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ON THE GEOMETRY OF VARIETIES OF INVERTIBLE
SYMMETRIC AND SKEW-SYMMETRIC MATRICES

Oliver Jones

Let Sym(n,F) and Sk(n,F) denote the algebraic varieties
of n × n invertible symmetric and skew-symmetric matrices
over a field F, respectively. We first show how the homotopy
type of Sym(n,R) and the homology groups of Sk(n,R) can be
determined using an alternative method to Iwasawa decom-
position. Then, using recent results of Dimca and Lehrer, the
weight polynomials of Sym(n,C) and Sk(n,C) are calculated.

1. Introduction and notations.

Let F be a field, GL(n,F) the set of n × n invertible matrices over F,
Sym(n,F) the set of n×n invertible symmetric matrices over F and Sk(n,F)
the set of n × n invertible skew-symmetric matrices over F. Note that in
the case of the invertible skew-symmetric matrices n has to be even. In
this paper we first determine the toplogy of the real varieties Sym(n,R) and
Sk(n,R). More precisely, we show that Sym(n,R) has the homotopy type of
a Grassmannian by constructing a homotopy equivalence and compute the
Betti numbers of Sk(n,R) by fibering this variety over the sphere and using
the associated Leray spectral sequence.

The Serre-Poincaré polynomial (weight polynomial) of a complex algebraic
variety X is defined to be

Wc(X, t) =
∑
i,j

∑
p+q=i

(−1)jhp,q(Hj
c (X; C))ti

where hp,q(Hj
c (X; C)) are the mixed Hodge numbers of Hj

c (X; C). The main
result of this paper is the computation of the weight polynomials for the com-
plex varieties Sym(n,C) and Sk(n,C). This is done by using recent results
of Dimca and Lehrer [DL] concerning fibrations and weight polynomials. As
a corollary, the weight polynomials of the symmetric and skew-symmetric
determinantal varieties can also be determined.

If an algebraic variety X is defined by polynomials

p1(x) = 0, · · · , pk(x) = 0(∗)
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where p1, · · · , pk ∈ Z[x1, · · · , xn], then it can be reduced modulo q to give a
variety defined over Fq, the finite field of q elements. For K = Fq,R or C
let X(K) denote the set of solutions of (∗) rational over K.

We show that for the varieties considered in this paper there is an in-
teresting relationship between the cardinality of X(Fq), the compact Euler
characteristic of X(R) and the weight polynomial of X(C). See Theorems
(1.8) and (1.8)′ below. The relations displayed in these theorems hold true
for other interesting classes of algebraic varieties as well. We just men-
tion here the hyperplane arrangement complements (see for instance [L])
and the complements of some classical discriminants. This follows a gen-
eral philosophy in algebraic geometry (due to Weil, Serre, Grothendieck and
Deligne), see for instance [BBD] Section 6, relating cohomological proper-
ties of schemes over finite fields and the complex numbers. We point out
however that relations with the topology of the real points are not part of
this general setting. Moreover, it is not obvious whether the comparison
theorems can be directly applied to our schemes Sym(n,F) and Sk(n,F) as
they are not projective.

Acknowledgement. I would like to express my gratitude to Dr. Alex
Dimca who supervised this work as part of my Ph.D. thesis.

2. Main results.

Define an action GL(n,F) × Sym(n,F) → Sym(n,F) by g · A = gAtg. An
action GL(n,F)× Sk(n,F)→ Sk(n,F) is defined similarly.

Let Symi(n) be the orbit of (
−Ii O
O In−i

)

considered as an element in Sym(n,R), i.e. the set of all matrices in
Sym(n,R) having index i. It is known that the orbits Symi(n) are ex-
actly the connected components of Sym(n,R), see for instance [D1], p. 46.
In particular, Symi(n) are open smooth manifolds of dimension n(n+ 1)/2.
Let Gi(Fn) denote the Grassmann variety of i-dimensional subspaces of Fn.
Our first result is the following:

Theorem 1.1. Symi(n) and Gi(Rn) are of the same homotopy type for
i = 0, · · · , n.

The set of invertible skew-symmetric matrices over R, Sk(n,R), has two
connected components Sk+(n) and Sk−(n) corresponding to Pf(A) > 0 and
Pf(A) < 0 respectively, where Pf(A) is the Pfaffian of A.
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Theorem 1.1′. The algebraic varieties Sk+(n) and Sk−(n) are isomorphic,
have dimension (n− 1)n/2 and the homology of S2 × S4 × · · · × Sn−2.

In general, Sk+(n) is not of the same homotopy type as S2×S4×· · ·×Sn−2.

Proposition 1.2. Sk+(6) is not homotopy equivalent to S2 × S4.

Durfee [Du] has shown that the weight polynomial is additive on disjoint
unions of quasi-projective varieties. More recently, Dimca and Lehrer [DL]
have shown that if E,B and F are smooth complex algebraic varieties and
p : E → B is a locally trivial fibration (in the strong toplogy) such that the
local system Rip∗CE is constant for any i then

Wc(E) = Wc(B)Wc(F ).

If G is a connected algebraic group and H a connected subgroup then we
can apply this result to the fibration

p : G→ G/H

to obtain

Wc(G/H, t) = Wc(G, t)/Wc(H, t).(1.3)

If H is not connected, let Ho denote the connected component of the identity
in H. Then N = H/Ho is a finite group and G/H = (G/Ho)/N . If H is
discrete then, since G is connected, the action of N on the cohomology of
G/Ho is trivial. It follows that

H•(G/H) = H•(G/Ho)

and

W (G/H) = W (G/Ho).

Let Mn(C) denote the set of n × n matrices over C and SD(i, n) the
symmetric determinantal variety, i.e.

SD(i, n) =
{
A ∈Mn(C) : tA = A and rkA ≤ i} .

Consider the stratification

(1.4) C(i+1)(i+2)/2 = (SD(i+ 1, i+ 1) \ SD(i, i+ 1)) ∪ · · ·
∪ (SD(2, i+ 1) \ SD(1, i+ 1)) ∪ SD(1, i+ 1).
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Define

p : SD(i, n) \ SD(i− 1, n)→ Gn−i(Cn) : A 7→ kerA.(1.5)

The map p is a locally trivial fibration with fibre Sym(i,C) and since the
Grassmannians are simply-connected we can apply the multiplicativity of
weight polynomials proved in [DL] to (1.5). This together with the additivity
of the weight polynomial applied to (1.4) yields:

Wc(Sym(i+ 1,C), t)

= Wc(C(i+1)(i+2)/2, t)−Wc(G1(Ci+1), t)Wc(Sym(i,C), t)− · · ·

−Wc(Gi(Ci+1), t)Wc(Sym(1,C), t)− 1.
(1.6)

This is the key step in getting our next result:

Theorem 1.7.

Wc(Sym(n,C), t) =

{
tn(n+2)/2(t2 − 1)(t6 − 1) · · · (t2n−2 − 1) , n even
t(n

2−1)/2(t2 − 1)(t6 − 1) · · · (t2n − 1) , n odd.

In Theorem 9.1.5 of [De] Deligne determines the mixed Hodge structure
of H•(G; Q) where G is a connected linear algebraic group. For the case of
Sp(n,C) we give a more elementary construction.

Lemma 1.8.

Wc(Sp(n,C), t) = tn
2/2(t4 − 1)(t8 − 1) · · · (t2n − 1).

Proof. Let
Fn =

{
(x1,x2) ∈ Cn ×Cn : x1J

tx2 = 1
}

and define an action Sp(n,C)× Fn → Fn by

A · (x1,x2) = (x1A,x2A).

Sp(n,C) acts transitively on Fn and the isotropy group of (e1, en/2+1) is
Sp(n− 2,C). Therefore,

Wc(Sp(n,C), t) = Wc(Sp(n− 2,C), t)Wc(Fn, t).

It is known (see for instance [D2], p. 244) that
Wc(Fn, t) = t2n−2(t2n − 1).
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The general linear group GL(n,C) acts transitively on Sk(n,C) and the
isotropy group of J is the complex sympletic group Sp(n,C), where

J =

(
O I
−I O

)
.

Since Sp(n,C) is a connected subgroup of GL(n,C), we can use (1.3) to get

Wc(Sk(n,C), t) = Wc(GL(n,C), t)/Wc(Sp(n,C), t).

The polynomial Wc(GL(n,C), t) is also known, see [DL] Corollary 6.6, and
is given by

Wc(GL(n,C), t) = tn(n−1)(t2 − 1)(t4 − 1) · · · (t2n − 1).

This gives the following:

Theorem 1.7′.

Wc(Sk(n,C), t) = tn(n−2)/2(t2 − 1)(t6 − 1) · · · (t2n−2 − 1).

Remark. Since,

SD(i, n) = (SD(i, n) \SD(i− 1, n))∪ · · · ∪ (SD(2, n) \SD(1, n))∪SD(1, n)

we can use (1.5) and Theorem (1.7) to compute the weight polynomial of
SD(i, n). In an analogous way, the weight polynomial of the skew-symmetric
determinantal variety can also be determined.

Let
χc(Ω) =

∑
i

(−1)i dimH i
c(Ω; R)

denote the compact Euler characteristic of a space Ω.

Theorem 1.9. For all n ∈ N,

|Sym(n)(Fq)| = Wc(Sym(n,C), q1/2)(∗∗)

and

χc(Sym(n,R)) = Wc(Sym(n,C), i).

Here, | | denotes the cardinality of the finite set Sym(n)(Fq). An analo-
gous result holds for the skew-symmetric matrices:
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Theorem 1.8′. For all n ∈ N

|Sk(n)(Fq)| = Wc(Sk(n,C), q1/2)

and

χc(Sk(n,R)) = Wc(Sk(n,C), i).

Remark. Let Γ be a finite group of algebraic automorphisms of the complex
variety X and R(Γ) the Grothendieck ring of Γ. Then one can define the
equivariant weight polynomial W Γ

c (X)(t) as an element of the ring R(Γ)[t],
see [DL] for this construction and its basic properties. Some of the results
above can be restated in terms of these equivariant weighted polynomials.
More precisely, let X = GL(n,C)/ SO(n,C) and Γ = O(n,C)/ SO(n,C) '
{±1} with the natural action on X.

The group Γ has just two irreducible representations, namely the trivial
one τ and the nontrivial one ε (given by multiplication by −1 on C). It
follows that one can write

WΓ
c (X, t) = P (t) · τ +Q(t) · ε.

Now P (t) is the weight polynomial of the invariant part H•(X)Γ, which is
the same as H•(X/Γ) = H•(Sym(n,C)). Hence,

P (t) = Wc(Sym(n,C), t).

To determine Q(t), note that there is an obvious morphism ρ : R(Γ)[t]→ Z[t]
obtained by taking the dimension of a Γ-representation. Then we have

ρ(W Γ
c (X)) = Wc(X) = Wc(GL(n,C))/Wc(SO(n,C))

by (1.3). On the other hand, we obviously have

ρ(W Γ
c (X)) = P (t) +Q(t)

hence

Q(t) = Wc(GL(n,C))/Wc(SO(n,C))−Wc(Sym(n,C)).

As a consequence of our formulas, it is interesting to note that Q(t) = 0 for
n odd. We now show in a different way that for n = 2 Q(t) 6= 0. In this case
Γ is generated by the equivalence class with representative

γ =

(
−1 0
0 1

)
.
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Let Y = {(x0, x1, x2) ∈ C3 : x0x2 − x2
1 − 1 = 0}, the Milnor fibre of the A1-

singularity and define h : X → Y ×C∗ by

h[g] =
(
g2

11 + g2
21, g11g12 + g21g22, g

2
12 + g2

22,det g2
)
/ det g

where

g =

(
g11 g12

g21 g22

)
.

h is a homeomorphism and Γ acts on Y ×C∗ by

γ(x0, x1, x2, x3) = (−x0,−x1,−x2,−x3).

Now,

H•(X) = TotH•(Y )⊗H•(C∗)
= Tot Λ(Ω)⊗ Λ(dx/x)

= Λ(dx/x,Ω)

where Ω = j∗∆(dx0 ∧ dx1 ∧ dx2), and j : X → C3 is the inclusion, see [D2]
p. 192. Hence,

H•(X)Γ = Λ(dx/x).

3. The proofs.

Proof of Theorem 1.1. First we note that Sym0(n) and Symn(n) are convex
subsets in Rn2

, and as such they are contractible. For 0 < i < n, define
p : Symi(n)→ Gi(Rn) by

p(A) = 〈ξ1, · · · , ξi〉

where ξ1, · · · , ξi are the eigenvectors corresponding to the negative eigen-
values of A. In case of multiple eigenvalues, these vectors are not uniquely
defined, but the subspace p(A) is. The map p is a locally trivial fibration
with contractible fibre and so is a homotopy equivalence.

Proof of Theorem 1.1′. Let G be any matrix with detG < 0 and define
φ : Sk+(n)→ Sk−(n) by

φ(A) = GAtG.

Clearly, φ is an algebraic isomorphism. Let

B = {(v, V ) ∈ Rn \ {0} ×Gn−2(Rn) :

v1 = 0,v ⊥ V and 〈e1〉 ∩ V = {0}}
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where e1 = (1, 0, · · · , 0) and v = (v1, · · · , vn). Define p1 : Sk+(n)→ B by

p1(A) = (v, 〈e1,v〉⊥)

where if A has entries aij then v = (0, a12, · · · , a1n)/(a2
12+· · ·+a2

1n). Here the
orthogonality is with respect to A. The map p1 is a locally trivial fibration
with fibre Sk+(n− 2). Define p2 : B → Sn−2 by

p2(v, V ) = (v2, · · · , vn)/
(
v2

2 + · · ·+ v2
n

)1/2
.

Clearly, p2 is a locally trivial fibration with contractible fibre. Let

p = p2 ◦ p1 : Sk+(n)→ Sn−2.

Now p : Sk+(4) → S2 is a homotopy equivalence and so H•(Sk+(4)) '
H•(S2). Assume H•(Sk+(i)) ' H•(S2 × S4 × · · · × Si−2) for some integer i.
The Wang exact sequence of the fibration p : Sk+(i+ 2)→ Si is given by

· · · → Hn−i+1(Sk+(i))→ Hn(Sk+(i))→ Hn(Sk+(i+ 2))→
Hn−i(Sk+(i))→ Hn−1(Sk+(i))→ · · · .

If n is odd, Hn(Sk+(i)) = Hn−i(Sk+(i)) = 0, and so Hn(Sk+(i+ 2)) = 0. If
n is even, the Wang exact sequence splits into the short exact sequence

0→ Hn(Sk+(i))→ Hn(Sk+(i+ 2))→ Hn−i(Sk+(i))→ 0.

Therefore,

bn(Sk+(i+ 2)) = bn(Sk+(i)) + bn−i(Sk+(i))

= bn
(
S2 × S4 × · · · × Si) .

Remark. The above results can be proved using Iwasawa decomposition as
follows: if G is a Lie group and K a maximal compact subgroup then K ⊂ G
is a deformation retract, see [B] p. 70. Let Iso(A) denote the isotropy group
of the element

A =

(
−Ii O
O In−i

)
.

GL(n,R) has O(n) as a maximal compact subgroup and so O(n)∩ Iso(A) =
O(i)×O(n− i) is a maximal compact subgroup in Iso(A). Hence Symi(n) =
GL(n,R)/ Iso(A) contains the Grassmann manifold O(n)/O(i) × O(n − i)
as a deformation retract. Similarly, Sp(n,R) has Sp(n,R) ∩ O(n) = U(n)
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as a maximal compact subgroup. Therefore, Sk(n) = GL(n,R)/ Sp(n,R)
contains O(n)/U(n) as a deformation retract. The latter has two connected
components both isomorphic to SO(n)/U(n), the cohomology of which is
known, see for instance [B] p. 210.

Proof of Proposition 1.2. GL(n,R) acts transitively on Sk(n,R) and the
isotropy group of J is the real sympletic group Sp(n,R). Consider the
following exact sequence

· · ·→πi(Sp(6,R))→πi(GL(6,R))→πi(Sk(6,R))→πi−1(Sp(6,R))→· · · .

Now

πi(GL(6,R)) ' πi(O) for i < 5

and

πi(Sp(6,R)) ' πi(U) for i < 6

see [MT] p. 216. Also π4(O) = 0 and π3(U) = Z, see [MT] p. 212, and
therefore π4(Sk(6,R)) cannot be Z2 ⊕ Z.

Proof of Theorem 1.7. This is by induction on n. Now Sym(1,C) = C∗ and
so the statement holds for n = 1. Let

pn =

{
qn(n+2)/4(q − 1)(q3 − 1) · · · (qn−1 − 1) , n even
q(n2−1)/4(q − 1)(q3 − 1) · · · (qn − 1) , n odd

and assume the statement is true for i ≤ k. By the inductive hypothesis

k−1∑
j=0

(
k− 1

j

)
pk−1−j = q(n−1)(n−2)/2(i)

and

k∑
j=0

(
k
j

)
pk−j = qn(n−1)/2(ii)

where ( n
k ) is the Gaussian polynomial, see [St, p. 26].

Multiplying (i) by qk(qk − 1) and (ii) by qk(q − 1) and adding gives

k−1∑
j=0

qj
(

k
j

)
pk+1−j + qk+1 − qk = q(k+1)(k+2)/2 − qk(k+1)/2.
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Now

qj
(

k
j

)
=

(
k + 1

j

)
−
(

k
j− 1

)
and so

k−1∑
j=0

(
k + 1

j

)
pk+1−j −

k−2∑
j=0

(
k
j

)
pk−j + qk+1 − qk

= q(k+1)(k+2)/2 − qk(k+1)/2.

Adding (ii) to this gives

k+1∑
j=0

(
k + 1

j

)
pk+1−j = q(k+1)(k+2)/2.

Proof of Theorem 1.9. Verification of the first relation in the theorem is by
induction on n. We have Sym(1,C) = C∗ and so

Wc

(
Sym(1,C), q1/2

)
= q − 1

= |Sym(1)(Fq)|.

Suppose the statement holds for k ≤ i. From (1.4) we have

|Sym(i+ 1)(Fq)| =
∣∣∣F(i+1)(i+2)/2

q

∣∣∣− ∣∣∣(G1(Fi+1
q ))

∣∣∣ |Sym(i)(Fq)|−
· · · −

∣∣∣(Gi(Fi+1
q ))

∣∣∣ |Sym(1)(Fq)|.

The result follows from comparing this with (1.6) and the fact that Cn

and Gi(Cn) satisfy (∗∗). For the second relation we have that from Theorem
(1.1)

χc(Sym(n,R)) = (−1)n(n+1)/2
n∑
i=0

χ(Symi(n))

= (−1)n(n+1)/2
n∑
i=0

χ(Gi(Rn)).

Now,

χ(Gi(R2m+1)) =

(
m

[i/2]

)
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and

χ(Gi(R2m)) =

{
0 i odd(m
i/2

)
i even

see for instance [E]. Hence,

χc(Sym(n,R)) =

{
(−2)m+1 n = 2m+ 1
(−2)m n = 2m.

Proof of Theorem 1.8′. Let SkD(i, n) denote the skew-symmetric determi-
nantal variety

SkD(i, n) =
{
A ∈Mn(C) : tA = A and rkA ≤ i} .

The first relation is verified in a way completely analogous to that of the
case for Sym(n,C). For the second, Theorem (1.1)′ implies

χc(Sk(n,R)) = (−1)n/22χ(Sk+(n,R))

= (−1)n/22χ(S2)χ(S4) · · ·χ(Sn−2)

= (−2)n/2.
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