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THE THETA DIVISOR OF BIDEGREE (2, 2) THREEFOLD IN
P2 × P2

Atanas Iliev

Recently A.Verra proved that the existence of two conic
bundle structures (c.b.s.) on the bidegree (2, 2) divisor in the
product of two projective planes implies a new counterexam-
ple to the Torelli theorem for Prym varieties. Let J (T ) be
the jacobian of T . In this paper we prove that any of the two
c.b.s. on T induces a parametrization of the theta divisor of
J (T ) by the Abel-Jacobi image of a special family of elliptic
curves of degree 10 (minimal sections of the given c.b.s.) on
T . This result is an analog of the well-known Riemann the-
orem for curves. Further we use once again the geometry of
curves on T , in order to prove the Torelli theorem for the
bidegree (2, 2) threefolds. In the end, we study the bidegree
(2, 2) threefold T with one node. It is shown that in this case
the classical Dixon correspondence, between the two discrim-
inant pairs defined by T , can be represented as a composition
of two 4-gonal correspondences of Donagi.

0. Introduction.

0.1. In this paper we parametrize the theta divisor Θ and the special sub-
variety of stable singularities of Θ, of the intermediate jacobian of the Verra
threefold T - the divisor of bidegree (2, 2) in P2 × P2. As an application
we prove the Torelli theorem for Verra threefolds. The threefold T deserves
special attention because of the recent observation of A.Verra that the ex-
istence of two conic bundle structures on T implies a new counterexample
to the Torelli theorem for Prym varieties. Moreover, this counterexample is
not related to the 4- gonal correspondence of Donagi which had covbered all
the known non-trivial counterexamples.

Let X be a smooth projective threefold for which the canonical bundle KX

has no sections. Then its intermediate jacobian J (X)=H2,1 (X)∗/H3 (X,Z)
mod. torsion is a principally polarized abelian variety (p.p.a.v.), with a nat-
urally defined principal polarization Θ - the theta divisor of J (X) . In partic-
ular J (T ) is p.p.a.v., since −KT is ample. Let C be a family of algebraically
equivalent curves C on X. The Abel-Jacobi map Φ sends C onto a subvariety
Z = Φ (C) ⊂ J (X) ; in other words, the family C parametrizes the subvariety
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Z ⊂ J (X) . On the contrary, let Z be a subvariety of J (X) . One can state
the question to find a family CZ of curves on X which parametrizes Z.

In this paper we prove that if X = T is the Verra threefold then: 1. The
10-dimensional family Cθ of elliptic curves on T of bidegree (3, 7) parametrizes
the 8-dimensional theta divisor Θ ⊂ J (T ) - see Theorem 4.1. 2. The 6-
dimensional family D of elliptic sextics on T of bidegree (3, 3) parametrizes
a 3-dimensional component Z of stable singularities of Θ. This makes it pos-
sible to describe the tangent cones to Θ at the points of Z, which is used to
prove the Torelli theorem for the Verra threefold - see Theorem 5.6.

0.2. In the preliminaries, we state in brief the Verra’s counterexample, and
remember some known facts about Prym varieties and minimal sections of
ruled surfaces over elliptic curves.

In Section 2 and 3, we start from the representation of the intermedi-
ate Jacobian of T as a Prym variety to translate the Wirtinger description
of (J (T ) ,Θ) in the terms of curves on T. In particular, This implies the
existence of a special family Cθ of curves on T, which is mapped - via the
Abel-Jacobi map - onto a copy of the theta divisor Θ (T ) (see Theorem 4.1).
The general curve C ∈ Cθ is an elliptic curve of bidegree (3, 7). By construc-
tion, the curves of Cθ parametrize the minimal sections (resp. the maximal
subbundles of rank 1) of a special family of ruled surfaces (resp. rank 2
vector bundles) over the space of plane cubics - see Section 2, (3.1), [16],
[20]. It turns out that Cθ is generically an elliptic fibration over the fam-
ily of effective divisors Supp Θ related to the Wirtinger description of the
theta divisor - see Sect. 2, 3, 4, and (1.2.2). The last is used in the proof of
Theorem 4.1.

In Section 5, we separate a 3-dimensional component Z ⊂ Sing Θ as an
Abel-Jacobi image of the 6-dimensional family D of eliptic sextics of bidegree
(3, 3) on T. The connection between the geometry of T and Sing Θ, based on
the study of the family D, is used to prove the Torelli theorem for the Verra 3-
fold T : The threefold T ⊂ P8 coincides with the intersection of the tangent
cones of Θ at the points of Z - see Theorem (5.6). Note that the Torelli
theorem, stated in this form, is not a direct consequence of general facts
about Prym varieties: one has also to see that the projective tangent cone
Conez (z - a general point of Z) does not belong to the “trivial” component
D6 (W ) of the determnantal locus D6 (T ) - see (5.3.3), (5.5.1), and the proof
of Theorem (5.6).

In his paper [24], A.Verra proves that the correspondence between the two
discriminant pairs, defined by two conic bundle structures on the same bide-
gree (2, 2) divisor T, is the same as the classical Dixon correspondence for
plane sextics. For the original description of this correspondence - see [24],
or [9]. In Section 6 we show that if T has a node then the Dixon correspon-
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dence can be represented as a composition of two 4-gonal correspondences
of Donagi - see Corollary (6.3).

1. Preliminaries.

1.1. The bidegree (2, 2) divisor T (see [24]).
(1.1.1). Let seg : P2 × P2 −→ P8 be the Segre embedding, and let W ⊂ P8

be the image of seg . Let p1 : W → P2 and p2 : W → P2 be the canonical
projections. Denote by OW (m,n) the sheaf p∗1OP2(m) ⊗ p∗2OP2(n), m, n-
integers.
(1.1.2). By definition, the elements T of the linear system |OW (2, 2)| , are
called bidegree (2, 2) divisors on W; we let pi : T → P2 be the restrictions of
the projections pi (i = 1, 2), on T.
(1.1.3). Let, moreover, T be general (esp. T is smooth). Then pi defines a
standard conic bundle structure on T, i = 1, 2. Let i ∈ {1, 2} be fixed, and
let

∆i =
{
x ∈ P2 : Sing p−1

i (x) 6= ∅}
=
{
x ∈ P2 : p−1

i (x) = l + l is a plane conic of rank 2
}

be the discriminant curve of pi. For the general T , the curves ∆i are smooth
plane sextics (see [24]).

Denote by ∆̃i =
{
l − a line inT : ∃x∈∆i, s.t.l is a component of p−1

i (x)
}

the induced double covering of the discriminant curve ∆i, i = 1, 2; i.e. ∆̃i

is the curve of components of degenerate fibers of pi. With a probable abuse
of the notation, we denote by pi : ∆̃i → ∆i also the corresponding covering
map. Since ∆i is smooth, the map pi : ∆̃i → ∆i is an unbranched double
covering - defined by the sheaf ηi ∈ Pic0

[2]∆i − {O∆i
} . (Here Pic0

[2]∆i ={
η ∈ Pic0∆i : η⊗2 = O∆i

}
.)

(1.1.4). Let J (T ) be the intermediate jacobian (see e.g. [13]) of T , and let
Pi = P (∆i, ηi) be the Prym variety (see e.g. [2], [21], or [1, Ch. VI, App. C])
of (∆i, ηi) . It is well-known that J (T ) and Pi are isomorphic as principally
polarized abelian varieties - see [2].

In particular, dimJ (T )=dimPi=9. It follows immediately that P (∆1, η1)
and P (∆2, η2) are isomorphic as p.p.a.v..
(1.1.5). In [24], A.Verra proves that the discriminant pairs (∆1, η1) and
(∆2, η2) corresponds to each other by the classical Dixon construction. More-
over, let

P6 =
{
(∆, η) :∆ is a smooth plane curve of degree 6, and η∈Pic0

[2]∆−{O∆}
}
,

and let p6 : P6 −→ A9, (∆, η) 7→ the principally polarized Prym variety
P (∆, η) , be the Prym map for P6 (see e.g. [10], or [24]). Then deg p6 = 2,



60 ATANAS ILIEV

and p6 is branched along the locus of intermediate jacobians of nodal quartic
double solids (:= double coverings of P3 branched along nodal quartics) - see
[24]. The general fiber of p6 equals to a couple of pairs ((∆1, η1) , (∆2, η2)),
which arises from a bidegree (2, 2) divisor T.
(1.1.6). We call the smooth bidegree (2, 2) divisor T ∈ W the Verra
threefold.
1.2. The intermediate jacobian J (T ) as a Prym variety.
(1.2.1). Let Θ be the divisor of the principal polarization (the theta
divisor) of J (T ) . It follows from the preceeding that we can identify Θ and
the theta divisors of the Prym varieties P1 and P2. Then, because of the
Wirtinger description of Prym varieties (see [19], or [21]), we can describe
J = J (T ) , Θ, etc., only in terms of ∆̃i and ∆i. As a direct corollary we
obtain:
(1.2.2). Let pi be fixed. Then:
(1). The jacobian J (T ) is isomorphic to

P
(
∆̃i,∆i

)
=
{
L ∈ Pic18∆̃i : NmL = ω∆i

, and h0 (L) even
}
.

(2). Θ (T ) ∼= Θi = {L ∈ J (T ) : h0 (L) ≥ 2} .
(3). There exists a subset in Sing Θ, which is isomorphic to the set of stable

singularities of Θ, with respect to pi, i.e. Singsti Θ={L∈Θ: h0(L) ≥ 4} ;
similarily - for the exceptional singularities of Θ, w.r. to pi.

In Section 5 we shall describe a component Z of Sing Θ, the points of
which are stable w.r. to both p1 and p2.

1.3. Minimal sections of ruled surfaces over elliptic curves.
(1.3.0). Here we collect some facts about ruled surfaces (esp. - on elliptic
curves), which will be used in Section 2 - see [14, Ch.V, Sect. 2], [16], [20].
(1.3.1). Let C be a smooth curve. By definition, a ruled surface p : S →
C is a surface which can be represented in the form S = PC (E) , where
E is a locally free sheaf of rank 2 (a rank 2 vector bundle) over C. The
representation S = PC (E) is unique up to multiplication by an invertible
sheaf: PC (E) ∼= PC (E ⊗ L) , L ∈ PicC.

The bundle E is called normalized if h0 (E) 6= 0, but h0 (E ⊗ L) = 0 for
any invertible L such that degL < 0.
(1.3.2). Any ruled surface S has a representation S = PC (E) , for some
normalized E . Such a representation is, in general, far from unique (see e.g.
[16, Cor. 3.2], or (1.3.4) - in case g (C) = 1).

Let E be normalized, and let C0 ∈
∣∣OP(E)/C(1)

∣∣ be a tautological section
for E . The invariant property of C0 is that it is section of p : S → C, for
which the number

−e (C) = (C · C)S , C − a section of S
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is minimal, i.e. C0 is a minimal section of S. The number e = e (S) =
− (C0 · C0) is called the invariant of S.
(1.3.3). The surface S = P (E) is called decomposable if E is decomposable
- see e.g. [14, Ch.V, Sect. 2]. Otherwise, S is called indecomposable (ibid).
(1.3.4). The cardinality of the set of minimal sections of S closely depends
on the decomposability of S, and on the parity of the invariant e = e (S)
(see [16, Cor. 3.2]).

In Section 3, we shall use the description of these sets only in case g (C) .
(*). Minimal sections of a ruled surface over an elliptic curve.
All of the next can be found in [14, Ch.V, Sect. 2]:
Let C be an elliptic curve, and let S be a ruled surface on C. Then one

of the following alternatives is valid:
(1). S is decomposable, e = e (S) > 0. The normalized sheaf E for S is

unique, and the minimal section C0 is unique.
(2). S is decomposable, e = e (S) = 0. In this case S = PC (O ⊕ ε) , deg ε =

0, and either
(a). ε = OC , S = C × P1, and the set of minimal sections of S is

parametrized by the points of P1, or
(b). ε 6= OC . Then the normalized sheaf E can be chosen in two ways:

E+ = E and E− = P (O ⊕ (−ε)) , where −ε = ε⊗−1. Correspond-
ingly, there are exactly two minimal sections of S : C+ and C−

(each - the unique tautological section of the corresponding nor-
malized bundle).

(3). S is unique indecomposable ruled surface, s.t. e (S) = 0. Then the nor-
malized sheaf for S is unique, and the corresponding minimal section
is unique.

(4). S is unique indecomposable ruled surface, s.t. e (S) = −1. Then the
set {E − normalized : S = P (E)} is parametrized by the points of the
elliptic curve C.

2. Minimal sections of the canonical conic bundle surfaces.

2.0. Everywhere in this section the conic bundle structure p : T → P2 is
fixed; we let p = p1, ∆ = ∆1, η = η1, etc.

2.1. The sets Supp Θ and Supp P−.
(2.1.1). Let p = p1 : T → P2, etc., be as above. Let Nm : Pic18∆̃ →
Pic18∆ be the norm map - see [1, Ch.V, App. C]. Then Nm−1 (ω∆) splits
into two components:
P+ =

{
L ∈ Nm−1 (ω∆) : h0 (L) even

}
and P− = the same, buth0 (L)

odd.
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(2.1.2). The general sheaf L ∈ P+ is non-effective, i.e. the linear system
of effective divisors |L| is empty. However, the subset of the effective sheaves
L ∈ P+ is exactly the theta divisor Θ - see (1.2.2). This gives a reason to
define a set

Supp Θ := {L ∈ |L| : L ∈ Θ} ,
i.e., Supp Θ is the set of all effective divisors in the linear systems of the
sheaves L ∈ Θ. Similarly

SuppP− :=
{
L ∈ |L| : L ∈ P−

}
(all the sheaves L ∈ P− are effective).

(2.1.3). The maps p+
∗ : Supp Θ→ |OP2(3)| and p−∗ : SuppP− → |OP2(3)|.

The set Θ∪P− coincides with the set of all “effective” sheaves in the preim-
age Nm−1 (ω∆) . Moreover, on the level of effective divisors, the map Nm co-
incides with the usual projection p∗ : Symm18 ∆̃→ Symm18 ∆. In particular,
if L ∈ Nm−1 ω is effective and L ∈ |L| , then O (p∗L) = NmL = ω∆ = O∆(3).
Since deg ∆ = 6 > 3, the linear system |O∆(3)| is isomorphic to |OP2(3)|. In
particular, the effective divisor p∗L ∈ Symm18 ∆ is an intersection of ∆ with
the unique plane cubic curve C (L) := p∗ (L) . In particular, after composing
with the corresponding restriction maps, the map p∗ defines the maps

p+
∗ : Supp Θ→ |OP2(3)| (= the set of all the plane cubics), and

p−∗ : SuppP− → |OP2(3)| .
According to [21, Lemma 3.20]:

(1) the maps p+
∗ and p−∗ are surjective;

(2) all fibers of p+
∗ and p−∗ are finite.

2.2. The canonical conic bundle surface S(C) and the preimage
p−1
∗ (C) .

(2.2.1). Let C be a sufficiently general plane cubic curve. In particular, C
can be supposed to be smooth, and intersecting the discriminant sextic ∆
in 18 distinct points x1, . . . , x18.

The surface S(C) = p−1(C) ⊂ T is a standard conic bundle over the
elliptic curve C; the degenerate fibers of p : S(C) → C are fi = p−1(xi) =
li + li, i = 1, . . . , 18.

We call a surface p−1(C) ⊂ T , C - any plane cubic (resp. C - a general
plane cubic), a canonical conic surface on T (resp. - a general c.c.b.s.) - w.r.
to p = p1.
(2.2.2). The set Σ(C)

Let the cubic C be as in (2.2.1), and let

Σ(C) =
{
σ : ∪{xi} → ∪{li, li} : σ (xi) ∈ {li, li}, i = 1, . . . , 18

}
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be the set of “choice” maps for C. We can define, in an obvious way, the
two-argument signature function sgn : Σ(C)×Σ(C)→ {+1,−1} as follows:
sgn (σ′, σ′′) = +1, if # (Imageσ′ ∩ Imageσ′′) ∈ 2Z, otherwise sgn (σ′, σ′′) =
−1.
(2.2.3). The map L : Σ(C)→ p−1

∗ (C).
Let σ ∈ Σ(C). The map σ defines the effective divisor L(σ) = σ(x1) +

· · ·+ σ(x18). Clearly L(σ) ∈ p−1
∗ (C) ∈ Supp(Θ) ∪ Supp(P−).

(2.2.4). The sets ΣΘ(C) and ΣP−(C).

Lemma. Let C be as above. Then
(1) The preimage p−1

∗ (C) coincides with the union of the disjoint sets -
each of cardinality 217 :
ΣΘ(C) = {σ ∈ Σ(C) : L(σ) ∈ Supp Θ} and
ΣP−(C) = {σ ∈ Σ(C) : L(σ) ∈ SuppP−}.

(2) sgn (σ′, σ′′) = +1 iff both σ′ and σ′′ belong to one of these two sets;
otherwise sgn = −1.

Proof. Let L (σ′) and L (σ′′) be two elements of p−1
∗ (C). The divisors L (σ′)

and L (σ′′) are obtained from each other by a finite number of replacements
of the type: L 7→ L + l − l, where l + l = p−1(x) for some x ∈ ∆. In this
case x ∈ {x1, . . . , x18}, and L (σ′) and L (σ′′) are effective. Moreover, L (σ′)
and L (σ′′) can be regarded as general elements of Supp Θ ∪ SuppP− (the
cubic C is general). Therefore h0 (L (σ′)) and h0 (L (σ′′)) can be only 1 or
2 (see e.g. [26]). Now, the lemma is a direct consequence of the following
statement:
(2.2.5). (*) Let ∆̃ be a smooth curve with the involution l ↔ l without
fixed points. Let L be an effective ( see (2.1)) invertible sheaf on ∆̃, and let
l ∈ ∆̃. Then
h0(L)−h0

(
L+ l − l

)
∈ {+1,−1} - see e.g. [21, 3.14], where (∗) has been

proved under more general conditions.

(2.2.6). Let U = {C- a smooth plane cubic : C ∩∆ = 18 distinct points},
let C ∈ U , and let Supp Θ(C) = {L(σ) : σ ∈ ΣΘ(C)} . Let Supp ΘU =
∪{Supp Θ(C) : C ∈ U} . Then the algebraic set Supp Θ ⊂ Symm18 ∆̃ is, in
an obvious way, a closure of the open subset Supp ΘU . The same (up to
replacing of the notation) is true also for SuppP− and Supp(P−)U .

2.3. The global invariants e(Θ) and e (P−) .
(2.3.1). The maps σ̃ : S(C)→ S(L(σ)).

Let C ∈ U be as in (2.2.5), and let σ ∈ Σ(C) - see (2.2). Without any
restriction we may assume that L(σ) = l1 + · · ·+ l18. The lines li and li are
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(−1)-curves on the surface S(C) = p−1(C). Therefore σ defines, in a unique
way, a morphism σ̃ : S(C) → S(L(σ)), where σ̃ is the blow-down of the
18-tuple

{
l1, . . . , l18

}
.

(2.3.2). The invariants e(Θ) and e(P−).
Let e(L(σ)) be the invariant of the ruled surface p(σ) : S(L(σ))→ C (see

(1.3.2)). This way, we define a map ẽ : Supp ΘU ∪ Supp(P−)U → Z, ẽ :
L(σ) 7→ e(L(σ)) - see (2.2.5).

It is standard that the map ẽ must take a constant value on some open
subset of each of the components of this domain. Therefore there exists a pair
(e (Θ) , e (P−)), and a pair of (possibly smaller) open subsets Supp Θop and
Supp (P−)op, such that ẽ(l) = e(Θ) for any L ∈ Supp Θop, and ẽ(L) = e(P−)
for any L ∈ Supp (P−)op.

We shall find these two numbers.

2.4. e(Θ) = −1, e (P−) = 0 .
(2.4.0). Elementary transformations of ruled surfaces.

Let z′ be a point on the ruled surface S′ over the curve C, and let f ′ ⊂ S′
be the fiber of S′ through z′. Let σ′ : S̃ → S′ be the blow-up of z′ ∈ S′,
let e ⊂ S̃ be the exceptional (−1)-curve of σ′. and let f ⊂ S̃ be the proper
σ′-preimage of f . Then f is also a (−1)-curve on S̃, and one can blow-down
f ⊂ S̃ : σ′′ : S̃ → S′′. Clearly, S′′ is also a ruled surface over C; moreover,
S′′ is birational to S′ - via the birational isomorphism elmz′ = σ′′ ◦ (σ′)−1 :
S′ → S′′. We call elmz′ the elementary transformation of S′ centered at the
point z′ ∈ S′. In particular, let z′′ = σ′′(f) ∈ S′′ be the σ′′-image of f .
Then the inverse map of elmz′ : S′ → S′′ coincides with the elementary
transformation elmz′′ : S′′ → S′ centered at the point z′′ ∈ S′′.
(2.4.1).

Lemma. Let e = e(Θ) and e = e (P−) be as in (2.3.2). Then |e− e| = 1.

Proof. Let C ∈ U ( see (2.2.5)) be such that L(σ) ∈ Supp Θop∪Supp (P−)op,
for any σ ∈ Σ(C) (see (2.2), (2.3)). In particular, e (S (L (σ))) = e for
any L(σ) ∈ Supp Θ(C), and e (S (L (σ))) = e for any L(σ) ∈ SuppP−(C).
Let xi, li, li, etc. be as in (2.2), (2.3), and let σ′ and σ′′ be such that
σ′(xi) = σ′′(xi) for any i, except i = j, j - fixed. Let zj = lj ∩ lj. Since
the natural maps S(C)→ S (L (σ′)) and S(C)→ S (L (σ′′)) are regular, the
point zj ∈ S(C) has unique images z′j on S (L (σ′)) and z′′j on S (L (σ′′)). It
follows from the definition of S (L (σ′)) and S (L (σ′′)) that S (L (σ′′)) is ob-
tained from S (L (σ′)) by the elementary transformation elmz′

j
: S (L (σ′))→

S (L (σ′′)) centered at the point z′j ∈ S (L (σ′)). Similarily, S (L (σ′′)) =
elmz′′

j
(S (L (σ′′))) .

Now, (2.4.1) is a consequence from the following:
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Sublemma (*). (See [16, Lemma 4.3], or [20, Lemma 7]). Let S′ → C
and S′′ → C be two ruled surfaces over the smooth base curve C, and let
S′′ = elmP (S′), where elmP denotes the elementary transformation of S′ -
centered at the point P ∈ S′. Then:
(i) If no minimal sections of S′ (see (1.3.4)) passes through P , then e (S′′) =

e (S′)− 1;
(ii) If the minimal section of S′ passes through P , then e (S′′) = e (S′) + 1.

(2.4.2).

Lemma. e = e(Θ) = −1.

Proof. Let L ∈ Θ be general, and let |L| = {L(t), t ∈ P1} be the linear
system of L - see (1.2.2). Just as in (2.1.3), the pencil {L(t)} defines the
family of plane cubics {C(t) = C(L(t))}t∈P1 . Since L ∈ Θ is general, the
general curve C(t) of the 1-dimensional family {C(t)} is a smooth plane
cubic, and the only degenerations of {C(t)} are a finite number of nodal plane
cubics. Moreover, there are a finite number of plane cubics C(t) ∈ {C(t)},
which are simply tangent to ∆. There is an open subset VL ⊂ P1 such that
L(σ) ∈ Supp Θop ∪ Supp (P−)op for any t ∈ VL and for any σ ∈ Σ (C(t)) (see
(2.2.2)− (2.2.4)).

Let L(t) = l1(t) + · · ·+ l18(t), t ∈ VL. We shall prove the following:

(*) Sublemma. If the bidegree (2.2) divisor T is general, then the general
S(L), L ∈ Supp Θ ∪ SuppP− cannot be of type (1.3.4)(1), (1.3.4)(2.a) or of
type (1.3.4)(3).

Proof. On the one hand, the choice of C(t) implies that C(t) can be identified
with the general plane cubic; in particular, it is in general position w.r. to
the discriminant sextic ∆. The various minimal ruled models of the surface
S(C) are obtained from each other by elementary transformations, related
to the 18-tuple of degenerate fibers {li + l̄i = p−1(xi), i = . . . , 18}. On the
other hand, we can fix for a moment the smooth plane cubic C. Since the
general plane sextic can be represented as a discriminant of (one of the conic
bundle structures of) some bidegree (2, 2) divisor T (see [24]), we can choose
the 18-tuple {x1, . . . , x18} without any closed restrictions. The rest repeats
the proof of [20, Lemma 12].

It follows from (∗), and from description (1.3.4)(∗), that e(Θ) can be
either 0 or −1. It remains to be seen that the assumption e(Θ) = 0 leads to
a contradiction. Indeed, let e(Θ) = 0. Then the general surface S(L(t)) is
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of type (1.3.4)(2.b). In particular, the general S(L), L ∈ Supp Θ has exactly
two minimal sections.

One can define C to be the set of all these minimal sections (related to the
component Supp Θ). Clearly, the set C is 9-dimensional. The general curve
C ∈ C is mapped, via p = p1, isomorphically onto a smooth plane cubic.
Therefore degC = (3, d), where deg is the bidegree map. A straightforward
check, based on the normal bundle sequence for the triple C ⊂ p−1 (p (C)) ⊂
T , implies that the total degree of C ∈ (the 9-dimensional family)C is 9 (see
also [27]). Therefore d = 6.

The general pencil {L(t)} ∈ Θ defines a pencil of pairs (C+(t), C−(t)) ⊂ C̄;
the curves C+(t) and C−(t) are the minimal sections of the surface S(L(t)),
t ∈ VL - see above.

Let B be the base of the 1-dimensional family of minimal sections

CL =
{
C : ∃t ∈ P1 s.t. C = C+(t), or C = C−(t)

}
,

defined by the pencil |L| = {L(t)}. The curve B is a 2-sheeted covering
of the base P1 of the pencil |L|. We shall see that the curve B cannot be
irreducible.

Let SL be the union of the curves C ∈ CL. Clearly, SL is an effective divisor
on T (the curves, which sweep SL out, form a 1-dimensional algebraic family
parametrized by the algebraic curve B).

The surface SL can be reducible, or not. The irreducible components of
this surface correspond to the irreducible components of the base B = BL.

Let B0 be one of these irreducible components, let C0 → B0 be the cor-
responding irreducible family, and let S0 be the corresponding irreducible
components of SL. The surface S0 represents the element

cl(S0)∈Pic T =Z ·l+Z ·h, where l=cl (p∗1OP2(1)) , h=cl (p∗2OP2(1)) , p1 = p.

Therefore cl(S0) = al + bh for some integers a, b.

(**) Sublemma. The integers a and b are non-negative.

Proof. Let, for example, b < 0. Let f be the general fiber of p = p1 : T → P2.
Since S0 ∈ |al+bh| is effective and f is not a fixed curve on T , the intersection
number (f · S0)T must be non-negative. Therefore 0 ≤ (f · (al + bh))T =
a(f · l)T + b(f · h)T = b(l2 · h)T = 2b < 0 - contradiction.

Let t0 be a sufficiently general fixed value of the rational parameter t. Let
{C+(t0), C−(t0)} be the pair of minimal sections of S(L(t0)), and let e.g.
C+(t0) ∈ B0. Then, one of the following two alternatives is possible:
(1). C−(t0) ∈ B0, and then B0 = B;
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(2). C−(t0) /∈ B0, and then B = B0 ∪B1, where B0
∼= B1

∼= P1.
Let l ∈ ∆̃ be general. Since L ∈ Θ is general, then h0

(
∆̃,L

)
= 2, and

h0
(
∆̃,L ⊗O∆̃(−l)

)
= 1, i.e. there exists exactly one t such that l is a fiber

of S(L(t)). In other words, C+(t) and C−(t) are the only two curves, of the
corresponding family of minimal sections, which intersect l. In particular,
l · S0 = 2 if B0 = B (Case (1)), and l ·B0 = 1 if B0 6= B (Case (2)).

Consider the Case (1). Then cl(S0) = al+2h for some a ≥ 0. Since C+(t0)
and C−(t0) do not intersect each other, and belong to the same algebraic
family, (C(ξ), C(ξ)) = 0 for ξ ∈ B. Therefore 0 = degKC(ξ) = (KS0 + C(ξ))·
C(ξ) = ((a− 1)l + h) · C(ξ) + 0 = 3(a− 1) + 6 ≥ 3 - contradiction.

ThereforeB=B0∪B1, B0
∼=B1

∼=P1, and the local splitting (C+(t0), C−(t0))
induces the global splitting {C+(t)} ∪ {C−(t)}.

The assumption C+(t0) ∈ B0 implies that B0 = {C+(t)}. Therefore S0 =
∪{C+(t) : t ∈ B0

∼= P1} is a pencil of elliptic curves, and cl(S0) = al+h, for
some nonnegative integer a.

Let a = 0, i.e. C+(t) ⊂ S0 = Sh = p−1
2 (h) for some line h ⊂ P2. Moreover,

p1 maps C+(t) isomorphically onto a plane cubic C3(t) = p1(C+(t)), i.e.
C+(t) lies on the surface S3l(t) = p−1

1 (C3(t)) of class cl(S3l(t)) = 3l. There-
fore C+(t) must be a component of the effective 1-cycle C3l·h(t) = S3l(t) ·Sh.
Let C̄(t) = C3l·h − C+(t) be the residue component. We shall compute the
bidegree deg C̄(t). On the one hand, degC3l·h(t) = ((3l · h) · l, (3l · h) · h) =
(3l2 · h · 2(l + h), 3l · h2 · 2(l + h))P2×P2 = (6, 6). On the other hand,
degC+(t) = (3, 6) (see e.g. the proof of Sublemma (*)). Therefore deg C̄(t) =
(6, 6)− (3, 6) = (3, 0), and C̄(t) must be a sum of fibers and components of
fibers of p2. Since p2 : T → P2 is a conic bundle, the irreducible components
of C̄(t) are (2, 0)-conics and (1, 0)-lines. Therefore p1

(
C̄(t)

) ⊂ P2 must be
the sum of conics and lines, of total degree 3. Moreover, C̄(t) ⊂ p−1 (C3(t)),
i.e. all these conics and lines must lie on the cubic C3(t) - for any t ∈ P1.
However, for general t ∈ P1 the cubic curve C3(t) = p1 (C+(t)) is smooth
(since L ∈ Θ is supposed to be general). Therefore the general C+(t) cannot
contain conics or lines - contradiction. Therefore a > 0.

Let k = (C+(t), C+(t))S0
. Obviously k ≥ 0, and (just as above): 0 =

degKC+(t) = (a−1)l·C+(t)+k ≥ k ⇒ k = 0, a = 1. Therefore cl(S0) = l+h,
i.e. S0 ⊂ T is a hyperplane section of T .

It follows from the preceding that if e (Θ) = 0, L(t) ∈ Supp Θ is general,
and C+(t) is any of the two minimal sections defined by L, then C+(t) is a
smooth elliptic curve of bidegree (3, 6), such that:

(a). C+(t) lies in a hyperplane section S0 of T .
Let C3,6(T ) be the family of effective 1-cycles on T , of bidegree (3, 6). Let

C̄ be the closure, in C3,6(T ), of the family C of “general” minimal sections
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C+(t) - see above, and also - the proof of Sublemma (∗). This way, we
have seen that the general element C+(t) of C̄ lies in a hyperplane section of
T . Since (a) is a closed condition on the families of 1-cycles on T , the last
implies:

(b). Any C ∈ C̄ lies in a hyperplane section of T .
We shall prove that (b) is impossible. In order to see this, it is enough to

find an element of C̄ which does not lie in a hyperplane P7 ⊂ P8 = SpanT .
Let C3,3 be a general bidegree (3, 3) curve of genus 1 on T - see (5.1).
In particular, C3,3 is a smooth elliptic curve on T , SpanC = P5 ⊂ P8 (see

(5.3.1) or the proof of (5.2)(∗)), and p = p1 project C3,3 isomorphically onto
a smooth plane cubic C3, which intersects the discriminant ∆ in 18 distinct
points xi, i = 1, . . . , 18. Let li ⊂ p−1(xi), i = 1, . . . , 18, be the eighteen (0, 1)-
lines which intersect C3,3. One can always choose one of these 18 lines, l1,
such that Span (C3,3 + l1) = P6. In fact, by the general choice of C3,3, the
general P6 ⊃ C3,3, intersects T in the 1-cycle C3,3 + C̄3,3, where C̄3,3 is also
a smooth elliptic curve of bidegree (3, 3). Therefore the general P6 ⊃ C3,3

does not contain lines l ⊂ T ; in particular P5 = SpanC3,3 does not contain
lines l ⊂ T .

Let P6 := Span (C3,3 + l1). Clearly, the intersection C (P6) = T ∩ P6 is an
effective 1-cycle on T of bidegree (6, 6), containing the cycle C3,3 + l1. Since
deg (C3,3 + l1) = (3, 4), C (P6) cannot contain more than 2 lines of bidegree
(0, 1) - different from l1. Therefore, one can always choose a line, say l2, ∈
{l2, . . . , l18} (=a set of cardinality > 2) such that Span (C3,3 + l1 + l2) = P7.
Let S = T ∩ P7 be the hyperplane section of T defined by P7.

Let P6 be a general hyperplane in P7; in particular, we may assume that
the 1-cycle C (P6) = T ∩ P6 = S ∩ P6 is reduced. Remember that C (P6)
is a (singular) canonical curve of pa = 7; moreover the curve C3,3 is an
elliptic component of C (P6), and of degree 6. Therefore the effective 1-
cycle C̄ = C (P6) − C3,3, being a component of the canonical curve C (P6),
is a (possibly singular) curve of pa = 1, of degree 6, and dim Span C̄ = 5.
Denote by P̄5 the 5-space Span C̄, and let {P6(t) : t ∈ P1} be the pencil of
codimension 1 subspaces of P7 through P̄5. If t ∈ P1 is general then - just
as above - the effective 1-cycle C3,3(t) := S ∩ P6(t) − C̄ is of pa = 1 and of
bidegree (3, 3). Since P6 ⊃ P̄5, P6 = P6 (t0) for some t0 ∈ P1. Therefore the
curve C3,3 moves in the elliptic pencil {C3,3(t)} on S, and C3,3 = C3,3(t0).
The rationally equivalent curves C3,3(t) ⊂ S are numerically equivalent to
each other; in particular, the general element C3,3(t) of {C3,3(t)} is - just like
C3,3 = C3,3(t0) - an elliptic curve of bidegree (3, 3) which intersects the lines
l1 and l2.

Clearly, the general (0, 1)-line l ⊂ T does not lie on S. Let l be such a line.
Then l intersects the hyperplane section S in a single point x = l ∩S. Since
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the curves C3,3(t) sweep S out, there exists C3,3(t′) such that x ∈ C3,3(t′).
This way, we obtained the connected effective 1-cycle C = C3,3(t′) + l1 +

l2 + l such that:
(1). C3,3(t′) ∈ D = the closure of the family of elliptic curves of bidegree

(3, 3) on T - see (5.1);
(2). The (0, 1)-lines l1, l2 and l intersect C3,3(t0);
(3). Span (C3,3(t′) + l1 + l2 + l) = P8.

Since (3) is an open condition on the family

Σ3,6 ={C3,3+l1+l2+l : C3,3∈D, l1, l2, l are(0, 1)−lines onT intersectingC3,3},
then (3) remains valid for the general C3,3 ∈ D, and for the general (hence -
any) triple (l1, l2, l3) of (0, 1)-lines intersecting C3,3.

Turning back to our initial (general) C3,3, we conclude that
Span (C3,3 + l1 + l2 + l3) = P8 - independently of the choice of the triple
(l1, l2, l3) of distinct (0, 1)-lines intersecting C3,3.

It remains to see that C = C3,3 + l1 + l2 + l3 ∈ C̄.
Let, as above, l1, . . . , l18 be the (0, 1)-lines which intersect C3,3, let l̄i =

p−1 (p (li))− li, i = 1, . . . , 18 be their residue (0, 1)-lines, let L = l1 + · · ·+ l18,
and let S(L) be the ruled surface defined by blowing down l̄i, i = 1, . . . , 18.

Let L′ = l̄1 + l̄2 + l̄3 + l4 + · · ·+ l18, let C3 = p(C) = p (C3,3), let S (C3) =
p−1(C).

Let σ : S (C3) → S(L) and σ′ : S (C3) → S(L′) be the natural maps
defined by L and L′ (see (2.3.1)). The map σ sends the component C3,3

of C isomorphically onto a section C0 := σ (C3,3) of S(L). By the gen-
eral choice of C3,3, (C0, C0)S(L) = (C3,3, C3,3)

S(C3)
. Now, the obvious equal-

ity degNC3,3|T = degC3,3 = 6, and the normal bundle sequence for the
embedding C3,3 ⊂ S (C3) ⊂ T , imply (C0, C0)S(L) = (C3,3, C3,3)

S(C3)
=

degNC3,3|S(C3) = −3. Therefore e(S(L)) = 3, and C0 is the unique mini-
mal section of S(L) - see (1.3.4)(*).

The map σ′ : S (C3)→ S(L′) sends C3,3 isomorphically onto a section C ′0
of S(L′), blows-down the lines l1, l2 and l3 (and blows-down no other line
which intersects C3,3). Therefore σ′(C) = σ′(C3,3) = C ′0, and (C ′0, C

′
0)S(L′) =

(C,C)S(C3) = (C3,3, C3,3)
S(C3)

+ 3 = 0, i.e. C ′0 = σ(C) is a minimal section of
S(L′) and e(S(L′)) = 0 - see (1.3.4)(*). Therefore L′ ∈ Supp Θ, and C ∈ C̄
- contradiction (⇐ C = C3,3 + l1 + l2 + l3 ∈ C̄ fulfills the conditions (3) and
(b)).

It follows that e(Θ) cannot be 0, and Lemma (2.4.2) is proved.

(2.4.3).

Corollary. e = e(Θ) = −1, ē = e(P−) = 0.
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3. The family of minimal sections CΘ.

3.1. Definition of CΘ.
(3.1.1). Let L ∈ Supp Θ be general, and let S(L) be the corresponding
minimal model of S(C(L)) - see (2.3). It follows from (2.4.1)− (2.4.3) that
e(S(L)) = e = −1, S(L) is isomorphic to an indecomposable surface of type
(1.3.4)(4), and the family of minimal sections CΘ(L) of S(L) is parametrized
by the base curve C - see (1.3.4)(4), or [14, Ch. 5, Exer. (2.7)].

Let L be as above, and let C be a general element of CΘ(L). Since the
projection p = p1 maps C isomorphically onto a plane cubic, degC = (3, d)
for some integer d; and a straightforward check shows that d = 7 (see e.g.
(2.4.1)− (2.4.3)). In particular,

C∈C3,7(T ) :={the family of effective connected 1-cycles on T, of bidegree (3, 7)}.

On the base of the preceding, we define:

CΘ := ( the closure in C3,7(T ) of) {C : C ∈ CΘ(L), L ∈ Supp Θ is general } ,

where the term “general” can be defined in an obvious way.
Clearly, dim CΘ = 10 (the family CΘ is generically a finite covering of

an elliptic fibration over the 9-dimensional projective space of all the plane
cubics).
(3.1.2).

Proposition. Let CΘ be the family of minimal sections defined in (3.1.1),
and let C be a general element of CΘ. Then degC = (3, 7), and p = p1 maps
C isomorphically onto the smooth plane cubic p(C) ⊂ P2.

4. The Abel-Jacobi image of the family CΘ.

Theorem 4.1. Let Φ : CΘ → J(T ) be the Abel-Jacobi map for the family
CΘ (see e.g. [5]). Then the image Φ (CΘ) is a copy of the theta divisor Θ(T ).

Proof. It follows from (3.1.1), (3.1.2) that the family CΘ is generically an
elliptic fibration over the family Supp Θ. Let L ∈ Supp Θ be general. Then
the fiber CΘ(L) = ξ−1(L) of the natural map ξ : CΘ → Supp Θ is isomorphic
to the plane cubic C defined by the image of L under the map p∗ : Supp Θ→
|OP2(3)|. The general element C(x), x ∈ C of ξ−1(L) is mapped, by p,
isomorphically onto the plane cubic C. The only degenerations of C(x) are
caused by the 18 intersection points of C and ∆. They can be described
as follows: Let L = l1 + · · · + l18, and let l̄i be the complementary line of
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li, i.e. l̄i = p−1 (p (li)) − li. Let Li = L + l̄i − li. The ruled model S(Li)
is of type (1.3.4)(2.b), and the degenerate elements of the fiber ξ−1(L) are
C+
i + l̄i, C

−
i + l̄i, where C+

i and C−i are the minimal sections of S(Li).
We shall prove the following.

Lemma 4.2. Let L ∈ Supp Θ, etc., be as above, and let C ′ and C ′′ be two
general elements of the fiber ξ−1(L). Then Φ (C ′) = Φ (C ′′).

Proof. The ruled model S(L) is of type (1.3.4)(4). we fix C ′ = C(x) to be
the tautological section of an indecomposable rank 2 bundle E(x), defined
by the extension 0 → OC → E(x) → OC(x) → 0 (here C ∼= C ′ is the
base of the ruled surface S(L)). In particular, C ′ is a minimal section of
S(L), i.e. C ′ ∈ ξ−1(L). Let C ′′ be a section of S(L) = P(E(x)). Let
f be the “fiber” of S(L), and let C ′ = C(x) be the “section”. Then, in
Pic S(L) = Z · C ′ + Pic(C) · f ⇒ C ′′ = C ′ + δ · f , for some δ ∈ PicC;
and one can always choose the divisor δ such that Supp δ does not intersect
C ∩∆. By assumption, C ′′ ∈ ξ−1(L). Therefore the section C ′′ is minimal
and deg δ = 0. Therefore the sections C ′ and C ′′, regarded as 1-cycles on
the threefold T , differ from each other by the cycle δ · f = p−1

1 (δ) which is
mapped to zero by the cycle-class map - since all the fibers of p : T → P2

are rationally equivalent. In particular Φ (C ′) = Φ (C ′′).

Let Ψ : Supp Θ → Θ be the Prym-Abel-Jacobi map, defined by sending
the elements L(t) of the linear system |L| to the sheaf L, and let ξ : CΘ →
Supp Θ be as above. It follows from (4.2) that the map ξ factors through Φ
and Ψ, i.e., there exists a correctly defined map i : Φ (CΘ) → Θ such that
i ◦Φ = Ψ ◦ ξ. It follows immediately from the definition of i that the map i
is an isomorphism, and Theorem (4.1) is proved.

Corollary 4.3. Let C ∈ CΘ be general. Let L = Ψ ◦ ξ(C), let |L| =
{L(t) : t ∈ P1}, and let {C(t) : t ∈ P1} be the corresponding 1-dimensional
rational family of plane cubics. Then the connected component of the fiber
ξ−1 ◦ Ψ−1 (L) = i−1 ◦ Φ−1 (L), which passes through C, is isomorphic to an
elliptic fibration f : CL → P1; the fiber f−1(t) is isomorphic to the plane
cubic curve C(t).

5. The family D of elliptic sextics of bidegree (3,3) on T .

5.1. In this section we prove that the Abel-Jacobi map sends the 6-dimensional
family D of elliptic sextics on T of bidegree (3,3) onto a 3-dimensional sub-
variety Z ⊂ J(T ) - isomorphic to a component of Sing Θ.
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Definition of D.
Let C ⊂ T be a reduced and connected curve of arithmetic genus pa(C) =

1, and of total degree |degC| = 6. Here deg is the usual bidegree map
deg : { 1-cycles onT} → Z ⊕ Z. If such a curve C ⊂ T does exists, the
bidegree degC can be one of the pairs (2, 4), (3, 3), (4, 2). We shall consider
the middle case: degC = (3, 3). By definition

D = (the closure of){C − a reduced and connected curve onT :

pa(C) = 1,deg(C) = (3, 3)}.

We call D the family of elliptic sextics of bidegree (3, 3) on T .

Lemma 5.2. Let T be general, and let D(T ) be the family of elliptic sextics
on T of bidegree (3, 3). Then
(i) dimD(T ) = 6.

(ii) The general curve C ∈ D(T ) is smooth, and the projections p1 = p and
p2 map C isomorphically onto plane cubics.

(iii) (p = p1): Let L(C) ∈ Symm18 ∆̃ be, as usual, the effective divisor on
∆̃ defined by the 18-tuple of lines of bidegree (0, 1) which intersect the
curve C ∈ D. Then L(C) ∈ Supp Θ ∪ SuppP−.

Proof. By definition, any bidegree (2, 2) threefold T belongs to the linear
system |OW (2)| ∼= P35 (see e.g. the notation of (5.3.2.)). Denote by D(W )
the family of elliptic sextics C ⊂ W , of bidegree degC = (3, 3). Then, for
any T ∈ |OW (2)|, and for any C ∈ D(T ), the curve C belongs to the family
D(W ). Let Π ⊂ D(W )×|OW (2)| be the incidence set Π = {(C, T ) : C ⊂ T},
and let q1 : Π→ D(W ) and q2 : Π→ |OW (2)| be the canonical projections.

(*) Sublemma. q2 is surjective.

Proof. Let q2(Π) ⊂ |OW (2)| be the image of q2. Since |OW (2)| ∼= P35 is
irreducible, the surjectivity of q2 will follow from the inequality dim q2(Π) ≥
35. We shall prove this inequality.

(1). First of all, we shall evaluate dim Π.
LetG = G(5 : SpanW ) = G(6, 9) be the Grassmanian of the 5-dimensional

projective subspaces P5 ⊂ SpanW = P8, let P5 be a general element of G,
and let C = C (P5) = W ∩P5. It is not hard to see that C is an elliptic sextic
of bidegree (3, 3) in W , s.t. SpanC (P5) = P5 - see (2). In other words, the
set

G0 =
{
P5 : C

(
P5
)

= W ∩ P5 is a smooth elliptic sextic of bidegree (3, 3),

s.t. SpanC
(
P5
)

= P5
}
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is an open subset of G, and the map φ0 : G0 → D(W ), φ0 : P5 → C (P5) is
a regular embedding. Let D0 = φ (G0) be the isomorphic image of G0, and
let D′ ⊂ D(W ) be the closure (in D(W )) of D0.

It follows from the preceding that the biregular isomorphism φ0 : G0 → D0

defines a birational map φ : G → D′. In particular, dimD(W ) ≥ dimD′ =
dimG = 18.

Let C ∈ D(W ) be general, and let J C ⊂ OW be the sheaf of ideals
of C ⊂ W (see [14, Ch. 2, Sect. 5]). After tensoring the exact sequence
0 → J C → OW → OC → 0 by O(2), and passing to cohomologies, we
obtain the exact sequence

0→ H0
(
W,J C(2)

)→ H0 (W,OW (2))→ H0 (C,OC(2))→ . . .

Therefore dimH0 (W,J C(2)) ≥ h0 (W,OW (2)) − h0 (C,OC(2)) = 36 −
h0 (C,OC(2)).

Since C is an elliptic sextic degOC(2) = 12. Then the Riemann-Roch
formula implies h0 (OC(2)) = 12. Therefore h0 (W,J C(2)) ≥ 24.

Let q−1
1 (C) ∼= {T ∈|OW(2)| : C∈D(T )} be the fiber of q1 at C. It follows

from the definition of J C that {T ∈ |OW (2)| : C ⊂ T} ∼= P (H0 (W,J C(2))),
i.e. the dimension of the general fiber of q1 = dim q−1

1 (C) =
dimP (H0 (W,J C(2))) ≥ 23.

Therefore dim Π = dimD(W ) + dim( the general fiber of q1) ≥ 18 + 23 =
41.

(2). In order to evaluate dim q2(Π) we shall find the dimension of the
general fiber of q2.
First of all, we shall prove (ii) for the general element T ∈ q2(Π).

Clearly, (ii) is an open condition on Π. Therefore, in order to prove (ii)
for the general element T of q2(Π), it is enough to find a smooth bidegree
(2, 2) threefold T and a smooth elliptic sextic C ⊂ T which fulfills (ii). In
order to find a pair (C ⊂ T )∈ Π which fulfills (ii), one proceeds as follows:

Let pi : W → P2, i = 1, 2 be the canonical projections onW ∼= P2×P2, and
let P6 be a general codimension 2 subspace in P8. Then S = S (P6) = W ∩P6

is a smooth Del Pezzo surface of degree 6 embedded anticanonically in P6.
The hyperplane sections of S are, in fact, the same as the elliptic curves
of bidegree (3, 3) on S. Indeed, by the Theorem of Bertini, the general
element C of the system |OS(1)| is smooth. Moreover, the projections p1

and p2 map C isomorphically onto plane cubics. Indeed, the composition
p2 ◦ p−1

1 : P2 → S → P2 is an elementary Cremona transformation, defined
by triples of points (x1, x2, x3) ⊂ P2 = p1(S) and (y1, y2, y3) ⊂ P2 = p2(S).
In particular, the curve C ⊂ S must be a proper p1-preimage of a cubic
C1 ⊃ {x1, x2, x3}, as well - a proper p2-preimage of a cubic C2 ⊃ {y1, y2, y3}.
Therefore p1 and p2 map the elliptic curve C isomorphoically onto plane
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cubics; in particular C is an elliptic sextic on W of bidegree (3, 3).
In order to find T ⊃ C, we choose a general quadric Q ⊂ P8 which passes

through C, and let T = Q∩W . Then the pair (C ⊂ T ) ∈ Π fulfills (ii). This
proves (ii) for the general T ∈ q2(Π).

We are ready to compute dim q−1
2 (T ).

Let T ∈ q2(Π) be general, and let C ∈ D(T ) be a general elliptic sextic of
bidegree (3, 3) on T . Let S(C1) = p−1

1 (C1) and S(C2) = p−1
2 (C2), where C1 =

p1(C) and C2 = p2(C) be the isomorphic projections of C. Just as in Sections
2, 3, 4, the curve C defines, via intersection, the effective divisors Li(C) on
∆̃i, which belong to the linear system of some Li ∈ Nm−1 (ω∆i

) , i = 1, 2.
According to the agreement we fix p = p1. Let ∆ = ∆1, L(C) =

L1(C), S(C) = S(C1), etc., be the corresponding objects. Obviously, C is
a minimal section of the ruled surface S(L(C)) (see (2.3.1), (2.3.2)), and the
same arguments as in Sect. 2, 3, 4 imply that (C,C)S(C) = (C,C)S(L(C)) =
e(S(L(C))) = 3 (see also the proof of Lemma (2.4.2)). Let

0→ NC|S(C) → NC|T → NS(C)|T ⊗OC → 0

be the normal bundle sequence for C ⊂ S(C) ⊂ T . It follows from the
preceding that:
(a). degNC|S(C) = (C,C)S(C) = e(S(C)) = 3; therefore h0

(
NC|S(C)

)
=

3, h1
(
NC|S(C)

)
= 0.

(b). NS(C)|T = p∗ (OP2(3)); therefore h0
(
NS(C)|T ⊗OC

)
= 9,

h1
(
NS(C)|T ⊗OC

)
= 0.

Now (a) and (b) imply: h1
(
NC|T

)
= 0, and dimD(T ) = h0

(
NC|T

)
= 6.

Since q−1
2 (T ) is canonically isomorphic to D(T ), this implies the equality

dim q−1
2 (T ) = 6, for the general T ∈ q2(Π).

(3). It follows from (1) and (2) that

dim q2(Π) = dim Π− dim( the general fiber of q2) ≥ 41− 6 = 35.

This proves (∗) = the surjectivity of q2.

It follows from the surjectivity of q2 that (i) and (ii) are true for the general
element of |OW (2)| (see (2)). As for (iii) - it is a direct consequence from
the arguments stated in the end of (2).

5.3. The family D and the quadrics of rank 6 through T .
(5.3.1). The elements of D as components of canonical curves on T .

Let P6 be a subspace of P8 = SpanT such that dim (T ∩ P6) = 1, and
let C (P6) = T ∩ P6. The curve C (P6) ⊂ T is a canonical curve of degree
12, and of arithmetic genus 7. Call such a cure C a canonical curve on T .
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Obviously, all the canonical curves on T are rationally equivalent, and the
family of canonical curves on T can be represented by the 14-dimensional
Grassmann variety G(7, 9) = G (6 : P8).

The curves of the family D are closely connected with the degenerations
of the family of canonical curves on T . More precisely, let C ∈ D be general,
let P5(C) = SpanC, and let P6 ∈ P2(C) := P8/P5(C) be a 6-space through
P5(C). Then the canonical curve C (P6) splits into two component: C (P6) =
C + C̃, where C̃ ∈ D, and δ

(
C, C̃

)
= #

(
C ∩ C̃

)
= 6. In particular, C and

C̃ are projectively normal, since C and C̃ are components of a canonical
curve. (In other words, SpanC and Span C̃ must be projective spaces of
dimension 5.)
(5.3.2). The determinantal subvarieties of I2(W ).

Let W ⊂ P8 bethe Segre image of P2×P2, and let P2×P2 = P(E)×P(F ),
where E and F are complex 3-spaces. Let P8 = P(E⊗F ). Then, as it follows
from the definition of the Segre map, the elements of W ⊂ P8 are in 1:1
correspondence with the C∗ -classes of tensor products u⊗v : u ∈ E, v ∈ F .

Let (ei, i = 1, 2, 3) and (fj, j = 1, 2, 3) be bases for E and F , with dual
bases (xi, i = 1, 2, 3) and (yj, j = 1, 2, 3). Then (gij = ei⊗fj, i, j = 1, 2, 3) is
a basis for E⊗F with dual basis (zij = xi⊗yj, i, j = 1, 2, 3). Let [zij]i,j=1,2,3

be the coordinate matrix, and let I2(W ) be the projective space of quadrics
in P8 which pass through W . Then I2(W ) is spanned by the two-by-two
minors of [zij], i.e. I2(W ) is projective 8-space. Clearly, the choice of the
coordinates zij defines a linear isomorphism

ψ(z) : P8 = P(E ⊗ F ) ∼= I2(W ).

The linear map ψ(z) sends the C∗ -classes of the unit tensor products (i.e.
- the elements of W ) to quadrics of rank 4. Moreover, any quadric of rank
4, which contains W , can be represented in this way. It is well known (see
e.g. [17]) that the set

SecW := the closure of the union of all the secant lines ofW,

is a cubic hypersurface in P8, i.e. W is one of the four Severi varieties (ibid.).
It follows from the definition of ψ(z) that ψ(z) sends the points of SecW to
quadrics of rank 6. Moreover, any quadric of rank 6 which contains W can
be represented (in a non-unique way) as an image of a point of SecW . We
collect these observations in the following

(*) Lemma. Let I2(W ) be the projective space of quadrics in P8 which
contain the fourfold W , and let Dk(W ) = Dk (I2(W )) = (the closure of)
{Q ∈ I2(W ) : rank(Q) = k} be the k-th determinantal subvariety of I2(W ).
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Then Dk(W ) 6= ∅ ⇔ k ∈ {4, 6, 9}. Moreover, there exists a linear isomor-
phism ψ : P8 → I2(W ) such that

ψ(W ) = D4(W ),

ψ(SecW ) = D6(W ).

Proof. Let [zij] be as above, and let ψ = ψ(z). Then the natural action of
PGL(E) × PGL(F ) on P8, which does not change the rank of the 3 × 3
matrix [zij], splits P8 into 3 orbits - the fourfold W , and the quasi-projective
varieties (SecW )−W and P8 − SecW . The linear map ψ sends the closure
of any of these orbits onto a determinantal subvariety of I2(W ). Now, it can
be easily seen that these three determinantal subvarieties are D4, D6 and
D9.

(5.3.3). Quadrics of rank 6 related to the incidence correspondence Σ ⊂
D ×D.

Let T be a general bidegree (2, 2) divisor, and let Q ⊂ P8 be any quadric
such that Q ∩W = T . It follows from (5.3.2) that such a quadric Q is not
unique - Q can be replaced by any quadric in Span (Q, I2(W )) − I2(W ) =
P9 − P8; however Q is unique mod .I2(W ).

Let Σ ∈ G(7, 9) (see (5.3.1)) be the incidence correspondence

Σ = ( the closure of )
{
P6 : C

(
P6
)

= C + C̃, whereC, C̃ ∈ D
}
.

The set Σ can be regarded (up-to closed subsets of codim. > 1) also as an
incidence correspondence Σ ⊂ D ×D.

Let P6 ∈ Σ be general. the codim. 2 subspace P6 ⊂ P8 intersects the
fourfold W in an anticanonically embedded del Pezzo surface S (P6) of degree
6, and the quadric Q intersects S (P6) in a pair of elliptic sextics C+ C̃. Let
P5(C) and P5

(
C̃
)

be, as in (5.3.1), the spans of C and C̃, and let H and H̃

be linear forms on P8 such that (H)0 ∩ P6 = P5(C),
(
H̃
)

0
∩ P6 = P5

(
C̃
)
.

The splitting Q ∩ S (P6) = C + C̃ implies:

Q|P6 = H · H̃|P6 (mod .I2
(
S
(
P6
))

= the “restriction” of I2(W ) onP6).

(Here Q is the quadratic form of Q, and we disregard the multiplication by a
non-zero constant.) Let P6 = (H1 = H2 = 0) be any pair of linear equations
which define the subspace P6 ⊂ P8. It follows from the preceding that Q can
be represented in the form

Q = H · H̃ +H1 · H̃1 +H2 · H̃2, mod .I2(W ),
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where H̃1 and H̃2 are some linear forms. Clearly, the quadric of equation
H · H̃ +H1 · H̃1 +H2 · H̃2 does not belong to the set D6(W ) (the restriction
of this quadric to P6 does not contain the surface S (P6)). In particular, the
quadric Q in the definition of T can be replaced by this quadric of rank 6.

5.4. The Abel-Jacobi image Z = Φ (D).

Let T ⊂ W, D, etc., be as above, and let Φ : D → J = J(T ) be the
Abel-Jacobi map for the family D. Let C ∈ D be general, and let Φ∗ :
H1 (T,Ω2)→ H1

(
NC/T ⊗ ωT

)
be the codifferential of Φ at the point C ∈ D

- see e.g. [5].
The space H1 (T,Ω2) is naturally isomorphic to H0

(
ΩJ(T )

)
- the cotan-

gent space of J(T ) at a fixed point. The normal bundle sequence for the
embedding T ⊂ W , and the formulae of Bott and Künneth imply the iso-
morphism

α : H0 (OP8(1)) ∼= H0 (T,O(1, 1))→ H1
(
T,Ω2

)
(see also [24]). In particular, the elements of H1 (T,Ω2) can be regarded as
linear forms on P8.

The following proposition is an analog of Lemma 4.6 in [25].

Proposition 5.4.1. Let C ∈ D be general, let P5(C) = SpanC be as in
(5.3.1), let P6 be any 6-space through P5(C), and let Q = H · H̃ +H1 · H̃1 +
H2 · H̃2, mod .I2(W ) be any of the representations of the quadric Q defined
by the element P6 ∈ Σ - see (5.3.3).

Let Φ∗ and α be as above, and let Φ ·α be their composition. Then the sub-
space ker (Φ · α) ⊂ H0 (OP8(1)) is spanned by the forms H, H̃,H1, H̃1, H2, H̃2.

Proof. see [25], the proof of Lemma 4.6.

Note that the analog of the family D, studied in [25], is the family of
“halves” of canonical curves ( = the elliptic quadrics ) on the quartic double
solid ( = the Fano threefold which is a double covering of P3 branched along
a quartic surface ); see also (5.3.1).

Corollary 5.4.2. Let Z = Φ (D) be the Abel-Jacobi image of the family of
elliptic sextics on T of bidegree (3, 3). Then dimZ = 3.

(5.4.3). The fiber Φ−1(z).
(A). Let C ∈ D be general, let z = Φ(C), and let Φ−1(z)0 be the

irreducible component of Φ−1(z) such that C ∈ Φ−1(z)0. Let P5(C) =
SpanC, and let u, v be the local parameters at the (general) point P7 =
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P7(0, 0) ∈ P2(C)∗ = (P8/P5(C))∗. Let S(u, v) = T ∩ P7(u, v). The sur-
face S(u, v) is a hyperplane section of T which contains (the general) C ∈
D. Such a surface S(u, v) cannot be reducible. Otherwise li = pi(C) =
pi(S(u, v)), i = 1, 2 will be lines. Therefore S(u, v) is a surface of type
K3, and the elliptic curve C = C(u, v; 0) ⊂ S(u, v) moves in a pencil
{C(u, v; t) ⊂ S(u, v) : t ∈ P1}. Obviously, C(u, v; t) ∈ D and Φ(C(u, v; t)) =
Φ(C), since the curves C(u, v; t) and C = C(u, v; 0) are rationally equivalent
on T , i.e. C(u, v; t) ∈ Φ−1(z), ∀u, v, t.

Denote by {C(u, v; t)} the family of all these curves. By the construction
of C(u, v; t), the family {C(u, v; t)} is a 3-dimensional and irreducible family
of rationally equivalent curves, and C = C(u, v; 0) ∈ {C(u, v; t)}. More-
over, dim Φ−1(z)0 = dim Φ−1(z) = dimD − dimZ = 6 − 3 = 3. Therefore
{C(u, v; t)} = Φ−1(z)0.

(B). Let P6 ⊃ P5(C), and let Q0 = H · H̃+H1 · H̃1 +H2 · H̃2 be defined as
in (5.3.3), (5.4); let Q0 be also the quadric defined by the equation Q0 = 0.

Let Λ be the ruling of Q0 defined by the condition P5(C) ∈ Λ, and let P5
0 ∈

Λ, P5
0 6= P5(C). Let l = Span {P5

0,P5(C)} be the line spanned by P5
0, P5(C) ∈

Λ = P3. Being a subset of Λ, the line l can be regarded as a family of
spaces {P5(x) : x ∈ P1 = C ∪∞, P5(0) = P5

0, P5(∞) = P5(C)}. Let C(x) =
P5(x) ∩ T, x ∈ C ∪∞.

Clearly C(x) ∈ D, ∀x; moreover - by construction - C(x) is rationally
equivalent to C(∞) = C, ∀x. Therefore Φ(C(x)) = Φ(C(∞)) = Φ(C) =
z, ∀x. In particular, if C0 := P5

0 ∩ T = P5(0) ∩ T = C(0) then Φ (C0) = z.
By assumption, P5

0 is chosen to be an arbitrary element of Λ−{P5(C)}, C0 =
P5

0 ∩ C, and C = P5(C) ∩ T . Therefore, for any P5 ∈ Λ, the curve C (P5) :=
P5 ∩ T is an element of the fiber Φ−1(z). This way, we define the map

λ : P3 ∼= Λ→ Φ−1(z), P5 7→ λ
(
P5
)

= C
(
P5
)

= P5 ∩ T.
Since the different P5 ∈ Λ intersect different curves C (P5) = P5 ∩ T , the

map λ is an embedding of Λ in the fiber Φ−1(z), i.e. Λ ∼= λ(Λ) ⊂ Φ−1(z)
(where z = Φ(C)). Moreover Λ ∼= P3, dim Φ−1(z) = dim Φ−1(z)0 = 3,
and P5(C) ∈ Λ (i.e. C = P5(C) ∩ T = λ (P5(C)) ∈ λ(Λ)). Therefore
P3 ∼= Λ ∼= λ(Λ) = Φ−1(z)0.

(C). It follows from the preceding that the quadric Q0 does not depend on
the element C(u, v; t) ∈ Φ−1(z)0. We write Q0 = Q0(C) = Q0(C(u, v; t)) =
Q0(z).

The considerations from (A) and (B) imply that if C ∈ D is general and
z = Φ(C), then the elements of the irreducible component (C ∈)Φ−1(z)0 of
the fiber Φ−1(z) ∈ D can be described by two alternative ways:

(1) as element of the family {C(u, v; t)} - see (A);
(2) as intersections C (P5) = P5 ∩ T, P5 ∈ Λ, where Λ is the ruling of the



THE BIDEGREE (2, 2) THREEFOLD 79

quadric Q0(z) defined by P5(C) ∈ Λ ∼= P3.
In particular Φ−1(z)0

∼= P3.

Proposition 5.5. Let T ⊂ W be a general bidegree (2, 2) divisor, let
pi : T → P2, i = 1, 2 be the projections, and let Singsti Θ be as in (1.2.2).
Then:
(i) There exist canonically defined maps Li : Z → Li(Z) ⊂ P

(
∆̃i,∆i

) ∼=
J(T ), where Li(Z) is a component of Singsti Θ, i = 1, 2.

(ii) Let C ∈ D be general, and let z = Φ(C). Then the quadric Q0(C) =
Q0(z) - see (5.4.3)(∗) - coincides with the projective tangent cone Conez
of Θ at the point z ∈ Z ⊂ Sing Θ.

Proof. Let Q ∈ P8 be any quadric such that T = W ∩ Q, and let I2(T ) =
P (H0 (P8,O(2− T ))) be the space of quadrics through T (see also (5.3.2)).
Clearly, I2(T ) ∼= Span {I2(W ), Q} ∼= P9.

Let Dk(T ) := ( the closure of ) {P ∈ I2(T ) : rank(P ) = k} be the k-th de-
terminantal locus in I2(T ).

Let k = 6. By (5.3.2)(∗), D6(T ) ⊃ D6(W ) ∼= SecW , and Q0(z) does
not belong to I2(W ) ⊃ D6(W ) - see (5.3.3). Therefore the rule z 7→ Q0(z)
defines a map Q0 : Z → D6(T ), and the image Q0(Z) is not a subset of
D6(W ).

Lemma 5.5.1. Q0(Z) is a component of D6(T ), and D6(T ) = Q0(Z) ∪
D6(W ).

Proof. Let Q0 ∈ D6(T )−D6(W ), and let Λ be one of the two rulings of the
quadric Q0. Let P5 ∈ Λ. Then the set C (P5) = T ∩ P5 = (W ∩ Q) ∩ P5 =
(W ∩Q0) ∩ P5 = W ∩ P5 is a curve on T . Moreover, as it follows from the
elementary projective properties of the fourfold W , C (P5) is an elliptic curve
of bidegree (3, 3), i.e. C ∈ D. Clearly, Q0 = Q0 (C (P5)) = Q0(z), where
z = Φ (C (P5)) ∈ Z.

(5.5.2). The differential dQ0 via the Gauss map of Z.
It follows from the definition of Q0(Z) that dimQ0(Z) ≤ dimZ = 3.

Moreover, Q0(Z) is a component of the determinantal locusD6(T ) ⊂ I2(T ) ∼=
P9, and the general quadric Q ∈ I2(T ) has rank 9. It follows from the
general properties of the determinantal varieties (see [12, Ch. 14]) that the
components of D6(T ) = D9−3(T ) cannot be of codimension greater than
3 · (3 + 1)/2 = 6. Therefore dimQ0(Z) = dimZ = 3, and the map Q0 : Z →
Q0(Z) is generically finite. In particular, the differential dQ0 : TZ → TQ0(Z)

is generically an isomorphism. Let P (dQ0) : P (Tz) → P
(
TQ0(Z)

)
be the

projectivization of dQ0.
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By definition, Z is a subvariety of the abelian variety J(T ), where dimZ =
3, dimJ(T ) = 9. Let Z0 ⊂ Z be the open subset of smooth points of Z. One
can define the regular map

Gauss0 : Z0 → G(3, 9) = G
(
2 : P9

)
,

z 7→ [( the translate in 0 ∈ J(T ), of ) the tangent space ofZ ⊂ J(T )

at the point z ∈ Z].

By definition, the rational Gauss map for Z ⊂ J(T ) is the rational map
Gauss : Z → G(3, 9), defined by Gauss0 - see e.g. [13, Ch. 2, Sect. 7].

Let z ∈ Z be general. (In particular, z is a smooth point of Z.) It follows
from Proposition (5.4.1) that the projective 2-space P2(z) = vertex (Q0(z))
can be identified with P(Gauss(z)) ⊂ P8 = P

(
TJ(T )|0

)
. Since P (dQ0) is

a local isomorphism, we can identify the spaces P
(
TQ0(Z)|z

)
and P2(z) =

vertex (Qz) (see also [24]).
(5.5.3). Proof of (5.5)(i). Let i ∈ {1, 2} be fixed, and let Li : D →
Symm18 ∆̃i be the map defined in the proof of Lemma (5.2). (In (5.2),
p = p1 and L(C) = L1(C); the definition of L2(C) is evident.) Let C0 ∈ D
be general, and let z = Φ (C0). Let Λ be the ruling of the quadric Q0(z)
defined by the condition P5 (C0) ∈ Λ.

On the one hand, the element P5 ∈ Λ determines uniquely the curve
C (P5) = T ∩ P5 ∈ D.

On the other hand, if C ∈ D, and SpanC = Pd, then (by Riemann-Roch)
d ≤ degC − pa(C) = 5. Moreover if P6 ⊃ SpanC is general, then, by
adjunction, C (P6) = T ∩ P6 must be a degenerate canonical curve of degree
12. Since C is a component of the canonical curve C (P6), dim SpanC must
be maximum, i.e. d = dim SpanC = degC − pa(C) = 6 − 1 = 5. In
particular, if C ∈ D is such that C = C (P5) = T ∩P5 for some P5 ∈ Λ, then
this P5 is unique. This way, one can regard Λ as a subvariety of D.

Let C ∈ Λ. Being an element of D, the curve C defines uniquely the
effective divisors Li(C) ∈ Symm18 ∆̃i, i = 1, 2 (see Lemma 5.2). Moreover,
if L = Li(C) for some C ∈ D then this C must be unique.

Indeed, let (as usual) i = 1, p = p1, etc., and let C ′ ∈ D be such that
L1 (C ′) = L = L1(C). Then both C and C ′ have to be minimal sections
of the ruled model S(L) (see 2.3.1); moreover e(S(L)) = 3 - see the proof
of Lemma (2.4.2). Therefore C = C ′ (see (1.3.4)(1)), i.e. the curve C ∈ D
defining the fixed L = L1(C) must be unique.

As it follows from the preceding, the rule C 7→ Li(C), defines an embed-
ding P3 = Λ → Symm18 ∆̃i. In other words, if Λi = Li(Λ) ⊂ Symm18 ∆̃i is
the Li-image of Λ then the map Li : Λ → Λi is an isomorphism. In partic-
ular Λi

∼= P3, i.e. the set Λi is a rational subfamily of Supp Θi ∪ SuppP−i ,
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see (5.2)(iii). Here Θi and P−i are the components of the effective part
of Nm−1 (ω∆i

), see e.g. [26]. Therefore all the divisors Li(C) ∈ Λi, C =
C (P5) , P5 ∈ Λ belongs to the same linear system |Li (C0)| on ∆̃i.

Let Li = L (Li (C0)) ∈ Pic18∆̃i be the invertible sheaf defined by the
effective divisor Li (C0) ∈ Symm18 ∆̃i. The rule Li (C0) 7→ L (Li (C0)) defines
a map L : Li (D) → Θ ∪ P−. It follows from Corollary (5.4.2), and from
the definition of the map L ◦ Li, that dimL ◦ Li (D) = dimZ = 3. This
way, we obtained a 3-dimensional subset L ◦Li (D) ⊂ Nm−1 (ω∆i

) such that
h0 (L) ≥ 4, for any L ∈ L ◦ Li (D); here we use the same symbol L for the
sheaf L and for the map L.

The number d = min {dim |L| : L ∈ L ◦ Li (D)} is a constant through an
open subset of L ◦ Li (D).

(*) Lemma 5.1. Let d be as above. Then d = 3.

Proof. Let, e.g., d = 4. (The case d ≥ 5 can be treated in a similar way.)
Let ¯ : ∆̃i → ∆̃i be the involution induced by the double covering ∆̃i → ∆i,
and let

Wi =
{
M = F ⊗O(x− x̄) : F ∈ L ◦ Li (D) , x ∈ ∆̃

}
.

It follows from the definition of Wi that Wi ⊂ Nm−1 (ω∆i
), and h0 (M) = 4

for the general M∈Wi (see e.g. [21, Lemma 3.14]).
Therefore Wi is a 4-dimensional subset of Singsti Θ - see (1.2.2). However

dim Sing Θ = 3 (see [24]). Therefore d cannot be 4.

(**) Remark. The intermediate jacobian J(T ) is a Prym variety which
arises from a double covering of a general plane sextic, in contrast to the
intermediate jacobian J(B) of the desingularized nodal quartic double solid
B - in which case the plane sextic ∆ has a totally tangent conic (i.e., there
exists a conic q for which the intersection multiplicity is even at all points
of q ∩∆, see e.g. [24]). The existence of a totally tangent conic is a closed
condition of codimension one, on the 19-dimensional moduli space of the
plane sextics. Moreover dim Sing Θ(B) = 4 (see [8, Sect. 7]), in contrast
to dim Sing Θ(T ) = 3. This, probably, once more explains why the Dixon
correspondence, which can be identified with a bidegree (2, 2) divisor, cannot
be applied for a discriminantal pair which comes from a nodal quartic double
solid - see [24].

It follows from the preceding that the sheaf L ◦ Li(C) does not depend
on the particular choice of the curve C ∈ Φ−1(z)0, z = Φ(C) = Φ (C0).
Therefore the map L ◦ Li : D → J(T ) factors through the Abel-Jacobi map
Φ : D → Z. Denote by Li : Z → Li(Z) = L ◦ Li (D) the quotient map. It
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follows from (∗) that Li(Z) is a 3-dimensional component of Singsti Θ. This
proves (i).
(5.5.4). Proof of (5.5)(ii).

Let ηi ∈ Pic0
[2]∆i be as usual, the sheaf which defines the unbranched

double covering ∆̃i → ∆i (see (1.3.3)), and let ω∆i
be the canonical sheaf of

∆i. The linear system |ω∆i
⊗ ηi| defines the Prym-canonical map φi : ∆i →

P8. It is known by [24] that if the smooth plane sextics ∆i, i = 1, 2 are the
discriminants of bidegree (2, 2) divisor, then the Prym-canonical map is an
embedding and the isomorphic images ∆T

i = φi (∆i) are projectively normal.
Let Li(z), z = Φ (Co), etc., be as above. The sheaf Li(z) is a stable

singularity of Θ, with respect to pi. Therefore the projective tangent cone
ConeLi(z) of Θ, at the point Li(z), is a quadric which passes through the
Prym-canonical image ∆T

i of the discriminant curve ∆i, i = 1, 2 - see e.g.
[23].

Here we use the following results, due to Verra - see [24]:
(*). Let s : ∆i → T be the Steiner map, defined by the rule s : x 7→

Sing p−1
i (x). Then the image s (∆i) coincides with the Prym-canonical curve

∆T
i .
(**). Let Q ⊂ P8 be a quadric which passes through the Steiner curves

s (∆1) and s (∆2). Then Q ⊃ T .
It follows from the preceding, and from (∗) and (∗∗), that

(i). Conez := ConeL1(z) = ConeL2(z);
(ii). Conez ⊃ T , i.e. Conez ∈ I2(T ).

It is well-known that Conez is a quadric of rank 5 or 6 (see [15]), i.e.
Conez ∈ D5(T ) ∪ D6(T ). It is not hard to see that if T is general then
D5(T ) = ∅. In fact, the general choice of the quadricQ, such thatW∩Q = T ,
implies that codim (D5(T ) ⊂ I2(T )) = 10, outside the fixed determinantal
D4(T ) = D4(W ) ∼= W - see (5.3.2) and [12, Ch. 14]. Therefore rank Conez =
6 - since dim I2(T ) = 9 < 10.

The maps L1 and L2 are local isomorphisms. Therefore the projec-
tive tangent spaces vertex (Q0(z)) = P2(z) = P (TZ |z) (see (5.4.1)), and
P
(
TLi(Z)|Li(z)

)
= vertex

(
ConeLi(z)

)
= vertex (Conez) , i = 1, 2 (see [21], 2.7

and 3.20) can be identified.
It follows that the quadrics Conez and Q0(z) have the same vertex P2(z),

and Conez ⊃ T, Q0(z) ⊃ T . Moreover, Conez and Q0(z) belong to the
determinantal locus D6(T ). An elementary projective considerations implies
that these two quadrics must coincide. This proves (ii).
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As a corollary we obtain:

Theorem 5.6 (The Torelli theorem for the Verra threefold). Let T
be a general smooth bidegree (2, 2) divisor in the Segre image W of P2 × P2,
and let (J(T ),Θ) be the principally polarized intermediate jacobian of T .
Then there exists a component Z of Sing Θ such that dimZ = 3, and T
coincides with the intersection of all the projective tangent cones of Θ at the
regular poins of Z.

Proof. It follows from the preceding that the map Q0 sends the set Z = Φ (D)
onto the component Q0(Z) of D6(T ) (see (5.3.3) and (5.5.1)), and the space
I2(T ) ∼= P9 is spanned by the quadrics of the determinantal locus D6(T ).
Moreover, D6(T ) = Q0(Z) ∪ D6(W ), and SpanD6(W ) coincides with the
proper subspace I2(W ) ∼= P8 of I2(T ) - see (5.3.2)(∗) and (5.5.1).

On the one hand, for the general T , the component I2(T ) is spanned by
the quadrics from Q0(Z), or - equivalently:

(*). I2(T ) = SpanQ0(Z), for T - general.
Clearly, (∗) is an open condition on the pace of bidegree (2, 2) threefolds.

Therefore, in order to prove (∗) for the general T , it is enough to find a
bidegree (2, 2) threefold T (0) such that I2(T (0)) = SpanQ0(T (0)).

Let [zij]1≤i,j≤3
be as in (5.3.2), let Q(0) = z2

11 + z2
22 + z2

33, and let T (0) =
W ∩ (Q(0) = 0). Let ∆ij be the (ij)th minor of the 3 × 3 matrix [zij]; by
(5.3.2), I2(W ) = Span {∆11,∆12, . . . ,∆33}. One has:
(1) Q(0) /∈ I2(W ) & rkQ(0) = 3 ≤ 6⇒ Q(0) ∈ Q0(Z)−(D6(W ) ∩Q0(Z)).
(2) rk (Q(0) + ∆ij) = 6 & (Q(0) + ∆ij) /∈ D6(W ), 1 ≤ i, j ≤ 3. In partic-

ular, (Q(0) + ∆ij) ∈ D6(T ) − D6(W ) = Q0(Z) − (D6(W ) ∩Q0(Z)) ,
1 ≤ i, j,≤ 3.

(3) Q(0), Q(0)+∆11, Q(0)+∆12, . . . , Q(0)+∆33 are linearly independent
in I2(T (0)) ⊂ H0 (P8,O(2)), and dim I2(T (0)) = 10. In particular,
Span {Q(0), Q(0) + ∆11, Q(0) + ∆12, . . . , Q(0) + ∆33} = I2(T (0)).

It follows from (1), (2) and (3) that I2(T (0)) ⊃ SpanQ0(Z) ⊃
Span {Q(0), Q(0) + ∆11, Q(0) + ∆12, . . . , Q(0) + ∆33} = I2(T (0)), i.e.
SpanQ0(Z) = I2(T (0)). This proves (∗) for the general T .

On the other hand, the graded ideal I(T ) = ⊕Id(T ) of T ⊂ P8 is generated
by the component I2(T ), and I2(T ) = P (I2(T )).

Therefore the quadrics of Q0(Z) (resp. - the projective tangent cones of
Θ at the points of Z) cut the projective subvariety T ⊂ P8 out (see also
[25, Prop. 4.14]).
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5.7.

Remarks.
(i). See [24]: Let ZT = Singst1 Θ∪Singst2 Θ. Then Z ⊂ ZT can be separated

among the components of ZT by the numerical property:

Z= the union of all the irreducible components ofZT not having class 12·Θ6/6!.

(ii). Let z ∈ Z be general, and let C ∈ D be such that Φ(C) = z. Let
Q0(C) = Q0(z) ∈ Q0(Z) ⊂ D6(T ) be the rank 6 quadric attached to z, let Λ
be the ruling of Q0(z) defined by P5(C) ∈ Λ, and let Λ̄ be the complementary
ruling of Q0(z). Let P̄5 ∈ Λ̄, let C̄ = T ∩ P̄5, and let z̄ = Φ

(
C̄
)

be the Abel-
Jacobi image of the curve C̄ ∈ D. Obviously, Q0

(
C̄
)

= Q0(z̄) = Q0(z), i.e.
the degree of the finite map Q0 : Z → Q0(Z) is at least two. In fact, as it
follows from the definition of the map Q0, the only preimages of the quadric
Q0(z) are the two points z and z̄, identified with the two rulings Λ and Λ̄ of
the quadric.

6. The nodal T .

6.1. The tetragonal triples of Donagi connected with the nodal T .
Here we describe the two tetragonal triples which corresponds to the 4-gonal
systems on the two nodal discriminant sextics of the nodal T - see e.g. [10]:

Let T = W ∩ Q have a simple node at the point (z)0 = (x)0 × (y)0. Let
p = p1 : T → P2 and q = p2 : T → P2 be the natural projections. Then
the discriminant sextic ∆p of p (resp. - ∆q of q) has a simple node at the
point (x)0 (resp. - at the point (y)0). Let P1

p = |OP2 (1− (x)0)| be the
pencil of lines through (x)0 (resp. P1

q = |OP2 (1− (y)0)|). Let p−1 ((x)0) =
L+ L̄, q−1 ((y)0) = M + M̄ . Clearly, L ∩ L̄ = M ∩ M̄ = (z)0.

Let pr : T → P7 be the rational projection from (z)0, and let T+ be the
image of T . In particular, the images pr(L),pr

(
L̄
)
,pr(M), and pr

(
M̄
)

are 4
isolated singular points of T+, which lie on the exceptional quadric Q0 ⊂ T+

of pr.
Let l ∈ P1

p and m ∈ P1
q be general, and let C(l,m) = p−1(l) ∩ q−1(m) ∩ T .

A straightforward check gives that C(l,m) is a curve of bidegree (2, 2) and
of arithmetic genus one, which has a simple node at the point (z)0. Let
q(l,m) = pr(C(l,m)) ⊂ T+ be the proper image of C(l,m). It follows that
q(l,m) is a conic. Thus, T+ is birational to a conic bundle s+ : T+ → P1

p×P1
q.

It is not hard to see that the birational map T+ → T+ is a composition of
the blow-ups of the singular points pr(L),pr

(
L̄
)
,pr(M) pr

(
M̄
)
, followed by

contracting of the four exceptional divisors along their rulings. Because of
the complexity of the notation, caused by the additional exceptional sets,
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we shall work on T+, disregarding the difference between T+ and T+; the
statement will not change substantially, if we work on T+.

The birational conic bundle structure
{
q(l,m) : l,m ∈ P1

p × P1
q

}
on T+

determines the non-trivial component of the discriminant curve of s+ : ∆ ⊂
P1
p×P1

q. Clearly, ∆ is a smooth curve of bidegree (4, 4) on the quadric P1
p×P1

q.
Let l ∈ P1

p be general. Then the surface S4(l) = pr (p−1(l)) ⊂ T+

is an anticanonically embedded del Pezzo surface of degree 4. The map
s+ : S4(l)→ [l]×P1

q defines a conic bundle structure on S4(l), which has de-

generations at the 4 intersection points ∆∩
(
[l]× P1

q

)
. Let ∆̃ be the double

covering of ∆ induced by s+; ∆̃ is isomorphic to the curve of components of
the degenerate fibers over ∆.

Let gp ⊂ Symm4 ∆ be the 4-gonal system on ∆ defined by the set of
effective divisors

{
[l]× P1

q : l ∈ P1
p

}
(similarly - for gq), and let s∗+ (gp) ={

L ∈ Symm4 ∆̃ : (s+)∗(L) ∈ gp
}

. Let l ∈ P1
p,and S4(l) be as above. The set

of sixteen (−1)-curves on the anticanonically embedded S4(l) coincide with
the set of lines on S4(l). The map p = p1 defines a splitting of this set into
two “equal” parts: Eight of these lines come from the components of the
degenerate fibers p−1(x), (x) ∈ (l ∩∆p) − (x)0, and the second 8-tuple is
the set of these lines on S4(l) which are components of the four degenerate
conics s−1

+ (u), u ∈ ∆ ∩
(
[l]× P1

q

)
. The lines from the second 8-tuple are

components of the fibers of the conic bundle structure s+. However, the
lines from the first 8-tuple are “sections” of s+ - the map s+ sends each of
these lines isomorphically onto a line on the base quadric P1

p × P1
q. Each of

the lines of the first 8-tuple intersects exactly 4 lines of the second 8-tuple.
Moreover, if λ1, λ2, λ3, λ4 is such a 4-tuple of lines (of the 2-nd system), then
(s+)∗ (λ1 + · · ·+ λ4) =

(
[l]× P1

q

)
∩∆.

The last causes a splitting of the natural preimage (s+)∗
((

[l]× P1
q

)
∩∆

)
of
(
[l]× P1

q

)
∩ ∆, in Symm4 ∆̃, into the following two subsets - each of

cardinality 8:
(1) The set ∆̃+

p (l) = the set of 4-tuples defined by the intersections with the
projections of the 8 components of the degenerate fibers p−1(x), (x) ∈
(l ∩∆p) (x)0;

(2) the complementary set ∆̃−p (l) := (s+)∗
((

[l]× P1
q

)
∩∆

)
− ∆̃+

p (l).
Clearly, this splitting does not depend on the perticular choice of the

general line l ∈ P1
p. Therefore it defines a global splitting (s+)∗ (gp) =

∆̃+
p ∪ ∆̃−p .
Obviously, the component ∆̃+

p is isomorphic to the non-singular model of



86 ATANAS ILIEV

the double covering ∆̃p of ∆ induced by the projection p : T → P2.
There are naturally defined involutions i+p : ∆̃+

p → ∆̃+
p and i−p : ∆̃−p →

∆̃−p , defined by interchanging the 4-tuple λ1, . . . , λ4 with its complementary
λ̄1, . . . , λ̄4. (By definition, λi+λ̄i, i = 1, . . . , 4, are the four degenerate conics
of s+ : S4(l)→

(
[l]× P1

q

)
).

In fact, the 4-tuples (λ1, . . . , λ4) ∈ ∆̃+
p are (−1)-curves on S4(l); the same

- for the complementary 4-tuples. Denote by S (λ1, . . . , λ4) the ruled surface,
which is defined by contraction of the complementary 4-tuple

(
λ̄1, . . . , λ̄4

)
.

It follows from the definition of the elements of ∆̃+
p ( = the existence of a

secant (−1)-curve - see above) that S (λ1, . . . , λ4) = F1.
Similarly, the 4-tuples which belong to the component ∆̃−p correspond to

the relatively minimal models S
(
λ̄1, . . . , λ̄4

)
, of the surfaces S4(l), which are

of type F0 (i.e. - quadrics).
Let ∆+

p = ∆̃+
p /i

+
p and ∆−p = ∆̃−p /i

−
p be the quotient curves. Obviously,

the natural 8-sheeted coverings ∆̃+
p → P1

p and ∆̃−p → P1
p define the 4-sheeted

coverings (the 4-gonal systems): g+
p : ∆+

p → P1
p and g−p : ∆−p → P1

p.
In fact, we have restored the tetragonal construction of Donagi - see e.g.

[10]. Therefore we have proved the following (see the notations above):

Proposition 6.2.
{(

∆̃,∆
)
,
(
∆̃+
p ,∆

+
p

)
,
(
∆̃−p ,∆

−
p

)}
is a 4-gonal triple of

Donagi - see [10]. Moreover, ∆̃+
p is isomorphic to the smooth model of the

nodal determinant plane sextic ∆p ⊂ P2, and the involution i+p : ∆̃+
p → ∆̃−p

is a desingularization of the involution ip on ∆̃p, defined by the covering
∆̃p → ∆p.

The same is true also for the 4-gonal triple
{(

∆̃,∆
)
,
(
∆̃+
q ,∆

+
q

)
,
(
∆̃−q ,∆

−
q

)}
of Donagi, which corresponds to the 4-gonal system gq on the (4, 4)-curve
∆; just like above, the curve ∆̃−q is isomorphic to the smooth model of the
curve ∆̃q of components of degenerate fibers for q : T → P2.

Corollary 6.3. Let T be a general nodal bidegree (2, 2) divisor, and let(
∆̃p,∆p

)
and

(
∆̃q,∆q

)
be the discriminant pairs for the natural projections

p : T → P2 and q : T → P2. Let
(
∆̃,∆

)
be the discriminant pair of the conic

bundle structure s+ : T+ → P1 × P1 defined by the node of T (see above),
and let gp and gq be the 4-gonal systems on the (4, 4)-curve ∆ defined by
the rulings of the quadric P1 × P1. Then gp and gq define the two tetragonal
triples of Donagi:{(

∆̃,∆
)
,
(
∆̃+
p ,∆

+
p

)
,
(
∆̃−p ,∆

−
p

)}
and

{(
∆̃,∆

)
,
(
∆̃+
q ,∆

+
q

)
,
(
∆̃−q ,∆

−
q

)}
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such that
(
∆̃+
p ,∆

+
p

)
is a desingularization of the nodal pair

(
∆̃p,∆p

)
(see

above), and the pair
(
∆̃+
q ,∆

+
q

)
is a desingularization of

(
∆̃q,∆q

)
. In other

words, the Dixon correspondence (see [9], [24]) between the discriminant pairs
of the nodal bidegree (2, 2) divisor T is a composition of two 4-gonal corre-
spondences of Donagi.

Acknoledgement. I would like to express my gratitude to R. Donagi and
A. Verra for their substantial help, and also - to the referee for his remarks.
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