ H(M) vanishing on C0 ∪ C1. In other terms, u is
n-harmonic on M \ (C0 ∪ C1).

Remark. From ([F1] Prop. 4.2) or ([F3] Prop. 2.3) it follows that u−1(0)
and u−1(1) are relative continua resp. containing C0, C1. It must be observed
that, if M \(C0∪C1) is not connected, C0 [resp. C1] can be a proper subset of
u−1(0) [resp. u−1(1)]. In fact, if there exists a component D of M \ (C0∪C1)
such that ∂D ⊂ C0 [resp. ∂D ⊂ C1] we have necessarily u = 0 [resp. u = 1]
on D. For that reason we will need the following lemma:

Lemma 1.3. Under the hypothesis of (1.1), the function u = extr(C0, C1)
satisfies

Cap(u−1(0), u−1(1)) = Cap(C0, C1).

Proof. Obviously A(u−1(0), u−1(1)) ⊂ A(C0, C1), hence Cap(u−1(0), u−1(1))
≥ Cap(C0, C1). The reverse inequality follows from the fact that u is admis-
sible for Γ(u−1(0), u−1(1)), hence the announced result.

Now our main result can be stated as follows:

Theorem B. Let C0, C1 be two disjoint relative continua of a Riemannian
manifold M such that γ = Cap(C0, C1) < +∞, with u = extr(C0, C1),
n = dim(M). Then for any pair (α, β)of real numbers with 0 ≤ α ≤ β ≤ 1,
the sets C−α = {x ∈ M |u(x) ≤ α} and C+

β = {x ∈ M |u(x) ≥ β} are relative
continua; the extremal function uαβ = extr(C−α , C

+
β ) is defined by uαβ = 0

on C−α , uαβ = 1 on C+
β and uαβ(x) = (u(x)− α)/(β − α) if α < u(x) < β.

At last the capacity of Γ(C−α , C
+
β ) is γαβ = Cap(C−α , C

+
β ) = (β − α)1−nγ.

The fact that C−α and C+
β are relative continua comes from ([F1] 4.2) or

([F3] 2.3). The other assertions will directly follow from the inequalities
(2.1) and (4.2). In Section 3. we will obtain Theorem A as a corollary of
the first inequality (2.1).
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2. First inequality (majorization of γαβ).

We observe that the variational equation (1.2) does not require any condition
on v at infinity. When M is a domain G of Rn we can interprete (1.2) by
saying that u is a weak solution of div(|∇u|n−2∇u) = 0 on G \ (C0 ∪ C1)
satisfying u = 0 on C0, u = 1 on C1 and du

dn
= 0 on ∂G.

Then by the same arguments as in [H] we obtain:

Proposition 2.1. With the notation of Theorem B we have:

Cap(C−α , C
+
β ) ≤ (β − α)1−nCap(C0, C1).

Proof. The function uαβ defined on M by uαβ = 0 on C−α , uαβ = 1 on C+
β and

uαβ = (u−α)/(β−α) on Mαβ = M \ (C−α ∪C+
β ) is admissible for Γ(C−α , C

+
β )

and also for Γ(C0, C1). By using (1.2) with v = u− uαβ we get:

Cap(C0, C1) = I(u,M) =
∫
M

|∇u|n−2∇u.∇uαβ dτ = (β − α)n−1I(uαβ,M)

≥ (β − α)n−1Cap(C−α , C
+
β ),

hence the announced result.

Now we can observe that uαβ is n-harmonic on Mαβ and satisfies the same
boundary conditions as extr(C−α , C

+
β ). Theorem B would immediately follow

if the unicity of such a function would be proved. However, as we are here
dealing with functions which are not in W 1

n,0, it does not seem that this
result can be considered as known for n ≥ 3. We will achieve the proof in
Section 4 by an elementary argument.

3. Proof of Theorem A.

We recall that the function λM has been defined by

λM(x, y) = inf
Cx,Cy

Cap(Cx, Cy)(3.1)

where Cx,Cy are relative continua resp. containing x and y, hence λM(x, x) =
+∞ for all x ∈M .

As relative continua cannot reduce to single points, this function is strictly
positive (cf. [F3] Prop. 3.6) but λM(x, x) is not necessarily finite when y 6= x:
for example, as H∗(En) is reduced to constant functions, λEn is identically
+∞ (cf. [F1] §7). We shall say that M is of class L if λM(x, y) is always
finite when y 6= x. For example, any proper subdomain of En is of class L.
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More generally, an open submanifold M of a compact manifold N is of class
L if, and only if, N \M contains at least two points (cf. [F1] Th. 9.1). For
a still more general result see ([F3], Prop.7.6).

Then Theorem A will come from the following result in which M is not
assumed to be of class L:

Proposition 3.2. For any three points x, y, z in M such that λM(x, y) <
+∞, the function mM = λ

1
1−n
M satisfies the triangular inequality

mM(x, y) ≤ mM(x, z) +mM(z, y).(3.3)

Proof. ε > 0 given, let C0, C1 be two r-continua such that x ∈ C0, y ∈ C1

and Cap(C0, C1) ≤ λM(x, y) + ε. From (1.3) we are allowed to assume
that u = extr(C0, C1) satisfies u−1(0) = C0, u−1(1) = C1. Then let us set
α = u(z):

If α = 0, z ∈ C0 and λM(z, y) ≤ Cap(C0, C1).
If α = 1, z ∈ C1 and λM(x, z) ≤ Cap(C0, C1).
If 0 < α < 1, with the notations used in Theorem B, z ∈ C−α ∩C+

α , hence
from (2.1):

λM(x, z) ≤ Cap(C0, C
+
α ) ≤ α1−nCap(C0, C1)

λM(z, y) ≤ Cap(C−α , C1) ≤ (1− α)1−nCap(C0, C1).

By raising the first members of these inequalities to the negative power
1/(1− n) and adding them, we obtain

mM(x, z) +mM(z, y) ≥ [Cap(C0, C1)]
1

1−n ≥ [λM(x, y) + ε]
1

1−n

and the same inequality holds when α = 0 or α = 1.
Hence (3.3) when ε tends to zero.

4. End of the proof of Theorem B.

With the notations used in the statement of Theorem B let us set:

v1 = extr(C0, C
+
α ), v2 = extr(C−α , C

+
β ), v3 = extr(C−β , C1).

For any positive numbers t1, t2, t3 with t1 + t2 + t3 = 1 the function v =∑3
i=1 tivi is admissible for Γ(C0, C1).
As the open sets M0α, Mαβ and Mβ1 are mutually disjoint we have:

γ = Cap(C0, C1) ≤ I(v,M) =
3∑
k=1

tnkI(vk,M)
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hence by choosing t1 = α, t2 = β − α, t3 = 1− β:

γ ≤ αnI(v1,M) + (β − α)nI(v2,M) + (1− β)nI(v3,M).(4.1)

Now by applying (2.1) three times we have:

I(v1,M) ≤ α1−nγ, I(v2,M) ≤ (β − α)1−nγ, I(v3,M) ≤ (1− β)1−nγ.
(4.2)

The second member of (4.1) is therefore not greater than γ, and all the
inequalities (4.2) are reduced to equalities. Particularly we have

Cap(C−α , C
+
β ) = I(v2,M) = (β − α)1−nγ = I(uαβ,M)

in which uαβ is the function defined in the proof of (2.1). Then it is obvious
that uαβ = extr(C−α , C

+
β ) which completes the proof of Theorem B.

Interpretation in terms of moduli. With any condenser Γ(C0, C1) one
associates the family Σ(C0, C1) of hypersurfaces contained in M and sepa-
rating C0 from C1. Then a non-negative Borel function f is called admissible
for Σ(C0, C1) if, for any σ ∈ Σ(C0, C1),

∫
σ

fdHn−1 ≥ 1 where dHn−1 is the

(n− 1)-dimensional Hausdorff measure.
The conformal modulus of Σ(C0, C1) is defined by:

Mod(C0, C1) = inf
f

∫
M

fm dτ

(
m =

n

n− 1

)
(4.3)

where f is admissible for Σ(C0, C1).
The formula of duality

Mod(C0, C1) =
(
Cap(C0, C1)

) 1
1−n

(4.4)

has been proved by Gehring [G1] for smooth separating surfaces, then by
Ziemer [Z] for arbitrary sets by using the Fuglede’s notation of modulus of
a system of measures [Fu]. In those theories M is a domain of Rn and C0,
C1 are two compact sets contained in M̄ (see also [C]). In order to avoid all
difficulty for extending (4.4) to the present case, we can use the functional
definition of admissible functions, not very far from Ziemer’s one, given in
[BLF] with suitable justifications:

Definition 4.5. Let C0, C1 be two relative continua of M . A non-
negative function f is called admissible for Σ(C0, C1) if it belongs to Lm(M)
with m = n/(n− 1) and satisfies

∫
M

f |∇u| dτ ≥ 1 for any u ∈ A(C0, C1).
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With that definition it is easy to check that the infimum in (4.3) is ob-
tained with f = |∇u|n−1/I(u,M) in which u = extr(C0, C1), hence (4.4).

Then we have in the most general case

mM(x, y) = λ
1

1−n
M (x, y) = sup

Cx,Cy

Mod(Cx, Cy)(4.6)

where Cx,Cy are relative continua resp. containing x,y.
The extremal distance mM is thus defined in terms of moduli and we can

observe that the second part of the proof of Theorem B is similar to the
argument used in ([M] 7.2) for proving the general inequality

Mod(D) ≥
m∑
k=1

Mod(Dk)(4.7)

in which the Dk are mutually disjoint shells separating the boundaries of the
shell D. But we emphasize the inefficiency of (4.7) for proving the Vuorinen
conjecture, as this inequality is not in the good direction.

5. Appendix. Some more results relative to the function λM .
Extremal functions relative to a pair of points.

It is noteworthy that we have set Theorem A without using the existence of a
pair (γx, γy) of relative continua satisfying Cap(γx, γy) = λM(x, y). We recall
that the Jenkins’s proof for plane domains was based on the existence of such
continua which, in this special case, are trajectories of a quadratic defferential
Q(z)dz2 with poles at x,y. The following general result is therefore of some
interest:

Theorem 5.1. For any pair (x, y) of points in M such that λM(x, y) < +∞
there exists at least a pair (γx, γy) of relative continua resp. containing x,y
with Cap(γx, γy) = λM(x, y). Hence the function u = extr(γx, γy) belongs to
H∗(M) and satisfies I(u,M) = λM(x, y).

Proof. From [F1] it is known that

λM(x, y) = inf
u∈α(x,y)

I(u,M)

in which α(x, y) is the set of functions u ∈ H∗(M) satisfying u(x) = 0,
u(y) = 1.

If λM(x, y) < +∞ there exists a sequence (uk) in α(x, y) such that
λM(x, y) = lim I(uk,M).

From classical properties of H∗(M) (cf. [F3] Prop. 1.6) there exists a c-
convergent subsequence of (uk) whose limit u belongs to α(x, y) and satisfies
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I(u,M) ≤ lim I(uk,M) = λM(x, y); hence necessarily I(u,M) = λM(x, y).
Then γx = u−1(0) and γy = u−1(1) satisfy the required condition.

Remark. The following example shows that such a pair (γx, γy) is not
necessarily unique: if M = Rn \{0}, x and y being symmetrical with respect
to 0, there are two pairs of relative continua satisfying the required condition,
symmetrical with respect to 0 : in one pair (γx, γy) γx joins x to 0 and γy
joins y to ∞; in the other one γx joins x to ∞ and γy joins y to 0.

Alternative definitions for λM . It is easy to see that we do not change
the value of λM(x, y) if in (3.1) we restict Cx and Cy to be connected (or,
in other terms, to be non-compact continua, see [F3] §5). However another
definition of λG has been used in [V3] for a domain G of Rn: this definition
restricts Cx and Cy to be paths with endpoints on ∂G.

This alternative definition is perhaps not equivalent to our definition in
the case of arbitrary domains. However, for domains G with ∂G of class C1

the two definitions agree as we now show.
Sketch of the proof. Suppose λG(x, y) <∞ and ε > 0 given. Let C0,C1

be non-compact continua such that Cap(C0, C1) < λG(x, y)+ε. If ∂G has no
double point, C̄0 and C̄1 cannot have a common point a in ∂G : otherwise,
as ∂G is of class C1, it is easy to prove that any function u ∈ A(C0, C1)
would satisfy an inequality of the type

R∫
0

ωn(r)dr
r

≤ CnI(u,G)

in which ω(r) is the oscillation of u on G∩S(a, r) and Cn a constant. Hence
a contradiction with the fact that for r sufficiently small ω(r) = 1.

Then we can construct two polygonal lines γ0 = [x, x1, . . . , xh] and γ1 =
[y, y1, . . . , yk] with xh ∈ ∂G, yk ∈ ∂G, xh−1 and yk−1 being sufficiently near
∂G, u(xi) (i = 1, 2, . . . , h − 1) and 1 − u(yj) (j = 1, 2, . . . , k − 1) being
sufficiently small, in such a way that Cap(γ0, γ1) ≤ Cap(C0, C1) + ε ≤
λG(x, y) + 2ε. The same result holds when ∂G has double points, but the
proof is slightly more elaborated since we have to distinguish the two sides
of ∂G.
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