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BASIC GROUPS OF LIE ALGEBRAS AND HOPF
ALGEBRAS

Nazih Nahlus

Let L be a finite-dimensional Lie algebra over an alge-
braically closed field F of characteristic 0, let H(L) be the
Hopf algebra of representative functions of L, and let B(L) be
the Hochschild basic group B(L) of L.

By using Hochschild theory of H(L), we show that two such
Lie algebras have the same Hopf algebra if and only if they
have the same basic group, or equivalently, they have the same
basic Lie algebra (the Lie algebra of the basic group). This
is shown by first obtaining the following characterization of
B(L). If G(L) is the pro-affine algebraic group associated with
H(L), then B(L) is the quotient of G(L) by the intersection
of the radical of G(L) with the reductive part of the center
of G(L). We also show that the basic Lie algebra of L can
be constructed, up to isomorphism, directly from the adjoint
representation of L.

Finally, we apply the theory of basic groups to obtain an
intrinsic characterization of the Hopf algebras (over F ) that
are isomorphic to H(L) for some Lie algebra L.

Some applications to algebraic Lie algebras are also consid-
ered.

Introduction.

Let L be a finite-dimensional Lie algebra over an algebraically closed field F
of characteristic 0. Then the Hopf algebra H(L) of representative functions
of L is the (continuous) dual of the universal enveloping algebra U(L) of L
whose elements are the linear functionals on U(L) which vanish on an ideal of
finite codimension [H4, p. 56], [S]. The Hopf algebra H(L) over F has been
investigated by Hochschild [H2] - [H6]. If L = [L,L], then L is canonically
isomorphic to the Lie algebra of all differentiations of H(L) [H4, Thm. 6.1].
But, in general, there exists an uncountable collection of non-isomorphic Lie
algebras with isomorphic Hopf algebras [H-M5, p. 1150]. However, H(L)
can still determine many invariants of L of which the most important seems
to be the Hochschild basic group B(L) of L which is a naturally defined affine
algebraic group whose Lie algebra contains L as an algebraically dense Lie
algebra [H6, Section 3].
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More specifically, B(L) is the affine algebraic group corresponding to the
smallest regular Hopf subalgebra of H(L) (see preliminaries).

Over the complex field C, Magid has investigated H(L) by introducing
the notion of the bottom group of L (or, of G(L)). This is it Bot(L) =
G(L)/Q(G(L)) where G(L) is the pro-affine algebraic group associated with
H(L), and Q(G(L)) is the intersection of the radical of G(L) with the re-
ductive part of the center of G(L). One of Magid’s results is that Bot(L)
determines H(L) up to isomorphism, so that H(L) determines Bot(L) and
vice versa [Ma3, Thm. 6]. Moreover, Bot(L) is isomorphic to every reduced
regular hull of the simply connected complex analytic group with Lie algebra
L [Ma3, Thm. 5]. This last result suggests that B(L) and Bot(L) are equal
over C. We are thus interested in the following problems.

Problem 1. Is B(L) = G(L)/Q(G(L)) over F? (i.e., is B(L) = Bot(L)?)
Problem 2. Does H(L) determine B(L) and vice versa?
Problem 3. (i) Does H(L) determine the Lie algebra of B(L) and vice versa?
(ii) Can we construct the basic Lie algebra of L (i.e., the Lie algebra of B(L))
directly from the adjoint representation of L?
Problem 4. Find an intrinsic characterization of the Hopf algebras over F
isomorphic to H(L) for some Lie algebra L.

Our answers to the above problems are as follows.
1. B(L) = G(L)/Q(G(L)) over F (Corollary 2.5).
The proof of Theorem 2.3 which implies Corollary 2.5, relies on a translation
of Hochschild’s main results on H(L) to pro-affine algebraic group terms
keeping track of the regular Hopf subalgebras of H(L). Such a translation
is done in Theorem 2.2. In Theorem 2.3, we give characterizations in affine
terms as well as in pro-affine terms, of the regular hulls of L (corresponding
to the regular Hopf sub-algebras of H(L)). Theorem 2.3 generalizes many
known results over C. Moreover, Theorem 2.3 implies Theorem 3.1 of [H6]
(see Corollary 2.6). However, its proof is not a routine generalization of the
proofs in the complex case. For example, Magid’s proof of Theorem 5 in
[Ma3] relies on an intrinsic (affine) characterization of the regular algebraic
hulls of complex analytic groups established in [H-M3, Thms. 3.1 and 4.1];
but the analogous results over F have not been yet established.
2. H(L) determines B(L) and vice versa (Corollary 4.3).
This follows by combining our result B(L) = G(L)/Q(G(L)) and an argu-
ment of Magid showing that G(L)/Q(G(L)) determines G(L) up to isomor-
phism.
3. (i) H(L) determines L(B(L)) and vice versa (Corollary 4.3).
This follows by combining the preceding result, the fact that B(L) is almost
simply connected (Corollary 2.5), and Theorem 3.1 which says that an almost
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simply connected affine algebraic group G is determined up to isomorphism
from its Lie algebra L(G). (Moreover, G is a direct factor of the basic group
of L(G).)
(ii) If ad : L→ DerL is the adjoint representation of L, and T is a maximal
toral subalgebra of the radical of the algebraic hull of ad(L) in DerL, then
L + T (semi-direct) with the adjoint action of T on L is isomorphic to the
basic Lie algebra L(B(L)) of L (Theorem 4.4).
4. If A is a commutative Hopf algebra over F , then A is isomorphic to some
Hopf algebra H(L) where L is a finite-dimensional Lie algebra if and only if
A satisfies the following properties:
(i) A is an integral domain;
(ii) there is a group isomorphism from the additive group P of the primitive

elements of A onto the multiplicative group Q of the group-like elements
of A;

(iii) there exists a right stable affine subalgebra B of A such that A =
B
⊗
F [Q], and B has no proper affine unramified extensions (The-

orem 5.2).
The proof of this result relies on a generalization of Magid’s intrinsic

characterization of the affine algebraic groups isomorphic to Bot(L) for some
L, as well as his argument that Bot(L) determines G(L) up to isomorphism
[Ma3, Thms. 6 and 13].

We note that our criteria for Hopf algebras isomorphic to H(L) are slightly
simpler and sharper than those of Reinoehl in [R2, p. 181] (which are (i)
and (ii) as in our criteria above together with the following variation on
(iii): there exists a left stable affine subalgebra B of A such that A = B[Q],
A is a free B-module with basis Q, and the semi-simple part BS of B is a
Hopf subalgebra of A and has no proper affine unramified extension in any
Hopf algebra containing BS). We would like also to note that our proof
is much easier than that of Reinoehl in [R2], although more is shown by
Reinoehl if A satisfies his criteria. Note that his result is a generalization of
a similar result for complex analytic groups due to Hochschild and Mostow
in [H-M5, Thm. 2.1].

We rely on [H2] - [H6] for basic results concerning H(L), and on [H-M3]
and [H5] for basic results on pro-affine algebraic groups.

Acknowledgements. The author wishes to thank Professor Hochschild for
the many enlightening discussions on some parts of this paper.

1. Preliminaries.

All Lie algebras, Hopf algebras, and pro-affine algebraic groups are con-
sidered over an algebraically closed field F of characteristic 0, and L is a
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finite-dimensional Lie algebra over F . If G is a pro-affine algebraic group,
A[G] is its Hopf algebra of polynomial functions, Hom(G,F ) is its group of
rational (polynomial) additive characters, X(G) is its group of rational mul-
tiplicative characters, L(G) is its Lie algebra, G1 is its identity component,
Gu is its unipotent radical, rad(G) is its radical, and [G,G] is its commuta-
tor subgroup. [L,L] and rad(L) are defined the same way, and U(L) is the
universal enveloping algebra of L. If f is a morphism of pro-affine algebraic
groups, f0 is its differential, and kerf is its kernel.

A subspace of H(L) is left (resp. right) stable under the left (resp. right)
translation action of U(L) given by (u.f)(x) = f(xu) (resp. (f.u)(x) =
f(ux)) where f ∈ H(L) and u ∈ U(L). If G is a pro-affine algebraic group, a
subspace of A[G] is left (resp. right) stable if it is stable under the left (resp.
right) translation action of G given by (g.f)(x) = f(xg) (resp. (f.g)(x) =
f(gx)) where g ∈ G and f ∈ A[G]. If S is a subspace of a Hopf algebra
A with comultiplication γ where A = H(L) or A = A[G], then S is left
(resp. right) stable in the above sense if and only if γ(S) ⊂ S

⊗
A (resp.

γ(S) ⊂ A
⊗
S). The subspace S is called bistable if it is both left and right

stable.
Let Q(L) be the (multiplicative) group of group-like elements of H(L),

and let P (L) be the (additive) group of primitive elements of H(L). Then
there is a group isomorphism from P (L) to Q(L) given by the exponential
map: if p ∈ P (L), exp(p) is the unique algebra homomorphism U(L) → F
whose restriction to L coincides with p [R2, p. 183]. Note that P (L) =
Hom(G(L), F ) and Q(L) = X(G(L)) since H(L) = A[G(L)].

The following result is contained in [H2, Thm. 5] and [H3, pp. 610-611].

Theorem 1.1. There exists a subalgebra B of H(L) satisfying the following
conditions:
(1) B is a right stable affine (finitely generated) subalgebra.
(2) H(L) = C

⊗
B where C is the Hopf subalgebra F [Q(L)]. That is the

multiplication map is an algebra isomorphism from C
⊗
B to H(L).

In particular, B separates the elements of L.
(3) BS = H(L)R where R = rad(L), BS is the subalgebra of B consisting

of representative functions belonging to semisimple representations of
L, and H(L)R is the left R-annihilated (Hopf subalgebra) of H(L).

(4) B = H(L)R
⊗
V ∗ where V ∗ is a right stable subalgebra whose (Krull)

dimension is equal to the dimension of the radical R of L. Moreover,
P (L) ⊂ V ∗.

A normal basic subalgebra of H(L) is a subalgebra B satisfying (1)-(3) of
Theorem 1.1, and hence satisfying (4) because normal basic subalgebras are
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conjugate by an automorphism of H(L) of the Exp(t(x)) where t is the left
translation map and x ∈ [L,R] [G, Thm. 4.1].

The basic Hopf subalgebra B∗(L) of H(L) is defined as the smallest Hopf
subalgebra of H(L) containing some (and hence every) normal basic sub-
algebra of H(L). Since every normal basic subalgebra is affine, then so is
B∗(L). Hence B∗(L) is the Hopf algebra of polynomial functions on an
affine algebraic group B(L), termed the basic group of L [H6, p. 173]. We
shall identify L with its cannonical image in L(G(L)), the Lie algebra of all
differentiations of A[G(L)] = H(L) [H2, p. 62]. Moreover L can be also
identified with its cannonical image in L(B(L)) because A[B(L)] separates
the elements of L by condition (2) of Theorem 1.1 [H6, p. 175].

Remarks.
1) The normal basic subalgebras of H(L) can be characterized purely in
terms of the Hopf algebra H(L). Specifically, the third condition in the def-
inition of a normal basic subalgebra can be replaced with the condition that
BS is a Hopf subalgebra of H(L) [G, Thm. 3.1]. Moreover, the semisimple
elements of H(L) can be characterized purely in terms of H(L) [R2, p. 180].
So indeed, H(L) determines B(L).

2) G(L) has the following universal property. If H is a connected affine
algebraic group (over F ), and i : L→ L(H) is a Lie algebra homomorphism
whose image is algebraically dense, then there exists a canonical surjective
morphism f : G(L) → H whose differential agrees with i on L. Moreover,
A[H] can be identified with its canonical image in H(L), (so f is a restric-
tion morphism). To see this, let π : A[H] → H(L(H)) be the natural mor-
phism of Hopf algebras such that π(f)(u) = (u.f)(1H) for every f ∈ A[H]
and u ∈ U(L(H)) where A[H] is viewed as a left U(L(H))-module via the
(proper) derivation action of L(H) on A[H]. Then π is injective because
H is irreducible over F [H1, Thm. 3.1, p. 230]. If î : H(L(H)) → H(L) is
the morphism induced by i. Then î is injective since i(L) is algebraically
dense in L(H). Hence A[H] can be viewed as a Hopf subalgebra of H(L) via
î◦π. Hence we have a surjective morphism f : G(L)→ H whose differential
agrees with i on L.

3) The category Mod(L) of finite-dimensional L-modules, as a tensored
abelian category of finite-dimensional F -spaces, determines the Hopf alge-
bra H(L) and vice versa. To see this, let Mod(G(L)) be the category of
finite-dimensional G(L)-modules, as a tensored abelian category of finite-
dimensional F -spaces. Then the universal property of G(L) implies that
the category Mod(L) determines the category mod(G(L)) and vice versa.
The proof of Proposition 2.3 of [L] implies that the category Mod(G(L))
determines G(L) and vice versa (see also [Ma5, p. 54]). Hence the category
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Mod(L) determines the Hopf algebra H(L) and vice versa.

2. Basic groups of Lie algebras.

We shall need to interpret Theorem 1.1 in pro-affine algebraic group terms.
For this, we need the following basic result, but, in the absence of a conve-
nient reference, we give a proof here.

Lemma 2.1. Let G be a pro-affine algebraic group (over F ), and suppose
that A[G] = S

⊗
T (as algebras) where S is a bistable subalgebra of A[G]

and T is a right stable subalgebra. Let S′ be the fixer of S in G (under left
translations), and let T ′ be the fixer of T in G. Then G = S′.T ′ (semi-
direct) where S′ is normal in G. Moreover, the S′-fixed part A[G]S

′
(under

left translations) coincides with S and the T ′-fixed part A[G]T
′

coincides with
T . In particular, S is a Hopf subalgebra of A[G] isomorphic to A[T ′] as Hopf
algebras, and T is isomorphic to A[S′] as algebras.

Proof. By considering the left translation action of G on A[G], we can view
G as the group of proper automorphisms of A[G]. These are the auto-
morphisms of A[G] commuting with the right translation action f → f.g
[H-M4, p. 1128]. Since S is left stable, S is stable under the proper auto-
morphisms of A[G]. Consequently S′ is normal in G. Moreover, if g ∈ G,
then g restricts to an automorphism ḡ of S. Let b be the automorphism of
A[G] = S

⊗
T extending ḡ and fixing the elements of T . Since S and T are

right stable, b(st.x) = b(st).x for all x ∈ G, s ∈ S, and t ∈ T because both
are equal to (b(s).x)(t.x). Hence b is proper, so b ∈ G. Now gb−1 ∈ S′ and
b ∈ T ′. Hence G = S′.T ′ (semi-direct) since A[G] = S

⊗
T . Finally, it is

evident that S ⊂ A[G]S
′

and T ⊂ A[G]T
′
. Now A[G] = S

⊗
T and, as in the

affine case, A[G] = A[G]S
′⊗

A[G]T
′

(cf. [H1, p. 71]). Hence S = A[G]S
′

and T = A[G]T
′
. In particular, S is a Hopf subalgebra of A[G]. Moreover, as

in the affine case, A[G]S
′

is Hopf-algebra isomorphic to A[T ′], and A[G]T
′

is
algebra isomorphic to A[S′]. This proves Lemma 2.1.

Let H(L) = C
⊗
B and B = H(L)R

⊗
V ∗ as in Theorem 1.1. Let U be

the fixer of C
⊗
H(L)R in G(L) (under left translations), let T be the fixer

of B in G(L), and let S be the fixer of C
⊗
V ∗ in G(L). Then we have the

following result.

Theorem 2.2. G(L) = U.(T×S) (semi-direct) with the following properties:
(1) U is the unipotent radical of G(L) and dimU = dim rad(L).
(2) T is a pro-toroid whose character group X(T ) is isomorphic to P (L)

and A[G]T is a normal basic subalgebra of H(L).
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(3) S is a simply connected semisimple algebraic group whose Lie algebra
is isomorphic to a maximal semisimple sub Lie algebra of L.

Theorem 2.2 is an immediate consequence of Hochschild’s result Theorem
1.1 in view of Lemma 2.1 and the following remarks. (i) (H(L))S = C

⊗
BS

and BS = H(L)R, so U is the fixer of H(L)S. Hence U is the unipo-
tent radical of G(L) [H-M4, p. 1134]. Since A[U ] is algebra isomorphic
to V ∗ whose (Krull) dimension is equal to dim rad(L), dimU = dim rad(L).
(ii) X(T ) ≈ Q(L) and Q(L) ≈ P (L) under the exponential map. Hence
X(T ) ≈ P (L). (iii) A[S] is Hopf-algebra isomorphic to H(L)R which may
be identified with H(L/R). Hence L(S) ≈ L/R as follows from the fact that
a semisimple Lie algebra is universally algebraic, and S is simply connected
[H4, Thm. 3.1].

An affine Hopf subalgebra of H(L) is called regular if it contains some
(and hence every) normal basic subalgebra of H(L). If G is a pro-affine
algebraic group, then Q(G) is the intersection of the radical of G with the
reductive part of the center of G.

Theorem 2.3. Let H be a connected affine algebraic group (over F ), and
let i : L → L(H) be a Lie algebra homomorphism whose image is alge-
braically dense. Identify A[H] with its canonical image in H(L), and let
f : G(L) → H be the restriction (surjective) morphism. Then the following
are equivalent.
(1) A[H] is a regular Hopf subalgebra of H(L).
(2) i is injective, P (L) ⊂ A[H], and H/ rad(H) is simply connected.
(3) i is injective, dimHu = dim rad(L), and H/ rad(H) is simply con-

nected.
(4) i is injective, L(H) = i(L) + T (semi-direct) for every maximal toral

subalgebra T of the radical of L(H), and H/ rad(H) is simply con-
nected.

(5) ker f ⊂ Q(G(L)). That is, ker f is a reductive central algebraic sub-
group of G(L) contained in the radical of G(L).

Proof. First we show that (1) implies (2). A[H] is then a regular Hopf
subalgebra of H(L), so it contains a normal basic subalgebra B of H(L).
Since B separates the elements of L, it follows that i : L→ L(H) is injective.
Since P (L) ⊂ B [H3, p. 615], P (L) ⊂ A[H]. Moreover BS = H(L)R, so
H(L)R ⊂ A[H]. By restriction, this yields a surjective morphism H → S
where S is the algebraic group associated with the Hopf algebra H(L)R.
As in Theorem 2.2, S is a simply connected semisimple algebraic group.
Hence H/ rad(H) is simply connected, so (1) implies (2). Now we show (2)
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implies (3). Let U be the unipotent radical of G(L) and let fu : U → Hu

be the restriction of f to U which is surjective because f is surjective. We
need to show that fu is an isomorphism. Since P (L) ⊂ A[H], it follows
that every additive (rational) character of U induces an additive character
of Hu via the morphism fu. But the additive characters of U separate
U/[U,U ]. Hence ker fu ⊂ [U,U ]. If L′ is the Lie algebra of G(L), then
[L′, L′] ⊂ L [H2, p. 521]. Consequently L(ker fu) ⊂ L ∩ ker f◦. But this
last is ker i and i is injective. Hence ker fu = (1). Thus fu : U → Hu is
an isomorphism. By Theorem 2.2, dimU = dim rad(L). Hence dimHu =
dim rad(L), so (2) implies (3). Let R be a maximal reductive algebraic
subgroup of H containing T . Since L(H) = L(Hu) + L(R), it follows that
i(L) + T = i(L) + L(R) is the Lie algebra of an algebraic subgroup of H.
Hence L(H) = i(L) +T since i(L) is algebraically dense in L(H). Moreover,
dimH = dimL + dimT if and only if dimHu = dim rad(L). Hence (3) is
equivalent to (4).

We next show that (3) implies (5). Then we have dimU = dimHu =
dim rad(L), so that the surjective morphism fu : U → Hu is an isomorphism.
Hence ker f is reductive. Put G = G(L). To prove [G, ker f ] = (1), let I
be an affine Hopf subalgebra of H(L) containing A[H], and let GI be the
restriction image of G in the algebraic group G(I) with Hopf algebra I so
that GI coincides with G(I). Since I contains A[H], f induces a surjective
morphism fI : GI → H. Since G is connected, so is GI . Hence [GI , ker fI ] is
a (connected) algebraic subgroup of GI . Since i is injective, A[H], and hence
I, separates the elements of L. Thus L can be identified with its image in
L(GI) and, as such is algebraically dense in L(GI). Hence L[GI , ker fI ] = (0),
so [GI , ker fI ] = (1) being connected. This shows that the restriction image
in GI of the algebraic hull of [G, ker f ] in G is trivial for every affine Hopf
subalgebra I of H(L) containing A[H]. But H(L) is the union of such
I’s because every affine subalgebra of H(L) is contained in an affine Hopf
subalgebra of H(L) [H5, p. 400]. Hence ker f is central in G(L) whenever
i : L→ L(H) is injective. To prove ker f ⊂ rad(G(L)), let G(L) = U(T ×S)
be as in Theorem 2.2, so UT is the radical of G(L). Since L(S) ≈ L/R and
i : L→ L(H) is injective, then the restriction of f◦ to L(S) is also injective.
But H/ rad(H) is simply connected. Therefore ker f ∩ S = (1) and rad(H)
is a semi-direct factor of H. Hence ker f ⊂ rad(G(L)). Thus (3) implies (5).

Finally, we show that (5) implies (1). As in Theorem 2.2, G(L) =
U(T×S) andA[G(L)]T is a normal basic subalgebra ofH(L) = A[G(L)]. But
ker f ⊂ Q(G(L)) which is contained in T . Hence A[G(L)]T ⊂ A[G(L)]ker f .
Moreover, this last coincides with A[H] because H can be identified with
G(L)/ ker f . Hence A[H] is a regular Hopf subalgebra of H(L). This com-
pletes the proof of Theorem 2.3.
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The analogous affine (resp. pro-affine) characterizations for the regular
hulls of complex analytic groups are given in [H-M3, Thms. 3.1 and 4.1]
and [Ma1, Thm. 11] (resp. [Ma3, Thm. 5] and [N, Thm. 6]).

Theorem 2.4. Let i : L→ L(H) and f : G(L)→ H be as in Theorem 2.3.
Then the following are equivalent.
(1) There exists an affine covering Ĥ → H which is an isomorphism on

the radicals such that the canonical image of A[Ĥ] in H(L) is regular.
(2) i is injective and P (L) ⊂ H(L).
(3) i is injective and dimHu = dim rad(L).
(4) i is injective and L(H) = i(L) + T (semi-direct) for every maximal

toral subalgebra T of the radical of L(H).
(5) ker f is a reductive central algebraic subgroup of G(L).

The proof of Theorem 2.3 implies result in Theorem 2.4 in view of the
following remarks. (i) Every affine covering Ĥ → H induces a bijection
between the additive (rational) characters of Ĥ and the additive characters
of H. Moreover, every affine algebraic group H has an affine covering α :
Ĥ → H which is an isomorphism on the radicals such that Ĥ/ rad Ĥ is
simply connected (for example, if τ : rad(H)→ H is the injection morphism,
then the last morphism of the universal τ -extension rad(H)→ Ĥ → H given
in Theorem 17 of [N], is the unique covering α).

(ii) Let f : G(L)→ H be as in Theorem 2.3. Then our covering morphism
α : Ĥ → H above yields an algebraic hull L→ L(Ĥ) of L whose associated
canonical morphism f̂ : G(L) → Ĥ satisfies α ◦ f̂ = f . In particular,
ker f̂ ⊂ Q(G(L)) if and only if ker f is a reductive central algebraic subgroup
of G(L).

Definition 2.5.
(i) An algebraic hull of L is a connected affine algebraic group H together

with an injective morphism i : L → L(H) with algebraically dense
image.

(ii) An algebraic hull i : L → L(H) of L is called regular (resp. split) if
it satisfies any the equivalent conditions given in Theorem 2.3 (resp.
Theorem 2.4).

(iii) An algebraic hull i : L → L(H) of L is called reduced if radH has
unipotent center.

Corollary 2.5. Let B(L) be the basic group of L.
(i) Then B(L) coincides with G(L)/Q(G(L)).
(ii) If i : L → L(H) is a reduced regular algebraic hull of L, then there
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exists an isomorphism B(L) → H whose differential agrees with i on
L.

(iii) If i : L → L(H) is a regular algebraic hull of L. Then there exists a
canonical surjective morphism f : H → B(L) such that f0 ◦ i is the
identity map on L. Moreover, ker f = Q(H) so that B(L) is canoni-
cally isomorphic with H/Q(H).

Corollary 2.5 is an immediate consequence of Theorem 2.3 in view of the
following remarks:

1. LetG be a connected pro-affine algebraic group (over F ). Then Q(G) =
(1) if and only if rad(G) has unipotent center. To see this, let G =
Gu.R be a semi-direct decomposition of G where R is a maximal reduc-
tive algebraic subgroup of G [H-M4, Thm. 3.2]. Then R = TS where
T is the connected component of the identity element of the center of
R, and S is the algebraic hull of [R,R] in R, so GuT is the radical of
G [H5, p. 413]. This implies that Q(G) = Q(rad(G)). In particular,
Q(G) = (1) if and only if rad(G) has unipotent center.

2. Let f : G → H be a surjective morphism of connected pro-affine alge-
braic groups (over F ). Then f(Q(G)) ⊂ Q(H). Moreover, if ker f is
reductive, then f(Q(G)) = Q(H) as seen in the proof of Lemma 11 of
[N]. (See also [Ma4, Prop. 6].)

Similarily, we have the following consequences of Theorem 2.3.

Corollary 2.6 [H6, Thm. 3.2]. L is algebraically dense in L(B(L)) and
radB(L) has unipotent center. If H is any connected affine algebraic group
satisfying these conditions, then there exists a (canonical) surjective mor-
phism B(L)→ H whose differential coincides with the identity map on L.

Remark. In the setting of Corollary 2.6, let ρ : B(L)→ H be the canonical
surjective morphism whose differential agrees with i on L. Then ker ρ is in
the center of B(L) and (ker ρ)1 is a direct factor of B(L) which is an algebraic
vector group [R1, Prop. 2.4].

Corollary 2.7. Let φ : L1 → L2 be a surjective morphism of Lie algebras.
Then φ induces a surjective morphism f : B(L1)→ B(L2) whose differential
agrees with φ on L1.

3. Algebraic Lie algebras.

For convenience, a connected algebraic group G is called almost simply con-
nected if its radical R has unipotent center and G/R is simply connected.
Note that the basic group B(L) is almost simply connected by Corollary 2.5.
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Theorem 3.1. Let L be an algebraic Lie algebra, i.e., L is the Lie algebra of
some affine algebraic group. Then there exists a unique (up to isomorphism)
almost simply connected affine algebraic group with Lie algebra L. Moreover,
such an affine algebraic group is a direct factor of the basic group B(L) of
L. Furthermore, B(L) has a direct factor Z which is an algebraic vector
group such that L(B(L)) = L

⊕L(Z) so that if Z is any such direct factor
of B(L), then B(L)/Z is almost simply connected with Lie algebra L.

Proof. Since L is an algebraic Lie algebra, L = L(G) for some affine alge-
braic group G which may be chosen to have unipotent center [H1, p. 250].
By Corollary 2.6 and the above remark, there exists a surjective morphism
ρ : B(L) → G such that (ker ρ)1 is a direct factor of B(L) which is an al-
gebraic vector group. Put Z = (ker ρ)1. Then L(B(L)) = L

⊕L(Z), so
L(B(L)/Z) ≈ L. Moreover B(L), and hence, B(L)/Z is almost simply con-
nected by Corollary 2.5. Now let G′ be any almost simply connected affine
algebraic with Lie algebra L. Let ρ′ : B(L) → G′ and Z ′ = (ker ρ′)1 be
defined in the same way as above. Then B(L) = Z ×H = Z ′ ×H ′ for some
algebraic subgroups H and H ′ of B(L). But Z and Z ′ are algebraic vector
groups of the same dimension. Hence H is isomorphic to H ′ [R1, p. 290],
so H ′ is isomorphic to B(L)/Z. On the other hand, the restriction of ρ′

to H ′ is a covering morphism onto G′. But H ′ and G′ are almost simply
connected (in particular their radicals are semi-direct factors). Hence our
covering morphism is an isomorphism from H ′ to G′. Thus G′ is isomorphic
to B(L)/Z. This completes the proof of Theorem 3.1.

Corollary 3.2 (cf. [H1, Thm. 2.2, p. 252], [H7, p. 10]). Let L be an
algebraic Lie algebra. Then there exists a unique (up isomorphism) con-
nected affine algebraic group with unipotent center, and with Lie algebra L.
Moreover, if H = B(L)/Z is the unique (up to isomorphism) almost simply
connected affine algebraic group with Lie algebra L, as in Theorem 3.1, and
C(H) is the (finite) maximal reductive central algebraic subgroup of H, then
H/C(H) is a connected affine algebraic group with unipotent center, and
with Lie algebra L

Proof. Let H = R.S (semi-direct) where R = rad(H) and S is a maximal
semisimple algebraic subgroup of H. Since H = B(L)/Z is almost simply
connected, C(H) ⊂ S. Let S0 be the center of S. Since S0 is a finite
algebraic subgroup of H, and H is connected, it follows that S0 is in the
center of H (for example, [H,S0] is connected with trivial Lie algebra).
Hence C(H) = S0. Now H = R.S (semi-direct), R has unipotent center,
and L(H) = L. Hence H/C(H) has unipotent center with Lie algebra L.
Now let G be any connected affine algebraic group with unipotent center
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whose Lie algebra is L. As in the proof of Theorem 3.1, we have a surjective
morphism ρ′ : B(L)→ G where B(L) = Z ′×H ′ and Z ′ = (ker ρ′)1. Since G
has unipotent center, it follows that the kernel of the restriction of ρ′ to H ′ is
C(H ′). Hence G is isomorphic to H ′/C(H ′). But H is isomorphic to H ′ as
seen in the proof of Theorem 3.1. HenceG is isomorphic toH/C(H).

4. Lie algebras with the same Hopf algebra.

We shall need the fact every connected affine algebraic group over F has a
universal (simply connected) pro-finite covering [H5, Thm. 5.1]. Moreover,
a pro-toroid T is simply connected if and only if its character group X(T )
is a rational vector space [P, p. 220]. Note that, if K is a normal algebraic
subgroup of a pro-affine algebraic group G, then G is simply connected if
and only if K and G/K are simply connected [H5, Thm. 5.2].

The following general result is contained in the proof of Theorem 6 of
[Ma3] in which Magid shows that, over C, G(L)/Q(G(L)) determines G(L)
up to isomorphism.

Theorem 4.1. Let G be a connected pro-affine algebraic group over F
such that G = Gu.(T ×S) (semi-direct) where Gu is affine, T is a pro-toroid
whose character group X(T ) is a rational vector space, and S is a simply
connected semisimple affine algebraic group (so G is simply connected). Let
f : G→ H be a surjective morphism onto a connected affine algebraic group
H such that (ker f)1 is a central pro-toroid of G. Then H determines G up to
isomorphism. Specifically, if Ĥ is the universal pro-finite covering of H, and
D is the pro-toroid with character group Hom(H,F ), then G is isomorphic
to Ĥ ×D.

Corollary 4.2. Let i : L→ L(H) be a split hull of L (see Def. 2.5). Then
the affine algebraic group H determines the Hopf algebra H(L) up to iso-
morphism. If Ĥ is the univeral (pro-finite) covering of H [H5 , Thm. 5.1.]
and D is the pro-toroid whose character group is Hom(H,F ), then H(L)
is isomorphic to the Hopf algebra of polynomial functions of the pro-affine
algebraic group Ĥ ×D.

Proof. Combine Theorems 4.1 and 2.4.

Corollary 4.3. The basic group B(L) of L, or its Lie algebra, determines
the Hopf algebra H(L) up to isomorphism. In particular, two Lie algebras
have isomorphic Hopf algebras of representative functions if and only if they
have isomorphic basic groups, or equivalently they have isomorphic basic Lie
algebras (Lie algebras of basic groups).

Proof. Combine Corollaries 4.2 and 2.5 with Theorem 3.1.
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The next Theorem gives a simple construction of the basic Lie algebra of
L directly from the adjoint representation of L.

Theorem 4.4. Let ad : L → DerL be the adjoint representation of L.
Let ad(L)+ be the algebraic hull of ad(L) in DerL, and let T be a maximal
toral subalgebra of the radical of ad(L)+. Then the semi-direct Lie algebra
L] = L + T (with the adjoint action of T on L) is isomorphic to the Lie
algebra of the basic group L under an isomorphism which is the identity on
L and mapping T onto the Lie algebra of a maximal toroid of the radical of
the basic group of L.

Proof. Since L is an ideal of L(B(L)), the adjoint representation of L(B(L))
induces a Lie algebra homomorphism α : L(B(L)) → DerL which agrees
with ad on L. Let D be a maximal toral subalgebra of α−1(T ). Then
α(D) = T . Since T is in the radical α(L)+, it follows that D is in the radical
of L(B(L)). Since B(L) has no central tori, it follows that the restriction of
α to D is an isomorphism onto T . Moreover, D is a maximal toral subalgebra
of the radical of L(B(L)) because T is a maximal toral subalgebra of the
radical of ad(L)+. Hence L(B(L)) = L + D (semi-direct) by Theorem 2.3.
Since α maps D isomorphically onto T ⊂ DerL, it follows that there exists
an isomorphism from the Lie algebra L] = L+T (with the adjoint action of
T on L) onto L(B(L)) which is the identity on L and mapping T onto D.
This completes the proof of Theorem 4.4.

Our next goal is to construct all Lie algebras whose Hopf algebras are
isomorphic to H(L). Let D be a maximal toral subalgebra of the radical
of L(B(L)), and put A = L(B(L)u) + [L,L]. Since L(B(L)) = L + D
(semi-direct), it follows that L(B(L)) = A + D (semi-direct). This last
decomposition yields a projection morphism L(B(L)) → D which is called
the rational projection of L(B(L)) onto D. Since L is algebraically dense in
L(B(L)), then so is its rational projection image in D.

Similarly, let L] = L+T (semi-direct) as in Theorem 4.4, and put A(L) =
nil(L])+[L,L]. Then the isomorphism of L] with L(B(L)) given in Theorem
4.4 implies that L] = A(L) + T (semi-direct). This yields a projection
morphism L] → T which is called the rational projection of L] on T . The
proof of Theorem 4.4 shows that this rational projection maps L onto a dense
subalgebra of T = L(Tg) where Tg is the toroid of AutL with Lie algebra T .
Hence Theorem 4.4 with Corollaries 4.3 and 2.5 imply the following result.

Theorem 4.5. Let ad : L→ DerL and L] = L+ T (semi-direct) be as in
Theorem 4.4. Let γ : L] → T be the rational projection of L] onto T . Let
{Li} be the ideals of L] such that, for each i, L] = Li + T (semi-direct) and
γ(Li) is algebraically dense in T = L(Tg) where Tg is the toroid of AutL
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whose Lie algebra is T . Then {Li} is the set of all Lie algebras whose Hopf
algebras are isomorphic to H(L).

5. Hopf algebras of Lie algebras.

First we characterize those algebraic groups which are basic groups of Lie
algebras. The proof of Theorem 5.1 below is a modification of the proof for
bottom groups in the complex case given by Magid in Theorem 13 of [Ma3].

Theorem 5.1. Let G be an affine algebraic group. Then G is the basic
group of some Lie algebra if and only if G is almost simply connected with
the property that either Gu = rad(G) or G has a non-trivial additive rational
character.

Proof. Suppose G = B(L) for some Lie algebra L. Then Corollary 2.5 shows
that B(L) is almost simply connected. Moreover, if B(L) has no non-trivial
additive characters, then the same is true for G(L), so P (L) = (0). Hence
G(L)u = rad(G(L)) by Theorem 2.2, so (B(L))u = rad(B(L)). Conversely,
suppose G is almost simply connected with the property that either Gu =
rad(G) or G has a non-trivial additive character. If Gu = rad(G), then G is
the basic group of L = L(G) by Corollary 2.5, so we assume thatG has a non-
trivial additive character f . Let T = (F ∗)n be a maximal toroid of rad(G),
and choose α1 . . . αn ∈ F be linearly independent over the field of rationals.
Put A = L(Gu) + [L(G),L(G)], and let φ : A→ L(T ) be the map given by
φ(a) = (α1f

0(a), . . . , αnf0(a)). Then the set L of all elements a+ φ(a) with
a ∈ A is a sub Lie algebra of L(G) because it contains [L(G),L(G)]. Since
rad(L(G)) = L(Gu) +L(T ), it follows that L is algebraically dense in L(G).
Moreover, rad(L) and L(Gu) have the same dimension. Hence G is the basic
group L by Corollary 2.5. This proves Theorem 5.1.

Finally, we characterize the Hopf algebras of Lie algebras. Recall that if B
is an affine algebra containing an affine algebra A, then B is called an affine
unramified extension of A if B is finitely-genrated as an A-module, and for
every B-module M , the only A-linear derivation of B into M is the zero
map. We shall use Theorem 4.1 of [H4] which says that if G is a connected
affine algebraic group over F , then G is simply connected if and only if A[H]
has no proper affine extensions.

Theorem 5.2 (cf. [R2, Thm. 2.1]). Let A be a commutative Hopf alge-
bra over F . Then A is isomorphic to some Hopf algebra H(L), where L
is a finite-dimensional Lie algebra, if and only if A satisfies the following
properties:
(1) A is an integral domain;
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(2) there is a group isomorphism from the additive group P of the primitive
elements of A onto the multiplicative group Q of the group-like elements
of A;

(3) there exists a right stable affine subalgebra B of A such that A =
B
⊗
F [Q] and B has no proper affine unramified extensions.

Proof. If A = H(L) for some Lie algebra L, then Theorems 1.1 and 2.2 imply
that A satisfies (1)-(3). In fact the normal basic sub algebra B = A[G]T in
Theorem 2.2 has no proper unramified extensions because B is isomorphic
to the algebra A[US] and US is a simply connected affine algebraic group.
Conversely, suppose A satisfies (1)-(3), and let A = A[G] where G is the pro-
affine algebraic group with Hopf algebra A. Then Lemma 2.1 implies that
G = H.T (semi-direct) where H is a simply connected affine algebraic group
whose algebra is isomorphic to B and T is a pro-toroid whose character group
is isomorphic to Q, and hence P . In fact T is simply connected because its
character group P is a rational vector space. Since H is simply connected
and affine, H = US (semi-direct) where U = Hu and S is a (maximal)
simply connected semisimple affine algebraic group of H [H4, Thm. 2.3].
Hence G = US.T (semi-direct). Now U is evidently normalized by T , so
U = Gu.

Let R be a maximal reductive algebraic subgroup of G containing S,
and let T ′ be the connected component of the centralizer of S in R. Then
R = S.T ′ where S ∩ T ′ is finite as in [H5, p. 414] or in [N, Lemma 20].
Since G = UR [H-M2] and G/US is simply connected being isomorphic
to T , it follows that G = U.(S × T ′). Moreover, X(T ′) is isomorphic to
X(T ), so X(T ′) is isomorphic to P = Hom(G,F ). But G = U.(S × T ′).
Hence we either have Gu = rad(G) (i.e., T ′ = (1)) or G has a non-trivial
additive rational character. Consequently, by Theorem 5.1, G/Q(G) is the
basic group of some Lie algebra L. By Corollary 4.2 and Theorem 4.1,
G(L) is then isomorphic to G (as pro-affine algebraic groups) because both
groups are isomorphic to (G/Q(G))∗ ×D where (G/Q(G))∗ is the universal
pro-finite covering of G/Q(G) and D is the pro-toroid with character group
Hom(G/Q(G), F ). Hence H(L) and A[G] = A are isomorphic Hopf algebras.
This proves Theorem 5.2.

The above proof shows that if A = A[G] is a commutative Hopf algebra
satisfying conditions (1)-(3) of Theorem 5.2, then the Lie algebra L con-
structed in the proof of Theorem 5.1 with G/Q(G) as a basic group has the
property that A is isomorphic to H(L).
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