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ON SPRINGER REPRESENTATIONS AND THE
ZUCKERMAN FUNCTOR

Sam Evens

The purpose of this note is to resolve some questions raised
by Hunziker and Wallach. Wallach has given a beautiful, sim-
ple algebraic approach to the Springer representations. Hun-
ziker and Wallach have given a conjectural reinterpretation of
this result which depends on a computation of the Zuckerman
functor. We do this calculation using the geometric interpre-
tation of the Zuckerman functor due to Bernstein, which al-
lows us to deduce the computation from a result of Hotta and
Kashiwara. As a consequence we give an explicit connection
between Wallach’s construction of Weyl group representations
and a construction due to Hotta and Kashiwara.

Since this note is rather short, we postpone notation and the statement
of the main theorem (Theorem 1.2) to Section 1, where we also reduce 1.2
to a statement relating the Zuckerman and Bernstein induction functors.
In section two, we verify this statement by using theorems of Beilinson,
Bernstein-Lunts, and Pandzić [BL2, Pa]. We would like to thank Hunziker
and Wallach for enlightening and encouraging conversations, Lunts for send-
ing a preprint of [BL2], and Milicić for informing me about Pandzić’s thesis.
We would also like to thank the referee for correcting an error in Section 1.9.
In addition, we thank the University of California, San Diego for hospitality
during part of the preparation of this paper.

1. Holonomicity and vanishing of certain induced modules.

1.1. Notation. Let G be a complex semisimple group with Borel subgroup
B and Cartan subgroup H contained in B. Denote Lie algebras of Lie groups
by german letters g, b, h, etc. Let W be the Weyl group of G with respect to
H and let D(g) and D(b) denote the algebraic differential operators on g and
b respectively. The polynomial functions R(b) on b form an irreducible D(b)
module. The inclusion i : b ↪→ g induces by direct image a D(g) module
M = i+(R(b)). M is irreducible and holonomic, as follows from Kashiwara’s
theorem [Bo, 7.11] since R(b) is irreducible and holonomic. Notice also that
since R(b) is an H-module under the adjoint action and i is H-equivariant, it
follows that M is H-equivariant. Then M is a compatible (D(g), H) module
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in the sense that the differential of the H-action coincides with the induced
action of h as a Lie subalgebra of D(g) under the adjoint action. Embed g
inside D(g) using the adjoint action. This makes M into a (g, H) module.
Let Γi = ΓGH

i : M(g, H)→ M(g, G) denote the ith Zuckerman functor from
(g, H) modules to (g, G) modules. Γi(M) is still a D(g) module ([HW, 5.2]).

We denote the sheaf of functions on a variety X by OX and for a map
f : Y → X, fo : M(OX) → M(OY ) is the usual pullback in the category
of quasicoherent sheaves or its derived category extension. We denote the
dimension of X by dX . If C · is a complex, then C ·[s] denotes the shift of the
complex C · by s.

Theorem 1.2. Let r = dim g/b. Then Γi(M) = 0 if i 6= r and Γr(M) is
holonomic.

Remark 1.3. M can be identified with the D(g) module denoted by M
in [HW] by an easy calculation. Hunziker and Wallach proved Theorem
1.2 under the hypothesis that M is free for the opposite nilradical of b (see
[HW], 8.2 and 8.5). We prove 1.2 independently of this hypothesis. The
proof will be given in the remainder of section one.

1.4. The equivariant derived category and the geometric induction
functor ([BL1], [BL2], [MV]). Let X be a variety and A an algebraic
group acting on X. Denote by DX the sheaf of algebraic differential opera-
tors on X and let DA(X) be the equivariant derived category of DX modules.
Recall that a compatible (DX , A) module (meaning as before that the dif-
ferential of the A action coincides with the action of a induced from the
mapping a → vector fields on X) may be regarded as on object in DA(X)
concentrated in degree 0. For an equivariant map f : Y → X the usual
functors f+, f !, f+, f! extend to the equivariant derived category. Moreover,
if N ⊂ A is a normal subgroup acting freely on X then the quotient map
q : X → X/N induces an equivalence q+ : DA/N(X/N) → DA(X). Let
B ⊂ A be a subgroup and consider the diagram

A×X q−−−→ A×B X
p

y a

y
X

id−−−→ X

where p is projection onto the second factor, q is the obvious quotient map,
and a is the action morphism. Here B acts on A×X by b·(y, x) = (yb−1, bx).
Then we have a geometric induction functor γAB : DB(X) → DA(X) given
by γAB(F) = a+(S), where S is the unique object in DA(A ×B X) such
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that q+(S) = p+(F). Then γ is right adjoint to the forgetful functor, i.e.,
RHomDB(X)(M,N ) = RHomDA(X)(M, γAB(N )) (see [MV], e.g.).

Proposition 1.5. Let H ⊂ K be reductive subgroups of G and let M be
a compatible (D(g), H) module, which is by restriction a (g, H) module and
also may be regarded as an object in DH(g). Then ΓKH

i(M) ∼= H i(γKH (M)) as
K-modules.

We will prove this theorem in Section 2.
We return to the proof of Theorem 1.2. We must compute γGH(M).Observe

that M is equivariant for the Borel subgroup B and may be regarded as an
object in DB(g).

Lemma 1.6. Let M ∈ DB(g). Then γGB (M) = γGH(M).

Proof. Consider the diagram

G×H g =−−−→ G×H g
q

x q1

y
G× g q2−−−→ G×B g
p

y a2

y
g

=−−−→ g

where q, q1, and q2 are quotient maps and a2(g,X) = g ·X, so a = a2 ◦ q1.
Then γGH(M) = a+(S), where q+(S) = p+(M). But q2

+(S2) = q+q1
+(S2),

so we may take S = q1
+(S2), where q2

+(S2) = p+(M). Then γGH(M) =
a+(q1

+(S2)) = a2+(q1+q1
+(S2)). But q1+q1

+ is the identity functor. To see
this, let DR be the de Rham functor and observe that it suffices to prove
DRq1+q1

+F = DRF for any DG×Bg complex F with regular singularities, or
equivalently q1∗q1

∗F = F for any constructible sheaf. This follows from the
projection formula and the fact that q1 is a fiber bundle with vector space
fibers. Thus, γGH(M) = a2+(S2) = γGB (M).

1.7. (See [MV], [Mi] and others for analogous calculations.) Consider the
Cartesian diagram

G× b ĩ−−−→ G× g
p̃

y p

y
b

i−−−→ g

.

We will replace M by its localization, the Dg module M = i+(Ob). Since
p̃ is smooth, p+(M) = ĩ+p̃

+(Ob) by base change and p̃+(Ob) = OG×b[−dG].
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Let q̂ : G × b → G ×B b and î : G ×B b ↪→ G ×B g be the obvious quotient
and inclusion. Then

OG×b = q̂0(OG×Bb) = q̂+(OG×Bb)[dB],

so
p+i+Ob = ĩ+q̂

+OG×Bb[−dG/B] = q2
+î+OG×Bb[−dG/B].

Since we have a2+î+ = f+ where f : G×B b→ g is the action map, we obtain
γGB (i+Ob) = a2+î+OG×Bb[−dG/B] = f+OG×Bb[−r]. Then using Lemma 1.6,
we obtain

(1.7.1) H i(γGH(i+Ob)) = H i−r(f+OG×Bb).
Theorem 1.8 [HK, 4.2.3]. H0f+(OG×Bb) is a holonomic Dg module equal to
the minimal extension of its restriction to the regular set and H if+(OG×Bb)
vanishes for i 6= 0.

Hotta and Kashiwara do their calculation in D(g), but it is easy to check
that their argument is also valid in DG(g).

The proof of 1.2 now follows from 1.5, 1.7.1, and 1.8.

1.9. Denote the D(g) module Γr(M) by N. N decomposes into a direct
sum N = ⊕χ∈ŴUχ⊗Nχ, where the Uχ are pairwise inequivalent irreducible
W -modules and the Nχ are pairwise inequivalent irreducible D(g) modules
[HK, 5.4.2]. For a G module A, denote G invariants by AG. There is a
Harish-Chandra homomorphism δ : D(g)G → D(h)W (see [HW]). Moreover,
R(h) is aD(h) module using the obvious action, andR(h) also has aW action
given by the W action on h. In [Wa], it is shown that as a (D(h),W ) module,
R(h) ∼= Uχ ⊗ V χ, where the V χ are pairwise inequivalent D(h)W modules.
It follows that δ∗R(h) ∼= ⊕Uχ ⊗ δ∗V χ. We wish to relate the modules Nχ to
the δ∗V χ.

In Section 7 of [HW], it is shown that as D(g)G modules, NG ∼= δ∗R(h).
We claim that as (D(g)G,W ) modules, NG ∼= δ∗R(h) ⊗ sgn, so that NG

differs from δ∗R(h) by the sign involution (this observation and the ensuing
argument are essentially due to the referee). The claim can be established
by comparing the two modules on the set of regular semisimple elements
greg, since N is given by extending N |greg in a canonical way [Lu] and the
functor Mod(D(g)G) → Mod(D(g)) given by tensoring takes irreducibles
to irreducibles [HW]. We can identify N |greg = O(G ×H hreg), where hreg

is the set of elements in h not perpindicular to any root. It follows that
(N |greg)G ∼= R(hreg). This is an isomorphism of D(greg)G modules where the
D(greg)G module structure on R(hreg) is given by D ·(f |hreg) = D(f)|hreg . The
D(greg) structure used in [HW] on R(hreg) is the conjugation of the above
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structure by π, the product of all positive roots with respect to an ordering.
It follows that the map (N |greg)G → R(hreg) ⊗ sgn given by f 7→ f · π is an
isomorphism of (D(greg)G,W ) modules.

Since the G action on N commutes with the W action, it follows that
NG ∼= ⊕χ∈ŴUχ ⊗ (Nχ)G. The claim of the previous paragraph implies that
(Nχ)G ∼= V χ⊗sgn. This amounts to Theorem 8.8 in [HW], which was proved
there under the freeness assumption discussed in 1.3.

Moreover, we obtain an explicit connection between the classification of
Weyl group representations given in [Wa] and the classification of Weyl
group representations implicit in [HK]. Indeed, the Fourier transform
Fg(N) = ⊕Uχ ⊗ Fg(Nχ). Each Fg(Nχ) is an irreducible D(g)-module sup-
ported on the nilpotent cone ([HK, 5.3]), so is determined by a nilpotent
orbit with a local system. Thus, we have proved the following result, which
is essentially proven for trivial local systems in [Wa].

Theorem 1.10. The Weyl group representation corresponding to the D-
module Fg(Nχ) in the Hotta-Kashiwara picture corresponds to V χ⊗sgn in
Wallach’s description of the Springer representations.

2. Compatability of the Zuckerman functor with geometric
induction.

In this section, we prove Proposition 1.5 by using results of Beilinson, Berns-
tein-Lunts, and Pandzić. Presumably a less technical proof can be given by
explicit calculation of the Bernstein functor.

2.1. The homotopy category of equivariant modules. This section is
a summary of results from [BL2]. Let (A,K) be a Harish-Chandra pair.
This means that A is an associative C algebra with 1 and K is an algebraic
group acting on A by σ : K → Aut(A) and we are also given an embedding
j : k ↪→ A satisfying,
(a) j is K-equivariant,
(b) dσ(X)(a) = [j(x), a] for X ∈ k and a ∈ A.

A weak (A,K)-module M is a vector space with an algebraic represen-
tation ρ : K → Aut(M) and an algebra representation α : A → End(M)
such that for a ∈ A and k ∈ K, we have α(σ(k)(a)) = ρ(k)α(a)ρ(k)−1. M is
called an (A,K) module if dρ = α ◦ j on k. An h-complex is a complex C ·

of weak (A,K)-modules together with a linear map i : k → Hom−1(C ·, C ·)
such that
(a) ρ(k)i(X)ρ(k)−1 = i(Ad(k)(X)), for X ∈ k, k ∈ K
(b) i(k) commutes with the A action
(c) i(X)i(Y ) + i(Y )i(X) = 0 for X,Y ∈ k
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(d) di(X) + i(X)d = dρ(X)− α(j(X)), for X ∈ k.
It follows immediately that H i(C ·) is an (A,K)-module. Let Ch(A,K) be

the abelian category of h-complexes and let Db
h(A,K) be the corresponding

derived category of bound-ed complexes. All of these constructions are local,
so we may consider the sheaf of Harish-Chandra pairs and the associated
derived category of modules, Db

h(DX ,K). The following theorem of Beilinson
explains why we have introduced this category.

Theorem 2.2 [BL2, 2.13]. Let X be a smooth K-variety. There is an
equivalence of categories Db

h(DX ,K) ∼= Db
K(X). For a (DX ,K) module M,

this equivalence is given by the obvious identification.

Since the global section functor induces an equivalence Db
h(Dg,K) ∼=

Db
h(D(g),K), we obtain the following corollary.

Corollary 2.3. Let K ⊂ G be a subgroup. Then Db
K(g) ∼= Db

h(D(g),K).

2.4. Induction in Db
h(A,K) [Pa]. Assume K is reductive and let H ⊂ K

be a reductive subgroup. Then (A,H) is also a Harish-Chandra pair.

Theorem 2.5 [Pa]. There is an algebraic induction functor ΓKH : From
Db
h(A,H) to Db

h(A,K) right adjoint to the forgetful functor. Suppose B is a
subalgebra of A such that (B,K) and (B,H) are Harish-Chandra pairs and
A is flat over B. Then induction commutes with the natural restriction maps
Db
h(A,H)→ Db

h(B,H) and Db
h(A,K)→ Db

h(B,K).

We briefly describe the construction of the induction functor. It is defined
as the derived functor of an induction functor Cb

h(A,H)→ Cb
h(A,K). Recall

that Cb
h(A,H) is equivalent to the category of differential graded modules

for a differential graded algebra [Gi, BL2]. Indeed, consider the differential
graded Lie algebra h, where h

0
= h as a Lie algebra, h

−1
= h as a vector space

and has zero bracket, h
i

= 0 for i 6= 0,−1. The differential d : h
−1 → h0

is the
identity map and for X ∈ h0

= h, Y ∈ h−1
, we have d[X,Y ] = [X, dY ]. Then

U(h)⊗A is a differential graded algebra and the group H acts by conjugation
on U(h) ⊗ A. The diagonal embedding h → BH , X 7→ X ⊗ 1 + 1 ⊗ j(X)
makes (BH , H) into a differential graded Harish-Chandra pair. Then we
have an equivalence of categories between Ch(A,H) and the category of
differential graded Harish-Chandra modules M(BH , H) [BL2, 1.11.1]. Note
that (U(k) ⊗ U(h), H) is also a differential graded Harish-Chandra pair in
an analogous way. Moreover, U(k) is a Harish-Chandra module for this
algebra. For a module V ∈ Cb

h(A,H), then R(K)⊗ V is in a natural way a
(U(k)⊗U(h), H) module, which also has a commuting (A,K) action. Then
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ΓKH(V ) = HomU(k)⊗U(h),H(U(k), R(K) ⊗ V ) is a (A ⊗ U(k),K) module in a
natural way. We use ΓKH to denote the corresponding derived functor.

Lemma 2.6. The following diagram commutes.

Db
H(g)

γKH−−−→ Db
K(g)

∼=
y ∼=

y
Db
h(D(g), H)

ΓKH−−−→ Db
h(D(g),K)

.

Proof. The commutativity of the diagram

Db
H(g) ←−−− Db

K(g)

∼=
y ∼=

y
Db
h(D(g), H) ←−−− Db

h(D(g),K)

where the horizontal arrows are forgetful functors is obvious. The lemma
follows from the uniqueness of adjoint functors.

Let A = U(g)⊗πD(g), where U(g) acts on D(g) by extending the adjoint
action (a similar construction is given in [HW, 5.2]). It is not hard to check
that A is free over U(g) and D(g) by using obvious filtrations.

Lemma 2.7. The following diagrams are commutative, where the vertical
arrows are given by restriction.

Db
h(D(g), H)

ΓKH−−−→ Db
h(D(g),K)x x

Db
h(A,H)

ΓKH−−−→ Db
h(A,K)y y

Db
h(U(g), H)

ΓKH−−−→ Db
h(U(g),K)

.

Proof. This follows from 2.5.

We recall one of the main theorems from [BL2].

Theorem 2.8 [BL2, 1.3]. The natural functor α from Db(U(g),K) to
Db
h(U(g),K) is an equivalence of categories.

Since the forgetful functor commutes with α, it follows immediately that
the algebraic induction functor ΓKH corresponds to the usual Zuckerman func-
tor under the equivalence α.
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2.9. Proof of 1.5. Regard M as an object in Db
h(A,H) by making U(g)

act by the restriction of the D(g) action. The proof follows from Lemma
2.6, Lemma 2.7, and Theorem 2.8.
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