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K HOMOLOGY AND REGULAR SINGULAR
DIRAC-SCHRÖDINGER OPERATORS

ON EVEN-DIMENSIONAL MANIFOLDS

Jeffrey Fox and Peter Haskell

We identify a class of Dirac-Schrödinger operators on in-
complete manifolds and show that the index theory of these
operators, including its expression in K homology, is parallel
to that of Dirac-Schrödinger operators on complete manifolds.

Introduction.

The study of Fredholm indices of Dirac-Schrödinger operators (also known as
perturbed Dirac operators and operators of Callias type) on complete mani-
folds arose in connection with questions in mathematical physics, [10, 18, 21].
It is now known that these indices carry information about the geometry of
complete manifolds, [1, 9, 22]. The index theory of Dirac-Schrödinger oper-
ators on complete manifolds fits nicely in a K-theoretic framework, [9, 15].
This observation and the observation that the resulting index formulas in-
volve compactly supported data suggest that the index theory of Dirac-
Schrödinger operators should be treated in a unified manner across a large
class of noncompact manifolds, including complete and incomplete examples.

The present paper identifies a class of Dirac-Schrödinger operators on in-
complete manifolds and shows that their index-theoretic and K-theoretic
properties match those established for Dirac-Schrödinger operators on com-
plete manifolds. The incomplete manifolds are those with asymptotically
cone-like singularities, and the Dirac-Schrödinger operators are those we
call regular singular (see Definition 2.1) that satisfy a property we call real-
izing their limiting indices (see Definition 1.1). In short these are sums of a
Dirac operator and an order-zero “perturbation” that is invertible and large
enough off a compact subset and whose pointwise norm grows in inverse
proportion to the distance from the singularities.

We show that such a regular singular Dirac-Schrödinger operator defines a
class in the K homology of the metric completion of the incomplete manifold
on which it lives. We show that this class equals the Kasparov product of
a K homology class (on the incomplete manifold) associated with the Dirac
operator and a K cohomology class associated with the perturbation. Early
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in the argument one can veer off to establish an index formula for the Dirac-
Schrödinger operator. Going on to K homology permits one to recover the
full homology Chern character of the operator. The direct calculations of the
Kasparov product in the complete case do not carry over to this incomplete
setting because of the growth of the perturbation. However, this incomplete
setting gives rise naturally to a compact manifold on which one can express
the K-theoretic information carried by the Dirac-Schrödinger operator.

Among the tools used in this paper are the analysis of regular singular
operators [7] and techniques for studying analytic K homology cycles on
singular spaces and their open dense subsets [3, 17]. The foundation of the
paper is a theorem that allows one to conclude that certain Dirac-Schrödinger
operators on very different manifolds have equal indices. This theorem is
stated in a fairly general form in Section 1, but the proof follows exactly the
reasoning used in [16] in the study of a special case.

0. Overview and example.

In this section we introduce the reasoning used in this paper by discussing
it in the context of an explicitly worked example.

In this paper we study index theory on incomplete Riemannian mani-
folds associated with singularities. The asymptotically cone-like singulari-
ties (defined early in Section 2) that we consider can arise in two ways. If
one attaches a finite-length cone to each component of a compact manifold
with boundary, one gets a compact space which is singular (unless the orig-
inal boundary components are spheres). The incomplete manifold is this
space with the cone tips removed. Alternatively on a compact Riemannian
manifold without boundary, one can encounter differential operators whose
coefficients are singular at isolated points. (In our case the operators will
be first-order elliptic with singularities only in the order zero terms.) Then
the original manifold plays the role of compact space. The complement in
the original manifold of the singular set is the incomplete manifold we work
with. We refer to both the cone tips and the points where coefficients become
singular as singular sets.

As indicated above, the operators we work with are first order elliptic
differential operators with order zero potential terms exhibiting special be-
havior “near the edge” of the incomplete manifold, i.e., on the complement
of a compact subset of the incomplete manifold. Roughly speaking, we re-
quire the potential to be invertible in a neighborhood of the singular set
and to have in this neighborhood a pointwise norm that grows in inverse
proportion to the distance from the singular set. A detailed description of
these operators appears early in Section 2.
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Example. We illustrate the subject of the paper with an example in which
the singularities arise from the order zero term of the operator. Let X be
a compact Riemann surface without boundary. Let E1 be a Hermitian holo-
morphic complex line bundle on X. Assume E1 has a meromorphic section
for which the only pole, a simple pole, occurs at z0 ∈ X. Choose such a
section. Interpret this section as a bundle map a : E0 → E1, where E0 is
a trivial Hermitian complex line bundle on X. Assume X has a Rieman-
nian structure so that in some neighborhood V of z0, X is isometric and
holomorphically equivalent to an open disk in the complex plane.

Let S0 denote the trivial line bundle on X and let S1 denote the bundle
whose sections are differential forms of type (0, 1). The ∂-operator maps
sections of S0 to sections of S1. For i ∈ {0, 1}, ∂ extends to define operators
∂i from sections of S0 ⊗ Ei to sections of S1 ⊗ Ei. The incomplete manifold
on which all of the above is defined is M = X \ {z0}.

Restricting to M , we have the operator

∂a =

(
∂0 −a∗
a ∂

∗
1

)

mapping sections of S0 ⊗ E0 ⊕ S1 ⊗ E1 to sections of S1 ⊗ E0 ⊕ S0 ⊗ E1. This
operator on M , ∂a, is the regular singular Dirac-Schrödinger operator of
our example. (The difference in appearance between this operator and the
operator in Definition 2.1 arises from our decision to write the summands in
the range space in reverse order. This is merely an explicit implementation
of one step of the unitary equivalence by which the operator is expressed in
standard regular singular form.)

Analysis. The calculations we need to do with ∂a depend on its behavior
in V \ {z0}. To see this behavior we use local coordinates in V that identify
z0 with 0. We choose local coordinates that respect the Riemannian and
holomorphic structure of V . In V we use trivializations of the Hermitian
holomorphic line bundles that respect all of their structure. For the sake of
an example, we impose the further condition on a that in these coordinates
a takes the form of multiplication by 1/z. Then over V \ {z0} we can write
∂a as (

∂/∂z −1/z
1/z −∂/∂z

)
.

In standard polar coordinates this operator is(
eiθ/2 0

0 −e−iθ/2

){(
∂/∂r 0

0 ∂/∂r

)
+ r−1

(
i∂/∂θ −2
−2 −i∂/∂θ

)}
.
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Ignoring the invertible first factor, we focus on

(
∂/∂r 0

0 ∂/∂r

)
+ r−1

(
i∂/∂θ −2
−2 −i∂/∂θ

)
.

Standard polar coordinates involve a measure rdrdθ while the regular singu-
lar theory of [6, 7] is expressed in terms of drdθ in our context. The unitary
operator from the L2 space in one measure to the L2 space in the other
measure is multiplication by r−1/2. Conjugating with this we can express
the last operator in the drdθ setting as

(
∂/∂r 0

0 ∂/∂r

)
+ r−1

(
i∂/∂θ − 1/2 −2
−2 −i∂/∂θ − 1/2

)
.

This reveals that ∂a can be studied using the techniques of regular singular
theory as in [6, 7, 20].

In our analysis of ∂a, we focus on the above expression because the fun-
damental analytic questions that interest us revolve around the nature of
the domain of the elliptic operator ∂a on the incomplete manifold M . Using
a smooth partition of unity consisting of a function with compact support
in M and a function with support in V , we can break such questions of
domain into well-understood questions about elliptic operators on compact
manifolds and calculations on V .

An important step in our reasoning establishes that the index of ∂a is equal
to the index of a related Dirac-Schrödinger operator on a compact manifold.
Our technique, as described in theorem 1.4 and its proof, establishes directly
that the indices are equal when the order zero terms are sufficiently large.
For this technique to have implications for index (∂a), we need to establish
that the index is constant under a scaling of the order zero term. This is not
guaranteed for an unbounded order zero term on an incomplete manifold,
but we show that the following conditions (in addition to more easily verified
conditions) imply this invariance for scale factors s ≥ 1. The conditions are
that for s ≥ 1:
(i) The operator ∂sa, defined on smooth compactly supported sections,

has a unique closed extension, which is Fredholm;
(ii) the domain of this closed extension is independent of s;

(iii) with this domain the Fredholm index of ∂sa is independent of s.
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To study these conditions we adopt the following notation.

tsa =

(
i∂/∂θ − 1/2 −2s
−2s −i∂/∂θ − 1/2

)

∂r + r−1tsa =

(
∂/∂r 0

0 ∂/∂r

)
+ r−1

(
i∂/∂θ − 1/2 −2s
−2s −i∂/∂θ − 1/2

)
.

To prove condition (i), we observe that the spectrum of the self-adjoint
operator tsa has empty intersection with (−1/2, 1/2) and then we quote a
result of [6, 7]. The assertion about the spectrum follows from inspection
of t2sa, which has 2s in the off-diagonal corners and has each diagonal corner
equal to the sum of a nonnegative operator plus 4s2.

It follows from (i) and our use of a partition of unity that (ii) can be
established via estimates of

(0.1) 〈(∂r + r−1tsa)η, (∂r + r−1tsa)η〉
for η smooth and compactly supported on V \ {z0}. The expression in (0.1)
equals

〈(∂r + r−1tsa)∗(∂r + r−1tsa)η, η〉(0.2)

= 〈(−∂2
r + r−2(tsa + t2sa))η, η〉

= 〈−∂2
r (η), η〉+ 〈r−2(tsa + t2sa)η, η〉

= ‖∂r(η)‖2 + ‖r−1(tsa + t2sa)
1/2η‖2.

Again inspection of t2sa shows that its spectrum has empty intersection with
(−2, 2) and hence that tsa + t2sa is positive and, in fact, bounded away from
zero by a bound independent of s. In addition for each s, tsa+t2sa is a second
order elliptic operator on a compact manifold (in this example, the circle).
It follows that for s1, s2 ≥ 1 each of ts1a + t2s1a and ts2a + t2s2a is relatively
bounded with respect to the other. The condition (ii) follows.

Finally condition (ii), the description of domain (∂sa) provided by the last
line of (0.2), and the observation that tsa + t2sa is uniformly bounded away

from zero show that

(
0 −a∗
a 0

)
is a bounded operator from domain (∂a) to

the set of L2 sections. It follows that for s ≥ 1, ∂sa is a norm continuous
family of bounded operators from domain (∂a) to the set of L2 sections. This
establishes (iii).
Topology. In Section 3 we observe that letting

da =

(
0 ∂

∗
a

∂a 0

)
,
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we can use da(1 + d2
a)
−1/2 to define a class in the K homology of X, in

particular in KK(C(X),C). Our understanding of this K homology class
is based on representing the same class by a cycle created from an elliptic
operator on a compact manifold Y without boundary. There is some freedom
in the choice of Y . Y need only satisfy the conditions given at the beginning
of Section 3. In particular we require that there be a continuous map f :
Y → X that identifies f−1(M) with M via a diffeomorphism. (The map f
provides a means of viewing KK cycles defined on Y , M , or X in a single
KK group. For instance f∗ defines a map from the K homology of Y to the
K homology of X.) We further require that Y carry an elliptic operator,
vector bundles, and a vector-bundle map analogous to those on M . In fact
the analogy we require is a strong one: We require (conditions 3.2 and 3.3)
that for any compact subset of M it be possible to deform smoothly the
structure of Y and the structures of the objects carried on Y so that over
the interior of the compact subset, the identification arising from f is an
isomorphism of these structures. Because of the singularity on X, it is not
possible to impose structures on (the objects on) Y that can be identified
over all of f−1(M) with those on M . However, to establish that the classes
in KK(C0(M),C) defined by cycles on M equal the classes defined by the
analogous cycles on Y , conditions 3.2 and 3.3 are sufficient. There are two
steps in proving this sufficiency. One is the homotopy invariance of KK
classes. (The homotopy arises from the deformations on Y .) The other
(Lemma 3.13) is a KK theory exact sequence arising from an exhaustion of
M by appropriate subsets.

A doubling construction described in Remark 2.16 guarantees that we can
always find a Y satisfying the conditions stated in Section 3. However, in
our example the manifold X, mapping to itself by the identity map, can play
the role of Y . S0 and S1 take their previous meaning on Y , i.e. on X, as does
E0. The vector bundle EY1 is defined as follows. Remove a small closed disk,
centered at z0 and contained in V , from X. Call the remaining open set U .
EY1 arises by clutching E1|U with E0|V by the attaching map a−1|U∩V . The
vector bundle map aY : E0 → EY1 is defined by aY |U = a|U and aY |V = id|E0 .
As before, ∂ extends to the resulting tensor product bundles; again we denote
these extensions by ∂0 and ∂1. Then the new elliptic operator on Y = X is

∂
Y

a =

(
∂0 −(aY )∗

aY ∂
∗
1

)
mapping sections of S0⊗E0⊕S1⊗EY1 to sections of S1⊗E0⊕S0⊗EY1 . With

dYa =

 0 (∂
Y

a )∗

∂
Y

a 0

 ,
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dYa (1 + (dYa )2)−1/2 is the operator from which we create a cycle defining a
class in KK(C(Y ),C).

Remark. It is interesting to note that we impose few conditions on Y \
f−1(M) other than the requirement that the vector-bundle map be invertible
over this set. This is because one can show by standard reasoning that aY

represents a K theory class on Y which is in the image of the relative group
K0(Y, Y \f−1(M)) and that dYa (1+(dYa )2)−1/2 represents the cap product of
this class with the K homology class represented by the ∂-operator (in our
example) on Y . (In Section 3 we recall the proofs of these assertions in the
language of KK theory and Kasparov products.) The analogous statement
for the cycles defined on M and the K homology of X is one of the goals of
this paper, but the growth of the vector-bundle map near the singular set
prevents direct calculation of the Kasparov products on X. Instead we show
that the KK cycles defined on M represent the same classes over M or X (as
appropriate) as the analogous cycles defined on Y . The product calculation
with the cycles on Y then determines the product on X. In this way (or
more directly through the equality of KK(C(X),C) classes established by
Proposition 3.15) one can use well-established techniques on Y to calculate
the full homology Chern character in H∗(X) of the class in KK(C(X),C)
represented by da(1 + d2

a)
−1/2.

Lemma 3.14 and Proposition 3.15 contain the heart of the reasoning show-
ing that cycles defined on M and the analogous cycles defined on Y represent
the same classes in KK(C(X),C). An exact sequence shows that a class
in KK(C(X),C) is determined by its image in KK(C0(M),C) and by the
index of its operator. That the classes defined by dYa (1 + (dYa )2)−1/2 and
da(1 + d2

a)
−1/2 have the same image in KK(C0(M),C) follows from condi-

tions 3.2 and 3.3 and from Lemma 3.13. (In this reasoning the nonlocal
operators (1 + d2

a)
−1/2 and (1 + (dYa )2)−1/2 provide a challenge that is met

by the finite propagation speed techniques of [3].) Our analysis of ∂a and
standard properties of the operator ∂

Y

a on the compact manifold Y show
that theorem 1.4 can be applied to establish that index (∂a) = index(∂

Y

a ).

1. Index comparison.

In this section we define terms and discuss a theorem with which one can
compare indices of Fredholm Dirac-Schrödinger operators. We later use
this theorem to show that a Fredholm Dirac-Schrödinger operator on an
incomplete manifold has index equal to that of a related Dirac-Schrödinger
operator on a compact manifold without boundary.

Let W be a Riemannian manifold, not necessarily complete. Let F0 and
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F1 be a pair of Hermitian vector bundles over W . Let

S + C : L2(F0)→ L2(F1)

be an operator in which S is a first-order elliptic differential operator and C
arises from a vector bundle map. Assume that S +C is closed. Throughout
the paper we assume that bundles and their maps are smooth, that dif-
ferential operators have smooth coefficients, and that the domains of these
operators contain all smooth compactly supported sections.

Definition 1.1. We say that S + C realizes its limiting index if {S + tC :
t ∈ [1,∞)} is a family of Fredholm operators with constant domain and
constant index.

Definition 1.2. Let S′ be the restriction of S to smooth compactly
supported sections. Denote the formal adjoint of S′ by S′′, which is also
defined on smooth compactly supported sections. We say that S+C satisfies
the core condition if we can choose a positive t0, a subspace H of L2(F0)⊕
L2(F1), and a closed extension Σ of

(
0 S′′

S′ 0

)
such that :

(a) H serves as a core for all operators

(
0 (S + tC)∗

S + tC 0

)
with t ≥ t0;

(b)

(
0 (S + tC)∗

S + tC 0

)2

is defined on H for all t ≥ t0; and

(c) Σ∗Σ is defined on H.
Then for t ≥ t0 we define R(S + tC) on H by

(
0 (S + tC)∗

S + tC 0

)2

= Σ∗Σ +R(S + tC).

Implicit in any use of R(S + tC) is a set of choices as discussed above. In
Sections 2 and 3 of this paper, operators S+C will satisfy the core condition
by virtue of having the set of smooth compactly supported sections serve as
a core for S + tC and for (S + tC)∗ for all t ≥ 1. This is the core we will
use, and there is then no ambiguity about the definition of R(S + tC). In
such a situation, it is suggestive and accurate to write the defining equation
of R(S + tC) as

(
0 (S + tC)∗

S + tC 0

)2

=

(
S∗S 0

0 SS∗

)
+R(S + tC).
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Definition 1.3. We say that S + C satisfies the eventual positivity con-
dition if for sufficiently large t, R(S + tC) is a vector-bundle map and there
is a compact set K ⊂W and a positive constant k such that for sufficiently
large t, R(S+ tC) ≥ k on the complement of K. (Suppose the set of smooth
compactly supported sections is a core for S+ tC and (S+ tC)∗ for all t ≥ 1.
Then because C∗C is a vector-bundle map, R(S+C) is a vector-bundle map
if and only if for arbitrary t ≥ 1 R(S + tC) is a vector-bundle map.)

The following theorem provides the idea unifying the index theory of
Dirac-Schrödinger operators on a broad class of manifolds. The proof is
based directly on the proof of a special case given in [16]. Some applications
of this proof to a wide class of Dirac-Schrödinger operators were discussed
in [13] under less general assumptions than are considered here.

Theorem 1.4. Let W1 and W2 be Riemannian manifolds on which there
are operators (of the kind discussed in the second paragraph of this section)
S1 + C1 : L2(F0,1) → L2(F1,1) on W1 and S2 + C2 : L2(F0,2) → L2(F1,2)
on W2. Assume that each of C1 and C2 is invertible off a compact set.
Assume that each of S1 + C1 and S2 + C2 realizes its limiting index and
that each satisfies the core condition and the eventual positivity condition.
Assume that there are neighborhoods V1 of the singular set of C1 and V2

of the singular set of C2 that are isometric. Assume that the isometry is
covered by isomorphisms of Hermitian vector bundles Fi,1|V1 → Fi,2|V2 and
that the associated maps on sections intertwine the restrictions of S1 and S2

and intertwine the restrictions of C1 and C2. Then

index(S1 + C1) = index(S2 + C2).

Proof. Let f be the map on sections defined by the isomorphisms of Hermi-
tian vector bundles. Let φ be a nonnegative function that is identically one
on the set where C1 is not invertible and that has compact support in V1.
Let Φ denote multiplication by φ.

Because S1 +C1 and S2 +C2 realize their limiting indices, in order to show
index (S1 +C1) = index(S2 +C2) it suffices to show that for large enough t

(1.5) index

((
S1 + tC1 0

0 (S2 + tC2)∗

))
= 0.

Let

Gt =

(
S1 + tC1 −(tf ◦ Φ)∗

tf ◦ Φ (S2 + tC2)∗

)
.

Because Gt is a relatively compact perturbation of the operator in (1.5),
it suffices to show that for large enough t, Gt is invertible. We proceed to
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show that for large enough t, G∗tGt has a positive lower bound. Analogous
reasoning establishes the same property for GtG

∗
t .

Because φ has compact support in the region where f intertwines the
operators, the off-diagonal entries of G∗tGt are bounded vector-bundle maps
multiplied by t. Note that these off-diagonal entries are zero outside the
support of φ and its counterpart in W2.

In the following analysis of G∗tGt, a subscript i, j denotes a row, column
position in a two-by-two matrix. Inner products are those associated with
L2 spaces of sections. u is in the core used in the definition of R(S1 + tC1),
and v is in the core used in the definition of R(S2 + tC2).

〈
G∗tGt

(
u
v

)
,

(
u
v

)〉
≥
〈(
R (S1 + tC1)1,1 + t2 (Φf∗fΦ)

)
u, u

〉(1.6)

+
〈(
R (S2 + tC2)2,2 + t2 (fΦΦf∗)

)
v, v

〉
+
〈

(G∗tGt)1,2 v, u
〉

+
〈

(G∗tGt)2,1 u, v
〉
.

The maps appearing inside the inner products on the right side of the
above inequality are all vector-bundle maps. Choose compact subsets K1

of W1 and K2 of W2 such that: for each i Ki plays the role of K in the
definition of eventual positivity of Si +Ci; K1 contains support (φ); and K2

contains the isometric image of support (φ).
The right side of (1.6) equals

〈R(S1 + tC1)1,1u|W1−K1 , u|W1−K1〉+ 〈R(S2 + tC2)2,2v|W2−K2 , v|W2−K2〉
(1.7)

+ 〈t2(C∗1C1 + Φf∗fΦ)u|K1 , u|K1〉+ 〈t2(C2C
∗
2 + fΦΦf∗)v|K2 , v|K2〉

+

〈
tΨ

(
u|K1

v|K2

)
,

(
u|K1

v|K2

)〉
.

Here Ψ is defined to be whatever is necessary to make equality hold. The
important properties to note are that Ψ is independent of t and that because
the vector-bundle map Ψ is taking values only on K1 ×K2, Ψ is bounded.
It follows that there exists a constant c0 such that∣∣∣∣∣

〈
tΨ

(
u|K1

v|K2

)
,

(
u|K1

v|K2

)〉∣∣∣∣∣ ≤ tc0(‖u|K1‖2 + ‖u|K1‖ · ‖v|K2‖+ ‖v|K2‖2).

Observe that C∗1C1 + Φf∗fΦ has a positive lower bound on K1 and that
C2C

∗
2 + fΦΦf∗ has a positive lower bound on K2. The eventual positivity

condition and comparison of t2 with t show that for large enough t, G∗tGt

has a positive lower bound.



REGULAR SINGULAR DIRAC-SCHRODINGER OPERATORS 261

2. Regular singular Dirac-Schrödinger operators.

In this section we define and study the properties of regular singular Dirac-
Schrödinger operators on even-dimensional manifolds. We then carry out the
construction which assigns to a regular singular Dirac-Schrödinger operator
a related elliptic operator on a compact manifold without boundary. This
construction is the foundation for the K-theoretic reasoning of the third
section. In studying regular singular operators, we rely on [7], which was
motivated by [11] and [12].

Let M be an oriented even-dimensional Riemannian manifold with asymp-
totically cone-like singularities. M is separated by a hypersurface N into
two pieces that share their common boundary N : A compact manifold
with boundary; and a piece Cp(N) isometric to (0, p] × N with metric
dr⊗ dr+ r2gN(r). Here p is some positive number, r ∈ (0, p], and gN(r) is a
family of Riemannian metrics on N that is smooth on [0, p]. For 0 < x ≤ p
we let Cx(N) denote the piece of M associated with (0, x] ×N , and we let
Mx denote the complement in M of Cx(N).

Let D be a Dirac operator acting on sections of a complex Dirac bundle
S over M . (The terminology is from [19].) (At this point one can assume
that the sections discussed are smooth and compactly supported. We will
specify domains more carefully when that is necessary.) The Dirac bundle is
graded by the positive and negative eigenspaces of the action of M ’s volume
element into S = S+ ⊕ S−. We assume that D is a first order regular
singular elliptic operator (regular singular operator for short) in the sense
of [7]. We make the further assumption that the unitary map by which D
is realized as a regular singular operator respects the distance represented
by the variable r. As shown in [7] and [20] the signature and spin Dirac
operators satisfy these assumptions. It seems likely that many interesting
Dolbeault operators (viewed as spinc Dirac operators) will also. An example
was discussed in Section 0.

Let E0 and E1 be Hermitian vector bundles with metric connections
over M . For each i assume that there is a Hermitian bundle with met-
ric connection Ẽi → N and a chosen fixed isomorphism of all structures
Ei|Cp(N)

∼= (0, p] × Ẽi. This isomorphism is henceforth implicit in our dis-
cussion of Ei. Let A : E0 → E1 be a vector bundle map that is invertible off
some compact subset of M and that over Cp(N) has the form r−1Ã. Here
Ã : Ẽ0 → Ẽ1 is a fixed invertible vector bundle map over N .

For each i let Di denote the operator from sections of S+⊗Ei to sections
of S− ⊗ Ei that is defined using the definition of D and tensor product
connections. Let A be the operator from sections of S± ⊗ E0 to sections of
S± ⊗ E1 defined using the tensor product of the identity operator with A.
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Definition 2.1. Under the above assumptions we call the operator

DA =

(
A D∗1
D0 −A∗

)

from sections of S+⊗E0⊕S−⊗E1 to sections of S+⊗E1⊕S−⊗E0 a regular
singular Dirac-Schrödinger operator.
Remark 2.2. Let S̃ be the positive eigenspace for the action of N ’s volume
element on S|N . Let D̃i be the operator on the bundle S̃ ⊗ Ẽi arising from
the realization of D as a regular singular operator. Let Ã be the restriction
of of A to N . As observed in [13] in a more restricted setting, one can reason
as in [20] to show that over Cp(N) DA is unitarily equivalent to

∂/∂r + r−1

(
D̃0 Ã∗

Ã −D̃1

)
+ rβT̃ (r)

as an operator on the Hilbert space of L2 functions on (0, p] with values in
L2(S̃⊗ Ẽ0⊕ S̃⊗ Ẽ1). It follows that DA is a regular singular operator. Here
β > −1/2 and T̃ (r) is a smooth family of first order differential operators
satisfying conditions described in [7]. T̃ does not appear in the setting of
[20] or of our Section 0, but [7] shows that it does occur for some examples
of operators D. For the moment one can assume that the domain of the
operator consists of smooth compactly supported functions with values in
smooth sections.
Notation 2.3.

TA =

(
D̃0 Ã∗

Ã −D̃1

)
.

Let ψ be a positive compactly supported function on Cp(N) that depends
on r alone, that equals 1 in a neighborhood of r = p, and that takes all of
its values in [0, 1]. Let DA,ψ be the operator that agrees with DA off Cp(N)
and that over Cp(N) is unitarily equivalent to

∂/∂r + r−1TA + ψ(r)rβT̃ (r)

via the unitary equivalence used to give the analogous expression for DA.
Remark 2.4. DA,ψ is also a regular singular operator. By focusing on a
subset of Cp(N) that has empty intersection with support(ψ), we see that
DA,ψ has the form ∂/∂r+r−1TA on the asymptotically cone-like complement
of a compact manifold with boundary.

By this remark, the analysis of [13], which we now recall, applies to DA,ψ.
We are interested in the index theory of DA, but it is easier to do explicit
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analysis with the simpler operator DA,ψ. Nothing is lost in this approach
because we show, by an estimate in Lemmas 2.10 and 2.14, that the indices
of DA and DA,ψ are equal. Our exposition is based on the following guideline.
We merely quote general results about regular singular operators. Detailed
proofs appear in [6, 7]. However, we provide proofs of statements whose
validity or interest depends on the presence of the perturbation A.
Assumption 2.5. Henceforth in discussing regular singular Dirac-Schrö-
dinger operators we assume that A has been chosen so that the spectrum of
TA has empty intersection with (−1/2, 1/2).

Lemma 2.6. For any A satisfying our earlier assumptions {s : sA satisfies
Assumption 2.5} contains an interval of the form [k1,∞).

Proof. T 2
sA is the sum of a nonnegative term, a bounded term that is mul-

tiplied by s, and a bounded term that is positive, bounded away from zero,
and multiplied by s2. To show that the term multiplied by s is bounded,
calculate with the symbols of the operators involved.

Lemma 2.7 [7]. Under Assumption 2.5 DA,ψ, defined on smooth com-
pactly supported sections, has a unique closed extension as an operator on
L2 sections. This extension is Fredholm.

Notation 2.8. Henceforth we use DA,ψ to denote this closed extension.

Lemma 2.9. {s : DsA,ψ realizes its limiting index} contains an interval
of the form [k2,∞).

Proof. Lemmas 2.6 and 2.7 show that there is such an interval of values of s
for which DsA,ψ is Fredholm. Reasoning like that used in the proof of Lemma
2.6 shows that for large enough s the spectrum of TsA has empty intersection
with [−1, 1] and so TsA + T 2

sA has a positive lower bound. Thus for large
enough s1 and s2, each of Ts1A +T 2

s1A
and Ts2A +T 2

s2A
is bounded relative to

the other. It follows, by calculations analogous to those done explicitly in
Section 0, that for large enough s domain(DsA,ψ) is independent of s. The
existence of the positive lower bound for TsA + T 2

sA also implies that A is
a bounded operator from the common domain of the DsA,ψ to the space of
L2 sections of the appropriate bundle. Thus for large enough s DsA,ψ is a
norm-continuous family of bounded Fredholm operators from the common
domain of the DsA,ψ to L2.

Lemma 2.10. With domain equal to domain(DA,ψ), DA is a closed opera-
tor.

Proof. It suffices to show that the graph norms of DA,ψ and DA are equiva-
lent. Recall that β > −1/2. By assumption in [7], T̃ (r) is bounded uniformly
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in r relative to

(
D̃0 0
0 −D̃1

)
. Thus we can find p′ such that on Cp′(N) rβT̃ (r)

is r−1TA-bounded with relative bound less than 1. It follows that the restric-
tions to Cp′(N) of DA,ψ and DA have equivalent graph norms. The graph
norms of these elliptic operators are equivalent on any compact submanifold
with boundary. A partition of unity argument finishes the proof.

Lemma 2.11 [6]. The restriction of DA to the set of smooth compactly
supported sections has a unique closed extension.

Remark 2.12. By Lemma 2.10 the domain of this closed extension equals
the domain of DA,ψ. Henceforth we use DA to denote this closed extension.

Lemma 2.13 [7]. DA is Fredholm.

Lemma 2.14. Index(DA,ψ) = index(DA).

Proof. By the estimates in the proof of Lemma 2.10, a homotopy of ψ to the
function that is constantly 1 provides a norm-continuous family of operators
from domain (DA) to the space of L2 sections. DA,ψ is at one end of the
family, DA at the other end.

Lemma 2.15. DA,ψ satisfies the eventual positivity condition.

Proof. Because the eventual positivity condition permits us to ignore an
arbitrary compact set, it suffices to analyze R(DtA,ψ) on the subset of Cp(N)

where ψ ≡ 0. Let Dψ denote the operator agreeing with

(
0 D∗1
D0 0

)
off Cp(N)

and unitarily equivalent to

∂/∂r + r−1

(
D̃0 0

0 −D̃1

)
+ ψ(r)rβT̃ (r)

over Cp(N). (Here the unitary equivalence is the same one used with
DA.) On smooth compactly supported sections over the subset of Cp(N)
where ψ ≡ 0, the upper left corner of R(DtA,ψ) is unitarily equivalent to
D∗tA,ψDtA,ψ −D∗ψDψ, which equals

r−2

(
t2Ã∗Ã t(D̃0Ã

∗ − Ã∗D̃1)

t(ÃD̃0 − D̃1Ã) t2ÃÃ∗

)
.

A calculation with principal symbols shows that the off-diagonal blocks
are vector-bundle maps. Much as in the proof of Theorem 1.4, the terms
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with positive lower bound that are multiplied by t2 dominate the terms that
are linear in t, and so for sufficiently large t the operator has a positive lower
bound.

The lower right corner of R(DtA,ψ) admits a similar analysis.

Remark 2.16. Following [16] we can form on a compact manifold M̂
a Dirac-Schrödinger operator D̂

Â
that is closely related to DA. Deform

the metric on M (preserving distances in the variable r) so that M has a
cylindrical end. Deform D so that it remains a Dirac operator. (See Chapter
2 of [5].) Let M̂ be the double of the manifold with boundary of which the
new M is the interior. Let Ê0 be the vector bundle on M̂ formed by clutching
two copies of E0 by the identity map. (The formal requirement that clutching
be done over the intersection of open sets can be met by extending slightly
each of the manifolds with boundary making up M̂ .) Let Ê1 be the vector
bundle formed by clutching E1 on the first copy of the new M with E0 on the
second copy via a map that is homotopic to (A/|A|)−1. There is a natural
extension (actually a family of such, all homotopic) of A|Mp

on the first copy
of M to a vector bundle map Â that maps Ê0 to Ê1, that is invertible off
the first copy of Mp, and that is the identity map over the second copy of
M . Following the conventions used in the description of DA, we can define
an operator

D̂
Â

=

(
Â D̂1

∗

D̂0 −Â∗
)

from sections of Ŝ+ ⊗ Ê0 ⊕ Ŝ− ⊗ Ê1 to sections of Ŝ+ ⊗ Ê1 ⊕ Ŝ− ⊗ Ê0. Here
the Dirac operators D̂i and the Dirac bundle Ŝ can be constructed with the
help of the doubling construction in [5]. Note that for any x ∈ (0, p] this
construction can be done in a way that preserves all structures over Mx in
the first copy of M . Furthermore the constructions can be done so that for
any x1 and x2 all structures used in making the result preserve structures
over Mx1 are homotopic to the corresponding structures used in making the
result preserve structures over Mx2 .

Lemma 2.17. D̂
Â

realizes its limiting index and satisfies the eventual
positivity condition.

Proof. Because M̂ is compact without boundary, the order zero term does not
affect the index of a first order elliptic operator. A calculation with principal
symbols shows that R(D̂

tÂ
) is a vector-bundle map. The other part of the

eventual positivity condition is vacuous because M̂ is compact.
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Theorem 2.18. If DA,ψ realizes its limiting index, then index(DA,ψ) =
index(D̂

Â
).

Proof. By Lemmas 2.15 and 2.17, this is a consequence of Theorem 1.4.

Remark 2.19. The Atiyah-Singer index theorem provides a formula for
the index of D̂

Â
.

3. K homology.

In this section we show that the regular singular Dirac-Schrödinger operator
DA described in Section 2 defines a class in the K homology of the metric
completion of M . We show that if DA realizes its limiting index, this class
is the Kasparov product of classes defined by D and by A. Without the
limiting index assumption, the product result need only be corrected by a
K homology class supported on a point.

In this section we assume for simplicity that M is connected. The reason-
ing in this section can be applied one component at a time to a manifold that
is not connected. Let X be the metric completion of M . X arises by adjoin-
ing to M a point, corresponding to r = 0, for each connected component of
N .

Let Y denote an oriented even-dimensional compact Riemannian manifold
without boundary. Let DY be a Dirac operator on Y that acts on sections
of a complex Dirac bundle SY . The positive and negative eigenspaces of
the action of Y ’s volume element grade SY = SY+ ⊕ SY− . Let EY

0 and EY
1

be Hermitian vector bundles on Y . Let AY : EY
0 → EY

1 be a vector bundle
map. In this section the notation introduced in this paragraph refers to any
such structures that satisfy the following conditions.

Condition 3.1. There is a continuous f : Y → X whose restriction to
f−1(M) is an orientation-preserving diffeomorphism from f−1(M) to M .

Condition 3.2. For any x ∈ (0, p], when we give Y a (new) metric making
f an isometry on f−1(Mx), the restriction of f to f−1(Mx) can be covered
by a vector bundle map that intertwines all structures for S and D with the
(new) structures for SY and DY . (To view SY as a Dirac bundle over Y
with new metric, scale the actions of tangent vectors on SY by the changes
in their lengths and follow the reasoning in Chapter 2 of [5].)

Condition 3.3. For any x ∈ (0, p] we can give EY
0 and EY

1 metrics and
metric connections and we can find a vector bundle map homotopic to AY
and invertible over Y \ f−1(Mp) such that the following is true. There is a
vector bundle map covering the restriction of f to f−1(Mx) that intertwines
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all of this structure with that of E0, E1, and A. (In passing from the notation
AY to the notation AY , we will follow the same convention as in passing from
A to A. This convention was described in the sentence preceding definition
2.1.)
Remark 3.4. When we have made the choices described in Conditions 3.2
and 3.3, we will say that all structures on Y and M agree over Mx.
Remark 3.5. A Y satisfying these conditions arises from the doubling
construction of Remark 2.16. There are interesting examples of such Y that
do not arise as doubles. Examples can occur where M is the complement
of of a finite subset of a closed manifold and Y is that manifold. Such an
example was discussed in Section 0.
Notation 3.6. We use the notation DY

AY in a manner analogous to the
notation DA.
Notation 3.7. For an operator γ we use the notation γ to denote the

operator

(
0 γ∗

γ 0

)
.

Proposition 3.8. The operators we have studied define the following KK
cycles.
(a)

(
D (1 +D2)−1/2

, L2(S+)⊕ L2(S−)
)

defines a class we denote [D] in
KK(C0(M),C). To construct this cycle we need to choose a closed
extension of D, but all choices define the same KK class, [3].

(b)
(
DY (1 + (DY )2)−1/2

, L2(SY+ )⊕ L2(SY− )
)

defines a class we denote
[DY ] in KK(C(Y ),C).

(c)
(
A (1 + (A)2)−1/2

, C0(E0)⊕ C0(E1)
)

defines a class we denote [A] in
KK(C(X), C0(M)).

(d)
(
AY (1 + (AY )2)−1/2

, C(EY
0 )⊕ C(EY

1 )
)

defines a class we denote
[AY ] in KK(C(Y ), C(Y )).

(e)
(
DY
AY

(
1 + (DY

AY )2
)−1/2

, L2(SY+ ⊗ EY
0 ⊕ SY− ⊗ EY

1 )

⊕L2(SY+ ⊗ EY
1 ⊕ SY− ⊗ EY

0 )
)

defines a class we denote [DY
AY ] in KK(C(Y ),C).

In all cases algebras of functions act by pointwise multiplication, and inner
products arise from the pointwise inner products on the Hermitian bundles.

Proof. See [4] for definitions. The assertions involving the first order elliptic
differential operators (assertions (a), (b) and (e)) are proven in [3]. (The
assertions (b) and (e) concerning the compact manifold Y were known pre-
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vious to [3]. They can be proven by using the pseudodifferential calculus
and Rellich’s lemma. The focus of the part of [3] to which we refer is the
extension of these results to the noncompact case.) To prove assertions (c)
and (d) about the vector-bundle maps, one needs to know that if F is a
finite-dimensional Hermitian vector bundle over a manifold Z, the compact
operators on C0(F ), viewed as a Hilbert C0(Z)-module, are the elements of
C0(End(F )).

Lemma 3.9. The classes associated with DY , AY , and DY
AY in the above

proposition are not changed by the deformations described in Conditions 3.2
and 3.3.

Proof. The effect of the deformations is limited to homotopies of the KK
cycles.

Lemma 3.10 [7], [8]. Negative powers of 1 + (DA)2 are compact on L2

sections.

Theorem 3.11.
(
DA

(
1 + (DA)2

)−1/2
, L2(S+ ⊗ E0 ⊕ S− ⊗ E1)

⊕L2(S+⊗E1⊕ S−⊗E0)
)

is a KK cycle defining a class we denote [DA] in
KK(C(X),C). Here functions in C(X) act by pointwise multiplication.

Proof. We are working with a self-adjoint operator. Lemma 3.10 shows that
its square differs from the identity by a compact operator. To show that
it has compact commutator with each element of C(X), it suffices (because
the algebra of compact operators is norm-closed) to calculate explicitly with
functions that are smooth on M and locally constant in some neighborhood
of X\M . The calculations proceed by the commutator identity and “integral
trick” of [2]. Details are analogous to those in the proof of Lemma 1.1 of
[17].

We will use a subscript ∗ on a map of C∗ algebras to denote the associated
map on KK groups that is contravariant with respect to the algebra map
on first entries. We will use a superscript ∗ for the map that is covariant
on the second entries. Our map f : Y → X defines via composition a map
F : C(X) → C(Y ). The inclusions Mx ⊂ M ⊂ X define, via extension by
zero, maps we will call R0 : C0(M) → C(X) and Rx : C0(Mx) → C0(M).
We proceed to establish relationships between the KK classes represented
by cycles defined on M and the classes represented by analogous cycles on
Y . The relationships are expressed in terms of the effects of F∗ and F ∗.

Lemma 3.12. F∗([AY ]) = (F ◦R0)∗([A]) ∈ KK(C(X), C(Y )).

Proof. By Condition 3.3 both are the image under F ∗p/2 of the same class in
KK(C(X), C0(Mp/2)). To see this use a homotopy that takes invertibility
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to unitarity over a neighborhood of Y \ f−1(Mp/2) and use excision.

Lemma 3.13. Suppose elements α and β of KK(C0(M),C) are such that
for each x (Rx)∗(α) = (Rx)∗(β). Then α = β.

Proof. The proof follows the proof of Proposition 2.3 of [17] in relying on
the exact sequence

0→ lim1KK−1(C0(Mp/n),C)→ KK(C0(M),C)

→ lim←−KK(C0(Mp/n),C)→ 0

of [23]. Here the limits are associated with n → ∞. Because for all x1 and
x2 C0(Mx1) and C0(Mx2) are homotopically equivalent, the lim1 term in the
sequence vanishes.

Lemma 3.14. (F ◦R0)∗([DY ]) = [D] ∈ KK(C0(M),C). (F ◦R0)∗([DY
AY ]) =

[DA] ∈ KK(C0(M),C).

Proof. The reasoning is the same for both statements. In our notation we
focus on the first statement. We now establish that the cycles we are con-
sidering satisfy the hypotheses of Lemma 3.13. Choose arbitrary x ∈ (0, p].
Using Conditions 3.1-3.3, choose a representative of [DY ] arising from struc-
tures on Y that agree with those on M over Mx/2. To show that the two
KK classes have the same image under (Rx)∗ we use the finite propaga-
tion speed argument of [3] to handle the nonlocal operators arising from the
−1/2 powers of the differential operators. We briefly summarize the argu-
ment below. (For more details see [3] or the exposition in [17] based on the
preprint of [3].) The finite propagation speed argument allows us to write
the operator in each of the KK cycles we are considering as the sum of an
operator that increases supports by less than x/2 and an operator that is
continuous from L2 to the domain of an arbitrarily high power of 1 + D2,
respectively 1 + (DY )2. Moreover the terms with limited support increase
can be chosen so that their compositions with the action of any h ∈ C0(Mx)
are equal. (This follows from the uniqueness of solutions of the relevant
system of differential equations.) It follows that for any h ∈ C0(Mx) the
composition of h’s action with the difference of the operators arising in the
KK cycles is compact. Thus the images under (Rx)∗ of the classes of our
cycles represent the same class, and Lemma 3.13 applies.
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Proposition 3.15. If DA realizes its limiting index, then F∗([DY
AY ]) =

[DA] ∈ KK(C(X),C).

Proof. There is an exact sequence→ KK(C(X\M),C)→ KK(C(X),C)→
KK(C0(M),C)→. BecauseM is connected, the image ofKK(C(X\M),C)
in KK(C(X),C) maps isomorphically to the image of KK(C(X),C) in
KK(C,C) = Z under the index homomorphism. Lemma 3.14 shows that
F∗([DY

AY ]) and [DA] have the same image in KK(C0(M),C). The indices of
DA and DY

AY are equal by Lemma 2.14 and the reasoning proving Lemma
2.17 and Theorem 2.18. (Although Lemma 2.17 and Theorem 2.18 were
stated for the operator D̂

Â
on the manifold M̂ , this operator and manifold

can be replaced by DY
AY and Y , respectively. This assertion follows from

the observation that the proofs of Lemma 2.17 and Theorem 2.18 depend
only on M̂ being compact without boundary and on the Dirac-Schrödinger
operator D̂

Â
matching DA,ψ in a neighborhood of the set where A is not

invertible.)

Remark 3.16. The above proof shows that if DA does not realize its
limiting index, one need only correct Proposition 3.15 by a term supported
on a point that reflects the difference in indices.

Lemma 3.17. [DY
AY ] equals the Kasparov product [AY ] ⊗C(Y ) [DY ] in

KK(C(Y ),C).

Proof. By homotopy we can ignore the vector bundle maps. This result is a
consequence of the connection approach to products, the pseudodifferential
calculus, and Rellich’s lemma. (In fact this standard result is the motivation
for the terminology “connection approach to products.”)

Theorem 3.18. If DA realizes its limiting index, then [DA] equals the
Kasparov product [A]⊗C0(M) [D] in KK(C(X),C).

Proof. [DA] = F∗([DY
AY ]) = F∗([AY ] ⊗C(Y ) [DY ]) = F∗([AY ]) ⊗C(Y ) [DY ] =

(F ◦ R0)∗([A]) ⊗C(Y ) [DY ] = [A] ⊗C0(M) (F ◦ R0)∗([DY ]) = [A] ⊗C(X) [D].
The equalities arise from Proposition 3.15, Lemma 3.17, associativity of
the Kasparov product, Lemma 3.12, associativity of the Kasparov product,
and Lemma 3.14. The second application of associativity of the Kasparov
product is due to the observation (see [4]) that (F ◦R0)∗ can be represented
by a Kasparov product on the right with aKK class whose Kasparov product
on the left represents (F ◦R0)∗.
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