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UNIQUENESS OF GENERALIZED WALDSPURGER MODEL
FOR GL(2n)

Jiandong Guo

Let E/F be a quadratic extension of non-archimedean local
field and let G be an inner form of GL(2n, F ) over F , which
contains a subgroup H isomorphic to GL(n,E). In this paper
we prove that (G,H) is a Gelfand pair, i.e., the H-invariant
linear functional, if there exists one, on the space of an irre-
ducible admissible representation of G is unique up to a scalar.
Globally this result will play an important role in the study
of H-period integrals of cusp forms on G, and its relations to
the special values of automorphic L-functions.

1. Introduction.

Let F be a nonarchimedean local field of characteristic zero, and let E =
F (
√
τ) be a quadratic extension field of F . We denote by z 7→ z̄ the Galois

conjugation in E. Suppose M is a central simple algebra over F of dimension
4n2, which contains a subalgebra N isomorphic to M(n,E) over F . We
denote by G and H the multiplicative groups of M and N respectively. Then
G is an inner form of the linear group GL(2n, F ) regarded as an algebraic
group over F , and H ⊂ G is a subgroup which is isomorphic to GL(n,E)
over F . Suppose that π is an irreducible admissible representation of G on
a complex vector space V . Let Hom(π,C) be the dual space of V , and let
HomH(π,C) be the set of H invariant elements in Hom(π,C), i.e

HomH(π,C) = {l ∈ Hom(π,C)|l(π(h)v) = l(v), for h ∈ H and v ∈ V }.
In this paper, we will prove the following theorem.

Theorem . For any irreducible admissible representation π of G on a
complex vector space V , we have

dimC HomH(π,C) ≤ 1.

Furthermore if dimC HomH(π,C) = 1, then π is self-contragredient.

If dimC HomH(π,C) = 1, we say that π is H-distinguished. In the case
that n = 1, then G is an inner form of GL(2, F ) and H is an elliptic torus
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of G, this theorem was proved by Waldspurger ([W2]), and arose in his pro-
found studies of the Shimura correspondence and algebraicity of the special
values of L-functions ([W1], [W2], [W3]).

In generalizing those results of Waldspurger, it is necessary to have the
above theorem. To explain this, we go to a global setting. We now assume
temporarily that F is a number field and FA is the adele ring of F . Suppose π
is an automorphic cuspidal representation of G(FA). Then we are interested
in the period integral

P (φ, π,H) =
∫
H(F )Z(FA)\H(FA)

φ(h)dh

where φ is a cusp form in the space of π and Z is the center of G. If there
exists φ such that P (φ, π,H) 6= 0, then we expect, as proved in the GL(2)
case by Waldspurger, that the square of P (φ, π,H) is essentially the product
L(1/2, π′)L(1/2, π′ ⊗ η) where π′ is an automorphic cuspidal representation
of GL(2n) related to π by the Jacquet-Langlands conditions, and η is the
quadratic idele class character of F attached to E (see [G2] for details). As
a consequence, this would imply that if the period is non-zero then

L(1/2, π′)L(1/2, π′ ⊗ η) > 0.

(For the GL(2) case, see [W1], [J1] and [G1].) On the other hand if
P (φ, π,H) 6= 0 for some φ, the the principle of functoriality predicts that π
comes from an automorphic cuspidal representation of the orthogonal group
O(2n+1). In this case some properties of the Fourier coefficients of the form
on O(2n + 1) can be read in terms of P (φ, π,H). Generally there are two
ways to approach these problems. One is the Weil representation as used
by Waldspurger and another one is the relative trace formula introduced
by Jacquet ([J1], [J2]). Note that P (φ, π,H) defines a H-invariant linear
forms on π. In both cases, it is necessary to know that P (φ, π,H) is Eulerian
in the sense that it can be expressed as the restricted product of the local
H-invariant forms. The above theorem together with its analogue in the
archimedean case can be used to establish this assertion.

We now go back to the local situation. We will follow the standard ap-
proach of Gelfand-Kazhdan ([GK]) to prove the theorem. Let σ be the
anti-involution of G defined by σ(g) = g−1. Then σ preserves H. The
technical part of this paper is the following proposition.

Proposition. For each element g of G, we have g−1 ∈ HgH. In other
words, the anti-involution σ preserves every double coset.

This implies that a H-biinvariant distribution is also σ-invariant (see, for
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example, Theorem 6.13 in [BZ]). Then by [GK], we have

dimC HomH(π,C) dimC HomH(π̃,C) ≤ 1

where π̃ is the representation contragredient to π. Note that we can realize
G as the subgroup of GL(2n,E) of the matrices of the form(

α γβ
β̄ ᾱ

)
∈ GL(2n,E)

where γ is a fixed element in F ∗ = F−{0} and α, β are matrices in M(n,E),
and H as the subgroup of G of the matrices of the form(

α 0
0 ᾱ

)
, α ∈ GL(n,E).

It is clear that each matrix g ∈ G is conjugate in GL(2n,E) to the matrix

τ(g) =

(
τIn 0
0 In

)
gtr
(
τIn 0
0 In

)−1

where gtr is the transpose of g. But it is easily seen τ(g) is also in G. So g is
conjugate to τ(g) in G. By the theory of Gelfand-Kazhdan ([GK] or [BZ]),
we can realize π̃ in the same space V of π by the formula

π̃(g) = π(τ(g−1)).

Note that for any h ∈ H we have τ(h−1) is also in H. Thus if there exists
an non-zero element l in HomH(π,C), then we have

l(π̃(h)v) = l(π(τ(h−1)v)) = l(v)

for h ∈ H and v ∈ V . So HomH(π,C) 6= 0 implies HomH(π̃,C) 6= 0. Then
our theorem follows by some standard arguments (see, for example, [JR]).

A similar result for the pair (GL(2n), GL(n)×GL(n)) is proved by Jacquet
and Rallis in [JR]. In that case, the anti-involution does not preserve all the
double cosets, so the proof becomes much more complicated. However the
influence of their paper on this one is obvious.

I want to thank professor H. Jacquet for his help and encouragement,
especially his help on this paper.
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2. The tangent space to the symmetric space.

Let F be a field of characteristic zero, and let E = F (
√
τ) (τ ∈ F ) be a

quadratic extension field of F . We denote by z 7→ z̄ the Galois conjugation
in E. Let N be the norm map from E to F defined by N(z) = zz̄ for z ∈ E.
Then the central simple algebra M can be realized as an algebra of the form

Mγ =

{(
α γβ
β̄ ᾱ

)
|α, β ∈M(n,E)

}

in which the subalgebra

NE =

{(
α 0
0 ᾱ

)}
is isomorphic to M(n,E). Here γ is an element in F ∗ = F − {0}. We let
Gγ and HE, or simply G and H, be the multiplicative groups of Mγ and NE

respectively, and we regard them as algebraic groups over F . In particular
if γ ∈ NE∗, then Gγ is isomorphic to GL(2n, F ). We denote by

g =

{(
α γβ
β̄ ᾱ

)
|α, β ∈M(n,E)

}
the Lie algebra of G. Then G acts on g by conjugation. We denote the
action by Ad. So we have Ad(g)X = gXg−1 for g ∈ G and X ∈ g.

We set

ε =

(√
τIn 0
0 −√τIn

)
.

Then H = {g ∈ G|εgε−1 = g}. We denote by L the −1 eigenspace of Ad(ε)
in g. So for X ∈ g, we have that X ∈ L if and only if

εXε−1 = −X.
Then by a simple computation, we find

L =

{(
0 γα
ᾱ 0

)
|α ∈M(n,E)

}
,

which is stable under H. Our purpose in this section is the following:

Proposition 2. Let X be an element in L. Then there exists an element
h ∈ H such that X̄ = hXh−1.

To prove this proposition, we need to describe in some detail the H-orbits
in L. Actually we will prove something more than we need here, which will
be used in the future work.
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For

X =

(
0 γA
Ā 0

)
∈ L,

let

X = Xs +Xn

be the Jordan decomposition of X in g where Xs is semisimple and Xn

is nilpotent which commutes with Xs. Since Ad(ε)X = −X, we have
Ad(ε)Xs + Ad(ε)Xn = (−Xs) + (−Xn). It follows that Ad(ε)Xs = −Xs

and Ad(ε)Xn = −Xn. Thus both Xs and Xn are in L. We first study the
semisimple elements.

Lemma 2.1. Suppose X ∈ L is semisimple. Then X is H-conjugate to an
element of the form 

0 0 γB 0
0 0 0 0
B̄ 0 0 0
0 0 0 0


where B is invertible semisimple.

Proof. We write

X =

(
0 γA
Ā 0

)
.

As in [JR], X is semisimple implies that A, Ā, AĀ and ĀA are semisimple
of the same rank. Let V be the vector space En of column vectors, which
contains the F -vector space F n. Then M(n,E) operates on V by B(v) = Bv
for v ∈ V and B ∈M(n,E). We call a vector v ∈ V is defined over F if it is
in F -form (i.e. v ∈ F n ), and we call a subspace V ′ of V is defined over F
if there is a basis of V ′ such that each vector in this basis is in F -form. It
is easily seen that V ′ is defined over F if and only if V̄ ′ = V ′. Let V0 be the
kernel of A and V1 its image. Then V̄0 is the kernel and V̄1 is the image of Ā.
Since A is semisimple, we have V = V0 ⊕ V1. It is clear that V̄0 is contained
in the kernel of AĀ. Since AĀ has the same rank as Ā, we conclude that V̄0

is the kernel of AĀ. Now we claim that V0 ∩ V̄1 = 0. Indeed if v is in the
intersection then v = Āu and Av = 0. Thus AĀu = 0. Hence u is in the
kernel of AĀ which is V̄0. So we get v = Āu = 0. We have therefore

V = V0 ⊕ V̄1 = V̄0 ⊕ V1.
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Let (v1, ..., vm) be a basis of V0 and (vm+1, ..., vn) be a basis of V̄1. Then
both (v1, ..., vn) and (v̄1, ..., v̄n) are bases of V . So there exists an element
k ∈ GL(n,E) such that

k(v1, ..., vn) = (v̄1, ..., v̄n).

Thus we have

k̄(v̄1, ..., v̄n) = (v1, ..., vn) = k−1(v̄1, ..., v̄n).

Therefore kk̄(v̄1, ..., v̄n) = (v̄1, ..., v̄n). It follows that kk̄ = In. Clearly we
also have that kV0 = V̄0 and kV̄1 = V1. Then the map

a : Gal(E/F )→ GL(n,E), id 7→ aid = In, σ 7→ aσ = k

defines a cocycle. Here σ is the nontrivial element in Gal(E/F ). It is well
known that H1(Gal(E/F ), GL(n,E)) = {1}. So the cocycle as is cohomolo-
gous to the unit cocycle bs = 1. This means that there is g ∈ GL(n,E) such
that as = g−1bss(g) = g−1s(g). If s = σ, we get k = g−1ḡ. Then

ḡV0 = gV̄0 = ḡV0, ḡV̄1 = gV1 = ḡV̄1.

If we set B′ = gAḡ−1, then the kernel of B′ is ḡV0 and the image of B′ is
gV1. We have

V = V0 ⊕ V̄1 = ḡV0 ⊕ ḡV̄1 = ḡV0 ⊕ gV1.

Here both ḡV0 and gV1 are defined over F . Suppose (v1, ..., vm) is a F -form
basis of ḡV0, and (vm+1, ..., vn) is a F -form basis of gV1. Let g1 be the matrix

(vm+1, ..., vn, v1, ..., vm).

Then g1 ∈ GL(n, F ) and

g−1
1 B′ḡ1 = g−1

1 B′g1 =

(
B 0
0 0

)

where B is invertible. So(
g−1

1 g 0
0 ḡ−1

1 ḡ

)
X

(
g1g
−1 0

0 ḡ1ḡ
−1

)

is in the form required.

Next we study the nilpotent elements of L. For

X =

(
0 γA
Ā 0

)
,
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we have

X2n =

(
γn(AĀ)n 0

0 γn(ĀA)n

)
.

So X is nilpotent if and only if AĀ is nilpotent. For convenience we denote
the matrix (

g 0
0 ḡ

)
, g ∈ GL(n, F )

by h(g).

Lemma 2.2. Suppose X is nilpotent. Then there exists h(g) ∈ H such
that gAḡ−1 is upper triangular with null diagonal entries and with all the
null rows on the bottom.

Proof. We use the induction on n. Our assertion is trivial for n = 1, since
AĀ = 0 implies A = 0. To continue, we assume that our lemma is true for
n′ < n. Let m be the rank of A. Then m < n. At the cost of conjugating by
an element h(g) such that g is a permutation matrix, we may assume that
the first m-rows of A are linearly independent. Then after a conjugation by
an element h(g) where g is of the form

g =

(
Im 0
D In−m

)
,

we can assume

A =

(
B C
0 0

)

where B has size m ×m. Since AĀ is nilpotent, BB̄ is also nilpotent. So
by induction hypothesis, there is a g1 ∈ GL(m,E) such that g1Bḡ

−1
1 has the

appropriate form. Conjugating X by h(g), where

g =

(
g1 0
0 In−m

)
,

we get a matrix of the required form.

Lemma 2.3. Suppose X ∈ L is nilpotent. Then there is h(g) ∈ H such
that the twisted conjugate gAḡ−1 of A by g is in the Jordan normal form.

Proof. By the previous lemma, we can assume that A is in the form

A =

(
B C
0 0

)
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where B is of size (n− 1)× (n− 1) with BB̄ nilpotent. By induction there
is g ∈ GL(n− 1, E) such that

gBḡ−1 =

A1

. . .
Ak


where Ai is the standard nk × nk Jordan block

0 1
0 1

. . . 1
0

 .

Thus under the twisted conjugation by the matrix diag(g, 1) we can as-
sume that

A =


A1 C1

. . .
...

Ak Ck
0 . . . 0 0


where we write the column vector Ci of ni-components as

Ci =

(
Di

di

)

with di ∈ E.
Then we can make Di (i = 1, 2, . . . , k) vanishing if we twisted-conjugate

A by the matrix 
In1 E1

. . .
...

Ink Ek
1

 , Ei =

(
0
D̄i

)
.

Now we assume Di = 0 for i = 1, . . . , n. If di 6= 0 for any i ∈ {1, 2, . . . , k},
we consider the ni × ni diagonal matrix Fi = diag(. . . , d̄−1

i , d−1
i ) with d−1

i

and d̄−1
i appearing in the diagonal alternately. Then we have FiAiF̄−1

i = Ai
and

Fi


0
...
0
di

 =


0
...
0
1

 .
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Thus twisted-conjugating A by the matrix diag(In1 , . . . , Fi, . . . , Ink , 1), we
made di to be 1 and all the other entries unchanged.

So we can assume that all the entries of A are 0, 1 under the twisted
conjugation in GL(n,E). Then there is a matrix g ∈ GL(n, F ) such that
g1Aḡ

−1
1 = g1Ag

−1
1 is in the Jordan normal form. We are done.

Proof of Proposition 2. Let X ∈ L be an element with Jordan decompo-
sition X = Xs + Xn where Xs is semisimple and Xu is nilpotent such that
XsXu = XuXs. By Lemma 2.1, we can assume

Xs =


0 0 γB 0
0 0 0 0
B̄ 0 0 0
0 0 0 0


where B is an invertible semisimple element in GL(n1, E) for certain n1 ≤ n.
Since Xu commutes with Xs, we have

Xu =


0 0 γX1 0
0 0 0 γX2

X̄1 0 0 0
0 X̄2 0 0


where XiX̄i are nilpotent and B̄X1B

−1 = X̄1. By Lemma 2.3, there is
g1 ∈ GL(n − n1, E) such that g1X2ḡ

−1
1 is in the Jordan normal form. So

we have g1X2ḡ
−1
1 = g1X2ḡ

−1
1 . This implies ḡ−1

1 g1X2ḡ
−1
1 g1

−1
= X̄2. Then the

matrix h(g) where

g =

(
B̄ 0
0 ḡ−1

1 g1

)
satisfies h(g)Xh(g)−1 = X̄.

3. The symmetric space.

Let F be a nonarchimedean local field of characteristic zero, and let E =
F (
√
τ) (τ ∈ F ) be a quadratic extension field of F . Let γ, G, H, ε be as in

the last section. We consider the variety

S′ = {s ∈ G|s2 = τI2n}.
We first explain that all elements of S′ are actually conjugate to ε in
GL(2n,E). For g ∈ GL(2n,E), we have that g ∈ G if and only if w−1gw = ḡ
where

w =

(
0 γIn
In 0

)
.
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Let V = E2n. So for g ∈ G and v ∈ V we have gv =
√
τv if and only if

g(wv̄) = −√τwv̄. This implies that if {v1, .., vm} is a basis of the eigenspace
of g belonging to the eigenvalue

√
τ , then {wv̄1, ..., wv̄m} is a basis of the

eigenspace of g belonging to the eigenvalue −√τ . Let s be an element in
S. So we have s2 = τI2n. Thus s is conjugate in GL(2n,E) to an diagonal
matrix with eigenvalues from the set {√τ ,−√τ}. But s is also in G. It
follows immediately from the above consideration that s is conjugate to ε in
GL(2n,E). Since both ε and s are in G, they are in fact conjugate in G. So
we obtain

S′ = {gεg−1|g ∈ G}.
We denote by S the set S′ε−1. So we have

S = {s ∈ G|sεsε = τI2n} = {gεg−1ε−1|g ∈ G}.

Then G operates on S by the twisted action

(g, x) = gx(εg−1ε−1), g ∈ G, x ∈ S.

In particular for h ∈ H, we have εh−1ε−1 = h−1. So H acts on S by
conjugation (h, x) = hxh−1. The surjective map ρ : G→ S defined by

ρ(g) = gεg−1ε−1, g ∈ G

satisfies
ρ(xgh) = xρ(g)(εx−1ε−1)

for x, g ∈ G and h ∈ H. So it induces an isomorphism between G/H and S
as G-spaces. The map ρ also induces a one to one correspondence between
the H-double cosets in G and H-orbits in S. Our goal is the following
proposition.

Proposition 3. For each element g ∈ G, we have g−1 ∈ HgH.

Let

g =

(
α γβ
β̄ ᾱ

)
be an element of G. Then we have

gεgε = τ

(
α2 − γββ̄ γβᾱ− γαβ
β̄α− ᾱβ̄ ᾱ2 − γβ̄β

)
.

So g ∈ S if and only if

α2 = In + γββ̄, αβ = βᾱ.



UNIQUENESS OF GENERALIZED WALDSPURGER FOR GL(2n) 283

We call these two algebraic equations the defining equations for S.

Lemma 3.1. Let

s =

(
α γβ
β̄ ᾱ

)
∈ S

where the matrix α has no eigenvalues 1,−1. Then the H-conjugacy class
of s has a representative of the form(

A γB
B̄ A

)

where A ∈M(n, F ). If ρ(g) = s, then g−1 is in HgH.

Proof. Since α has no eigenvalues 1,−1, α2 − In is invertible. Thus β is
invertible. So from αβ = βᾱ, we obtain β−1αβ = ᾱ. Thus if

p1(x)|p2(x)|...|pr(x),

where pi(x) ∈ E[x], are the elementary divisors of α, we have that in fact
pi(x) ∈ F [x]. This implies that α is conjugate under GL(n,E) to an element
of M(n, F ). To continue, We assume that α is in Mn(F ). Then βα = αβ.
Let A = β(In + α)−1 and

g =

(
1n γA
Ā 1n

)
.

Since we have

In − γAĀ = In − γββ̄(In + α)−2

= In − (α2 − In)(In + α)−2 = 2(In + α)−1,

so the matrix In − γAĀ is invertible. Hence g is invertible. In fact we have

g−1 =

(
1n −γA
−Ā 1n

)(
(1n − γAĀ)−1 0

0 (1n − γĀA)−1

)

= εgε−1

(
(1n − γAĀ)−1 0

0 (1n − γĀA)−1

)
∈ HgH.

We can check at once that

ρ(g) =

(
α γβ
β̄ ᾱ

)
= s.

The assertion of the lemma follows.



284 JIANDONG GUO

Next we study the element

s =

(
α γβ
β̄ ᾱ

)

in S where α is unipotent. We will prove that the set of such elements in
S is the set of the unipotent elements in S. Let N be the set of unipotent
elements of G, and let n be the set of nilpotent elements of g. Then the
exponential map

exp : n→ N, X 7→ exp(X)

defines an isomorphism of n onto N . Let NS = N ∩S be the set of unipotent
elements in S.

Lemma 3.2. We have
(1) NS = exp(nL) where nL = n ∩ L.
(2) The set {g ∈ G|ρ(g) ∈ NS} is HNSH, and for each element g in this

set we have g−1 ∈ HgH.
(3) Let

s =

(
α γβ
β̄ ᾱ

)
∈ S.

Then s is unipotent if and only if α is unipotent.

Proof. Let X ∈ g and u = exp(X) ∈ N . If u ∈ NS, then (uε)(uε) = τIn.
Note that 1

τ
ε = ε−1. So we have u−1 = ε−1uε. This is equivalent to −X =

ε−1Xε, which is just the condition for X ∈ nL. Thus we get (1).
For u = exp(X) ∈ NS where X ∈ nL, we have that

ρ(u) = uεu−1ε−1 = exp(X) exp(ε(−X)ε−1)

= exp(X) exp(X) = exp(2X) ∈ NS.

Therefore
HNSH ⊂ {g ∈ G|ρ(g) ∈ NS}.

On the other hand, if we let v = exp(X/2), then v ∈ NS and

ρ(v) = exp(2X/2) = exp(X) = u.

The first part of (2) follows. Now we have

u−1 = exp(−X) = exp(εXε−1) = ε exp(X)ε−1.

So u−1 ∈ HuH. This proves the second part of (2).
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Recall that we have

α2 − 1 = γββ̄, αβ = βᾱ.

Then it is easily seen that

(s− I2n)2 = 2

(
α− In 0

0 ᾱ− In

)
s = 2s

(
α− In 0

0 ᾱ− In

)
.

Thus

(s− I2n)2n = 2n
(

(α− In)n 0
0 (ᾱ− In)n

)
sn.

Because sn is nonsingular, we have that (s − I2n)2n = 0 if and only if (α −
In)n = 0. Hence s is unipotent if and only if α is unipotent.

It remains to study the set

{g ∈ G| − ρ(g) ∈ NS}.
By the above lemma this is the set of the element

s =

(
α γβ
β̄ ᾱ

)
∈ S

such that −α is unipotent. Recall that

w =

(
0 γ1n
1n 0

)
.

So we have wεw−1 = −ε and wH = Hw.

Lemma 3.3. The set

{g ∈ G| − ρ(g) ∈ NS}
is HNSwH. If g ∈ HNSwH, then g−1 ∈ HgH.

Proof. For g ∈ G, we have

ρ(gw) = gwεw−1g−1ε−1 = −gεg−1ε−1 = −ρ(g).

Hence −ρ(g) ∈ NS if and only if ρ(gw) ∈ NS. By Lemma 3.2, ρ(gw) ∈ NS

if and only if gw ∈ HNSH, which in turn is equivalent to say that

g ∈ HNSHw
−1 = HNSw

−1H = HNSwH
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since w−1 = wdiag(γ−1, γ−1) ∈ wH.
Now let g = uw be an element in NSw where u is in NS. Then we can

write u = exp(X) where X ∈ nL. So

g−1 = w−1u−1 = w−1u−1ww−1 = exp(−w−1Xw)w−1 = exp(−X̄)w−1.

Recall that we have proved in the last section that there exists an element h
in H such that X̄ = hXh−1. So we have h1Xh

−1
1 = −X̄ where h1 = εh ∈ H.

Thus

g−1 = exp(h1Xh
−1
1 )w−1 = h1 exp(X)h−1

1 w−1 = h1 exp(X)w−1h̄−1
1

= h1g

(
γ−1 0
0 γ−1

)
h̄−1

1

which is in HgH. This ends the proof of the lemma.

Finally we prove that a general element of S is compound of these three
types of elements we just studied. We first fix a notation. Let n1, n2, n3 be
three nonnegative integers such that n1 + n2 + n3 = n. If

gi =

(
αi γβi
β̄i ᾱi

)
∈ Gni ,

then we use σ(g1, g2, g3) to denote the element

α1 0 0 γβ1 0 0
0 α2 0 0 γβ2 0
0 0 α3 0 0 γβ3

β̄1 0 0 ᾱ1 0 0
0 β̄2 0 0 ᾱ2 0
0 0 β̄3 0 0 ᾱ3


of G. For gi, g′i ∈ Gni , i = 1, 2, 3, the following relation is easily verified

σ(g1, g2, g3)σ(g′1, g
′
2, g
′
3) = σ(g1g

′
1, g2g

′
2, g3g

′
3).

It is also obvious that

σ(g1, g2, g3) = σ(g′1, g
′
2, g
′
3)

if and only if gi = g′i, i = 1, 2, 3. We use Sni , Hni and εni to denote the
corresponding parts in Gni to S, H and ε in G.
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Lemma 3.4. Each element s of S is H-conjugate to an element of the
form

σ(s1, s2, s3)

where si ∈ Sni (i = 1, 2, 3) for certain nonnegative integers n1, n2, n3 such
that n1 + n2 + n3 = n, and if we write

si =

(
αi γβi
β̄i ᾱi

)
, i = 1, 2, 3,

then α1 has no eigenvalues 1,−1, α2 is unipotent, and −α3 is unipotent.

Proof. Let

s =

(
α γβ
β̄ ᾱ

)
be an element in S. Then up to a conjugation by an element in GL(n,E),
we can assume that

α =

α1 0 0
0 α2 0
0 0 α3


where α1 has no eigenvalues 1,−1, α2 is unipotent, and −α3 is unipotent.
Let β = (βij) where βij (1 ≤ i, j ≤ 3) is a matrix of size ni × nj. Since s is
in S, we have αβ = βᾱ. This implies

αiβij = βijᾱj, 1 ≤ i, j ≤ 3.

If i 6= j, then αi and ᾱj have no common eigenvalues. So we must have
βij = 0 if i 6= j. Thus

s =



α1 0 0 γβ1 0 0
0 α2 0 0 γβ2 0
0 0 α3 0 0 γβ3

β̄1 0 0 ᾱ1 0 0
0 β̄2 0 0 ᾱ2 0
0 0 β̄3 0 0 ᾱ3


= σ(s1, s2, s3)

where we set βi = βii and

si =

(
αi γβi
β̄i ᾱi

)
.

We still need to show that si is in Sni . Note that

ε = σ(εn1 , εn2 , εn3).
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So we have

sεsε = σ(s1, s2, s3)σ(εn1 , εn2 , εn3)σ(s1, s2, s3)σ(εn1 , εn2 , εn3)

= σ(s1εn1s1εn1 , s2εn2s2εn2 , s3εn3s3εn3).

On the other hand we have

sεsε = τI2n = σ(τI2n1 , τI2n2 , τI2n3).

Thus we get
siεnisiεni = τI2ni , i = 1, 2, 3,

which means si ∈ Sni . This ends the proof of the lemma.

We are now ready to prove Proposition 3.

Proof of Proposition 3. Let g be an element of G and let s = ρ(g) be in S.
Then by Lemma 3.4, we can assume that

s = σ(s1, s2, s3)

where si, i = 1, 2, 3, satisfy the conditions of that lemma. By Lemmas 3.1,
3.2 and 3.3, there exist gi ∈ Gni for i = 1, 2, 3 such that

giεnig
−1
i ε−1

ni
= si

and such that g−1
i = higih

′
i for some hi, h′i ∈ Hni . So we have

ρ(σ(g1, g2, g3)) = σ(s1, s2, s3) = s.

Thus we can assume that g = σ(g1, g2, g3). In this case we have

g−1 = σ(g−1
1 , g−1

2 , g−1
3 ) = σ(h1g1h

′
1, h2g2h

′
2, h3g3h

′
3) = hgh′

where h = σ(h1, h2, h3), h′ = σ(h′1, h
′
2, h
′
3) ∈ H. The assertion of the propo-

sition follows.
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