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THE LOCAL INDEX FORMULA FOR A HERMITIAN
MANIFOLD

Peter B. Gilkey, S. Nikčević and J. Pohjanpelto

Let M be a compact complex manifold of real dimension
m = 2m̄ with a Hermitian metric. Let an(x,∆p,q) be the heat
equation asymptotics of the complex Laplacian ∆p,q. Then
TrL2(fe−t∆

p,q

) ∼ Σ∞n=0t
(n−m)/2

∫
M
fan(x,∆p,q) for any f ∈ C∞(M);

the an vanish for n odd. Let ag(M) be the arithmetic genus
and let an(x, ∂̄) := Σq(−1)qan(x,∆0,q) be the supertrace of the
heat equation asymptotics. Then

∫
M
an(x, ∂̄)dx = 0 if n 6= m

while
∫
M
am(x, ∂̄)dx = ag(M). The Todd polynomial Tdm̄ is the

integrand of the Riemann Roch Hirzebruch formula. If the
metric on M is Kaehler, then the local index theorem holds:

an(x, ∂̄) = 0 for n < m, and am(x, ∂̄) = Tdm̄(x).(1)

In this note, we show Equation (1) fails if the metric on M is
not Kaehler.

2. Theorem. Let x0 be a point of a holomorphic manifold M of real di-
mension m ≥ 4. There exists a Hermitian metric on M so that am(x0, ∂̄) 6=
Tdm̄(x0).

3. Remark. The local index theorem, Equation (1), for the Dolbeault
complex for a Kaehler manifold was first proved by Patodi [6]; other proofs
have been given subsequently by other authors. Theorem 2 was first stated
in the thesis of the first author [2], but the proof given there was never pub-
lished. This theorem also follows from computations performed by the first
author in [3]; however, this was never made explicit and the computations
in [3] in any event contained a calculational error (subsequently fixed in [4])
that made the original paper somewhat difficult to use. It is a pleasant task
to thank Professor H. Duistermaat for pointing out that the literature on
this subject was rather incomplete; we hope the present note repairs the
deficiency. We refer the interested reader to his recent work [1] on Lefschetz
formulas in the holomorphic context which contains a more complete bibli-
ography and history in this area than we present here.
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4. Outline of the paper. We begin by reviewing the spectral geometry
of operators of Laplace type and recalling well-known formulas for the in-
variants a2 and a4. We use these formulas to prove Theorem 2 in the special
case m = 4. We then use product formulas to complete the proof of Theorem
2 in general.

5. Geometry of operators of Laplace type. Let x = (xi) be real coor-
dinates on a real Riemannian manifold M of real dimension m. Let

D = −(gνµ∂2/∂xν∂xµ +Aσ∂/∂xσ +B)

be an operator of Laplace type on the space of smooth sections C∞(V ) of
a vector bundle V over M ; in this equation A and B are local sections of
the bundles TM ⊗End(V ) and End(V ) respectively. We adopt the Einstein
convention and sum over repeated indices.

There is a unique connection ∇ = ∇(D) and a unique endomorphism
E = E(D) so that D = −(Tr(∇2) +E); if ωδ is the connection 1-form of ∇,
then

ωδ =
1
2
gνδ(Aν + gµσΓµσν · IV ),

E = B − gνµ(∂νωµ + ωνωµ − ωσΓνµσ · IV );

(6)

see [5, Lemma 4.1.1] for details. The asymptotics of the heat equation can
be expressed in terms of this data. Let ∆ = δd be the scalar Laplacian
on C∞(M), let τ be the scalar curvature of M , and let ρ2 and R2 be the
norms of the Ricci and total curvature tensors. Let Ω be the curvature of
the connection ∇(D). We refer to [5, Theorem 4.1.6] for the proof that:

a2(x,D) = (4π)−m/26−1 Tr(6E + τ · IV ), and

a4(x,D) = (4π)−m/2360−1
{−∆ Tr(60E + 12τ · IV )

+ Tr(60τE + 180E2 + 30ΩijΩij + (5τ 2 − 2ρ2 + 2|R|2)IV )
}
.

(7)

Decompose the exterior derivative d = ∂ + ∂̄ and the coderivative δ =
δ′ + δ′′, where ∂̄ : C∞Λp,q → C∞Λp,q+1 and δ′′ : C∞Λp,q → C∞Λp,q−1

are the operators of the Dolbeault complex. Then ∆p,q := 2(∂̄δ′′ + δ′′∂̄);
the normalizing factor of 2 is present to ensure that ∆p,q is an operator
of Laplace type and is inessential. Since τΣq(−1)q dim Λ0,q = 0, Equation
(7) implies there exists E involving only the first and second jets of the metric
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so that

a2(x, ∂̄) = (4π)−m/2Σq(−1)q Tr(E(∆0,q)), and

a4(x, ∂̄) = −6−1∆a2(x, ∂̄) + E .

Proof of Theorem 2 if m = 4. The an(·, ∂̄) and Tdm̄ are local invariants.
Thus we may take M 4 = C2/Z4 to be the torus. Let z1 = x1 +

√−1y1

and z2 = x2 +
√−1y2 and let ds2 = e2φdz1 ◦ dz̄1 + dz2 ◦ dz̄2 for φ = φ(x2).

Fix P0 ∈ M 4. We suppose φ(P0) = 0 and dφ(P0) = 0. We will show that
the coefficient of (∂/∂x2)2φ(P0) in Σq(−1)qTr(E(∆0,q))(P0) is non-trivial so
a2(P0, ∂̄) 6= 0. This will show that a4(·, ∂̄) involves the 4-jets of φ. Since
the Todd polynomial Td2 does not involve the 4-jets of φ, we can choose
φ so that a4(P0, ∂̄) 6= Td2(P0). Since dφ(P0) = 0, we use Equation (6)
to see that E(P0) = {B − 1

2
∂ν(Aν + Γµµν · IV )}(P0). Since we have that

ΓµµνΣq(−1)q dim Λ0,q = 0, to complete the proof of Theorem 2 when m = 4,
we must show

(8) Σq(−1)q Tr
(
B − 1

2
∂νA

ν

)
(∆0,q)(P0) 6= 0.

We evaluate the Hodge ? operator:

? (dz̄1) = −1
2
dz̄1 ∧ dz2 ∧ dz̄2, ?(dz̄2) = −1

2
e2φdz̄2 ∧ dz1 ∧ dz̄1,

? (dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2) = −4e−2φ, ?(dz̄1 ∧ dz̄2) = dz̄1 ∧ dz̄2,

? (dz̄1 ∧ dz2 ∧ dz̄2) = 2dz̄1, ?(dz̄2 ∧ dz1 ∧ dz̄1) = 2e−2φdz̄2.

Let ∂1 = ∂/∂z1 and ∂2 = ∂/∂z2. Since δ = − ? d?, we have that

δ(f1dz̄
1 + f2dz̄

2) = ?d

(
1
2
f1dz̄

1 ∧ dz2 ∧ dz̄2 +
1
2
f2e

2φdz̄2 ∧ dz1 ∧ dz̄1

)
=

1
2
? {∂1f1 + ∂2(f2e

2φ)}dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2

= −2e−2φ{∂1f1 + ∂2(f2e
2φ)},

δ(fdz̄1 ∧ dz̄2) = − ? d(fdz̄1 ∧ dz̄2)

= − ? (∂1fdz
1 ∧ dz̄1 ∧ dz̄2 + ∂2fdz

2 ∧ dz̄1 ∧ dz̄2)

= −2e−2φ∂1fdz̄
2 + 2∂2fdz̄

1.

Since δ′′ = δ on C∞Λ0,qM , we may compute:

∆0,0f = 2δ∂̄f = 2δ(∂̄1fdz̄
1 + ∂̄2fdz̄

2) = −4e−2φ{∂1∂̄1f + ∂2(e2φ∂̄2f)}
= −4(e−2φ∂1∂̄1 + ∂2∂̄2 + 2∂2φ · ∂̄2)f,
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∆0,1(f1dz̄
1 + f2dz̄

2) = 2(δ∂̄ + ∂̄δ)(f1dz̄
1 + f2dz̄

2)

= 2{δ(∂̄1f2 − ∂̄2f1)dz̄1 ∧ dz̄2} − 4∂̄{e−2φ(∂1f1 + ∂2(f2e
2φ))}

= −4e−2φ∂1(∂̄1f2 − ∂̄2f1)dz̄2 + 4∂2(∂̄1f2 − ∂̄2f1)dz̄1

− 4∂̄1{e−2φ(∂1f1 + ∂2(f2e
2φ))}dz̄1 − 4∂̄2{e−2φ(∂1f1 + ∂2(f2e

2φ))}dz̄2,

∆0,2(fdz̄1 ∧ dz̄2) = 4∂̄(−e−2φ∂1fdz̄
2 + ∂2fdz̄

1)

= −4{e−2φ∂1∂̄1 − 2e−2φ∂̄1φ · ∂1 + ∂̄2∂2}fdz̄1 ∧ dz̄2.

Note that 4∂2∂̄2(e2φ)(P0) = 2(∂/∂x2)2φ(P0). We establish that Equation (8)
holds and complete the proof by computing:

Tr(∂νAν(∆0,0))(P0) = 2(∂/∂x2)2φ(P0),Tr(B(∆0,0))(P0) = 0,

Tr(∂νAν(∆0,1))(P0) = 2(∂/∂x2)2φ(P0),Tr(B(∆0,1))(P0) = 2(∂/∂x2)2φ(P0),

Tr(∂νAν(∆0,2))(P0) = 0, Tr(B(∆0,2))(P0) = 0.

Proof of Theorem 2 for m > 4. It suffices to construct a single example. Let
X4+2k := M 4×(S2)k and let ds2

X = ds2
M +(ds2

S2)k where ds2
S2 is the standard

homogeneous metric on the Riemann sphere S2 and where we take the k fold
product. The invariants an and the Todd polynomial are multiplicative with
respect to such products. Let X = M1 × · · · ×M` with a product metric.
The multiplicative nature of the Dolbeault complex implies that

(9) an(z1, ..., z`, ∂̄) = Σn=q1+···+q`Π1≤i≤`aqi(zi, ∂̄).

Let X = M 4×S2×· · ·×S2 have real dimension 4 + 2k. Since the metric on
S2 is homogeneous, aq(z, ∂̄) is independent of z. The arithmetic genus of S2

is 1. Since the metric on S2 is homogeneous and Kaehler, we use Equation
(1) to see a2(z, ·) = Td1(z) is a non-zero constant and an(z, ·) = 0 for n 6= 2.
We use Equation (9) to see that am(~z, ∂̄) = a4(z1, ∂̄) · a2(·, ∂̄)k.

There are some partial results concerning the vanishing of the lower order
terms in the heat equation trace:

10. Corollary. Let M be a holomorphic manifold of real dimension m ≥ 4.
(a) Fix x0 ∈ M . If m = 4k, assume 2j ≥ 2k; if m = 4k + 2, assume

2j ≥ 2k + 2. Then there exists a Hermitian metric on M so that
a2j(x0, ∂̄) 6= 0.
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(b) If 3j < m, then a2j(·, ∂̄) = 0.
Proof. Suppose first m = 4. We use [5, Theorem 4.1.9(a)] to see

(11) a2j(z, ∂̄) = (−1)j+1(8j+4)/(2j+1 ·1 ·3 · ... ·(2j+1))∆j−1a2(z, ∂̄) + E2j,

where E2j involves lower order jets of the metric. Since a2 is not the zero
polynomial in the jets of the metric, we can specify a2j(z0, ∂̄) arbitrarily
for all j ≥ 1; (a) now follows if m = 4. The general case now follows from
Equation (9) by taking suitable products. Since the techniques used to prove
(b) are tangential to the thrust of this note, we only sketch the proof of (b);
the argument is similar to a counting argument given in [5, Theorem 2.5.2] to
prove a vanishing theorem for invariants defined by the de Rham complex.
Fix z0 and normalize the metric so ds2(z0) = dzi ◦ dz̄i. Expand a2j(·, ∂̄)
as a homogeneous polynomial of order 2j in the derivatives of the metric.
Equation (9) shows a2j(·, ∂̄) ≡ 0 on a product with a flat torus and thus
a2j(·, ∂̄) ≡ 0 if the metric is flat in one factor. Consequently if a2j(·, ∂̄) 6≡ 0,
every holomorphic index must appear in every monomial of a2j(·, ∂̄). Since
a2j(·, ∂̄) is U(1) invariant, every anti-holomorphic index must appear as well.
The total number of indices which can appear in a monomial of a2j(·, ∂̄) is
3j. This yields the estimate m ≤ 3j so a2j(·, ∂̄) = 0 if 3j < m.

Corollary 10 does not completely answer the question of when the in-
variants a2j(·, ∂̄) vanish; roughly speaking we have shown they vanish when
j < m/3 and are non-zero when j > m/2; the range [m/3,m/2] requires
further study.
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