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SYMMETRY VIA SPHERICAL REFLECTION
AND

SPANNING DROPS IN A WEDGE

John McCuan

We consider embedded ring-type surfaces (that is, com-
pact, connected, orientable surfaces with two boundary com-
ponents and Euler-Poincaré characteristic zero) in R3 of con-
stant mean curvature which meet planes Π1 and Π2 in con-
stant contact angles γ1 and γ2 and bound, together with those
planes, an open set in R3. If the planes are parallel, then it is
known that any contact angles may be realized by infinitely
many such surfaces given explicitly in terms of elliptic inte-
grals. If Π1 meets Π2 in an angle α and if γ1 + γ2 > π + α,
then portions of spheres provide (explicit) solutions. In the
present work it is shown that if γ1 + γ2 ≤ π + α, then the
problem admits no solution. The result contrasts with recent
work of H.C. Wente who constructed, in the particular case
γ1 = γ2 = π/2, a self-intersecting surface spanning a wedge as
described above.

Our proof is based on an extension of the Alexandrov planar
reflection procedure to a reflection about spheres [7], on the
intrinsic geometry of the surface, and on a new maximum
principle related to surface geometry. The method should be
of interest also in connection with other problems arising in
the global differential geometry of surfaces.

1. Introduction.

We seek to characterize the embedded surfaces of constant mean curvature
which span a wedge of opening angle α and which meet the planes Π1 and
Π2 of the wedge in constant contact angles γ1 and γ2 respectively (see Fig-
ure 1). Wente recently constructed an immersed such surface (spanner) for
which γ1 = γ2 = π/2 [17]. Wente’s example is a ring-type surface, but
self-intersecting.

(A ring-type surface is a compact, connected, orientable surface with two
boundary components and Euler-Poincaré characteristic zero. Ring-type
surfaces are also known as topologically annular.)
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In the present work we establish the following non-existence result.

Theorem 1. If γ1 + γ2 ≤ π + α, then there are no embedded ring-type
surfaces of constant mean curvature spanning a wedge of angle α and main-
taining constant contact angles, γ1 and γ2, with the wedge on each component
of their boundary.

Figure 1. Spanning Drop.

The contact angle condition of Theorem 1 cannot be improved, as spanners
can be found explicitly using spheres in the complementary case:

Theorem 2. A spherical spanner exists if and only if γ1 + γ2 > π +
α. Letting A > 0 denote either enclosed volume or mean curvature, the
family of all spanning spheres may be indexed uniquely by the set of 4-tuples
(γ1, γ2, α,A) for which this existence criterion is satisfied. (See Figure 2.)

Whether or not non-spherical embedded spanners exist satisfying γ1 + γ2 >
π + α remains an open question.

Any embedded spanning surface (spherical or otherwise) corresponds to
an equilibrium for the free surface of a volume of liquid in the absence of
gravity. A considerable literature has developed treating the stability of
equilibrium spanning surfaces between parallel planes; these are the so-called
liquid bridges (see for example [2, 14, 4, 12, 18]). It is a remarkable corollary
of Theorem 1 that, although there are many equilibrium spanners (even
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stable ones) between parallel planes satisfying γ1 + γ2 ≤ π, if the planes
make any angle α 6= 0 with each other, then not only stability but the
existence of equilibria ceases.

Figure 2. Existence and Non-existence.

Experimentally, one may observe that fluid drops with γ < π/2 or soap
films (γ = π/2) that span a wedge are unstable and tend to the vertex. In
fact, these investigations were prompted by the common practice (in the
engineering of liquid propellant tanks) of placing a wedge shaped partition
with its vertex on the fluid outlet to ensure a supply of fluid there. The
presence of fluid at the vertex is said to arise from the wedge’s ability to
“force bubbles out.” Our result is a first step in mathematical verification of
this phenomenon (see Figure 3).

Figure 3. “Forcing bubbles out”.

The proof of the main result depends on an extension of the reflection
method of A.D. Alexandrov to non-planar reflecting surfaces, namely spheres
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[7]. The main results in this connection are stated in §2. Furthermore, it
is observed that the maximum principle of spherical reflection [7] essentially
reduces the problem to consideration of the boundary behavior of the surface.
This observation is applied in detail in §3, and methods of H. Hopf and,
hence, the topological assumptions are employed to complete the proof of
Theorem 1.

It will be observed that previous applications of reflection, cf. [1, 11, 15],
[5, 10], do not rely on topological assumptions as does Theorem 1. In prin-
ciple, this is true for spherical reflection as well, and therefore it is natural
to seek an extension of Theorem 1 to surfaces of higher topology. In a sep-
arate paper [8], using different methods, the following partial extension in
this direction is given (along with some other extensions of less immediate
physical interest).

Theorem 3. If γ1, γ2 ≤ π/2, then there are no embedded constant mean
curvature spanners (in any wedge).

Notice, however, that the sharp contact angle condition has not been
obtained.

I would like to acknowledge the guidance and encouragement of my advisor
Robert Finn during the course of this work. I am also thankful for helpful
conversations with Rick Schoen, Leon Simon and Brian White.

2. Spherical Reflection of Spanning Drops.

Let S be the free surface of a volume of fluid which adheres to the planes
of a wedge. According to our assumptions on such a surface, which are
discussed in detail in Section 4 (Appendix A), there is an open set D in R3

whose boundary is composed of S and the regions of adherence B which
are topological discs in the planes Π of the wedge; see also Figure 1. We
begin the reflection procedure by fixing an origin 0 ∈ R3 at a point on the
vertex of the wedge. Next, consider a large sphere Sρ = ∂Bρ(0) such that
D̄ ⊂ Bρ(0) ≡ {ξ ∈ R3 : |ξ| < ρ}. As we decrease the radius ρ we come to the
first sphere Sρ0 which intersects S. As we decrease ρ below ρ0 we apply the
(reflection) map

ψ : X 7−→ ρ2

|X|2X(1)

to the portion of S through which Sρ has passed. To be precise, let S− =
S−(ρ) ≡ {X ∈ S : |X| ≥ ρ}; the reflection of S− is Ŝ = Ŝ(ρ) ≡ ψS−. A
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description of the spatial disposition of S+(ρ) ≡ {X ∈ S : |X| ≤ ρ} and Ŝ
during the reflection procedure is as follows.

Theorem 4. There is some radius ρ1 with 0 < ρ1 < ρ0 such that for each
ρ ∈ (ρ1, ρ0) every point X in S−(ρ) satisfies exactly one of the following.
NT1. |X| > ρ, X ∈ int S, and (1−δ)X ∈ D for each δ ∈ (0, 1−ρ2/|X|2].1

NT2. |X| > ρ, X ∈ ∂S, and (1− δ)X ∈ B for each δ ∈ (0, 1− ρ2/|X|2].
NT3. |X| = ρ, X ∈ int S and X ·N < 0 where N is the normal pointing

into D.
NT4. |X| = ρ, X ∈ ∂S, and X · n < 0, where n is the inward normal to

∂S in Π.
For ρ = ρ1, however, at least one of the following holds for some X ∈ S−.
T1. |X| > ρ, X ∈ int S, and Ŝ is tangent to S+ at X̂.
T2. |X| > ρ, X ∈ ∂S, and Ŝ is tangent to S+ at X̂.
T3. |X| = ρ, X ∈ int S and N is tangent to Sρ1 at X̂ = X.
T4. |X| = ρ, X ∈ ∂S, and n is tangent to Sρ1 at X̂ = X.

Proof. See Section 4 (Appendix A).

As discussed in Section 4 (Appendix A), if the mean curvature of Ŝ with
respect to the reflection N̂ of the normal N is bounded above by the mean
curvature H of S, then a touching principle leads to the conclusion Ŝ(ρ1) ≡
S+(ρ1). Our discussion, therefore, centers on the following global property
of spanning surfaces.

Definition 5 (Boundedness Property). The CMC2 surface S is said
to have the Boundedness Property if for each ρ ≥ ρ1 and each X ∈ S with
|X| ≥ ρ there holds the inequality

Ĥ(X, ρ) ≤ H
where Ĥ(X, ρ) is the mean curvature of Ŝ at the image of X under the map
(1).

In the proof of Theorem 4 we obtain the following additional information.

Lemma 6. Consider X ∈ S−(ρ1), i.e. X ∈ S and |X| ≥ ρ1.
(i) X ·N ≤ 0.

1Notice that the right endpoint in this interval corresponds to X̂, the reflection of X
about Sρ.

2Constant Mean Curvature
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(ii) Among X ∈ int S, equality can hold only for |X| = ρ1.
(iii) Among X ∈ ∂S with 0 < γ1, γ2 < π, equality can hold only for |X| =

ρ1.

By combining part (i) of this result with the formula

Ĥ(X, ρ) =
1
ρ2

(|X|2H + 2X ·N)(2)

(demonstrated in [7]) we have

Theorem 7. Any spanning surface of non-positive constant mean curva-
ture satisfies the boundedness property.

Thus, we turn our attention to surfaces with positive mean curvature. A
fundamental observation in [7] is the following.

Theorem 8. If H > 0 and ρ ∈ [ρ1, ρ0) is fixed, then ∆Ĥ(X, ρ) > 0 where
∆ is the intrinsic Laplacian on S−(ρ).

Thus, Ĥ is subharmonic and achieves its maximum at a point X̄ = X̄(ρ) ∈
∂S−.

If |X̄| = ρ, then according to (2) and Lemma 6 for each X ∈ S−(ρ),

Ĥ(X, ρ) ≤ Ĥ(X̄, ρ)

= H +
2
ρ2
X̄ · N̄

≤ H.
This is the condition required by the boundedness property. In this way, it
is only necessary to consider the case when |X̄| > ρ and X̄ ∈ ∂S. It is this
observation that makes the topological assumption useful.

3. Ring Type Spanners.

A ring type surface of constant mean curvature which meets an umbilic
surface (plane or sphere) at a constant contact angle can be parameterized
by a single conformal curvature coordinate X. This is shown in certain cases
in [16] and [9]. We give a derivation of this fact in general which is due to
R. Finn.

Let the surface in question be S and its orientation N. Let Y be a confor-
mal representation of S on a unit annulus A in the z = x + iy − plane (see
Figure 4).3

3 We assume that Y is smooth on Ā, whence X is smooth on Ω̄.
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Figure 4. Conformal Representation of Ring Type Surfaces.

Let w = log z map A to a rectangle Ω in the w = u + iv − plane and
notice that the inverse (exponential) is periodic in the strip log r < u < 0
which we will also refer to as Ω. The map X = Y ◦ exp : Ω → S is again a
conformal representation of S. By the Theorem of Joachimstahl [3], however,
the boundary curves on S are curvature lines for S. Thus, the coefficient
f = Xuv · N of the second fundamental form vanishes on the boundary of
the strip. On the other hand, φ◦ log defines an analytic function on A where
φ ≡ (e − g) − 2if, e = Xuu ·N, and g = Xvv ·N [6, p. 139, Lemma 2.2].

Im(φ◦ log) is, therefore, harmonic and vanishes on ∂A. Thus, Im(φ◦ log) ≡ 0
and Re(φ ◦ log) ≡ c ( constant). Thus, f ≡ 0 so that we have curvature
coordinates on Ω, and moreover e− g ≡ c (constant).

In summary, the coefficients of the first and second fundamental forms
satisfy

E = Xu ·Xu = Xv ·Xv = G; F = Xu ·Xv = 0,

and

e− g = Xuu ·N −Xvv ·N = c (constant); f = Xuv ·N = 0.

Therefore, 2H = (e+ g)/E, and we see that

e = EH +
c

2
; g = EH − c

2
.

Moreover, k1 + k2 = 2H and k1k2 = K = eg/E2, so that the principal
curvatures are given by

k1 =
e

E
= H +

c

2E
; k2 =

g

E
= H − c

2E
.
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Finally, if we take the inward normal N along the coordinate lines (which
are curvature lines), then

Nu = −k1Xu; Nv = −k2Xv.

Having noted these auxiliary facts, we can state the two main results of
this section.

Lemma 9. The boundedness property holds for a spanning surface of ring
type unless H > 0 and c > 0.

Lemma 10. If H, c > 0, then γ1 + γ2 > π + α.

We see from Lemma 9 that, in particular, the boundedness property is
intrinsic for ring type spanners in the sense that it is independent of the
particular origin of reflection along the vertex of the wedge. Thus, if S
satisfies the boundedness property, then centered at each point x along the
vertex of the wedge there is a sphere Sρ(x) about which S is symmetric, i.e.,
invariant under reflection. It is shown in [7] that such a surface is a portion
of a sphere as described in Theorem 2. Combining this fact with Lemma 10
evidently yields Theorem 1.

Proof of Lemma 9. According to Theorem 7 the content of this lemma is
that if S fails to satisfy the boundedness property, then c > 0.4 This is
easily verified if one of the contact angles is 0 or π.

Lemma 11. If the contact angle γ is 0 or π on the boundary curve β,
then

H =
c

2E

on β. In particular, if H > 0 (which it must be for the boundedness property
to fail ), then c = 2EH > 0.

Proof. Recall that by Joachimstahl’s Theorem, the boundary curve β is a
curvature line with normal curvature

k2 = H − c

2E
.

For these extremal contact angles, however, the normal N is perpendicular
to Π, and since β ⊂ Π, its normal curvature is 0.

4Henceforth, we assume H > 0.
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For the remaining contact angles (0 < γ1, γ2 < π), some care is required
in applying the results of §2. Let

Ω1 ≡ {(u, v) ∈ Ω : |X(u, v)| > ρ1}.

We have observed that Ĥ takes its supremum on Ω1 at a point (ū, v̄) ∈ ∂Ω1.

Corollary 12. Let X̄ ≡ X(ū, v̄), then for any ρ > 0 and |X| > ρ1

Ĥ(X, ρ) ≤ Ĥ(X̄, ρ).

Proof. According to (2)

1
ρ2

1

(|X|2H + 2X ·N) ≤ 1
ρ2

1

(∣∣X̄∣∣2H + 2X̄ · N̄
)
.

Multiply both sides by ρ2
1/ρ

2.

At this point we postulate the failure of the boundedness property and
derive a contradiction in the case c < 0. The next two results give some
important information about how this failure must come about.

Lemma 13. There is some ρ̄ and some X̄ ∈ S−(ρ̄) with ρ1 < ρ̄ < |X̄|
such that
(i) Ĥ(X̄, ρ̄) = H.

(ii) Ĥ(X̄, ρ) > H if ρ1 ≤ ρ < ρ̄.
(iii) Ĥ(X, ρ) ≤ H if |X| ≥ ρ ≥ ρ̄.

Note. (X̄, ρ̄) gives, in some sense, the “first time” that the boundedness
property fails.

Proof of Lemma 13. X̄ is defined in Corollary 12. For each ρ ≥ ρ1, {X ∈
S : |X| ≥ ρ} may have points with |X| = ρ and others with |X| > ρ ≥ ρ1.
As for the first points,

Ĥ(X, ρ) = H +
2
ρ2
X ·N ≤ H

by Lemma 6. The second points satisfy Ĥ(X, ρ) ≤ Ĥ(X̄, ρ) by Corollary 12.
We conclude that for some ρ ≥ ρ1, Ĥ(X̄, ρ) > H > 0. In particular,

|X̄|2H + 2X̄ · N̄ > 0.
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Therefore, the equation Ĥ(X̄, ρ) = H has some (unique) solution ρ = ρ̄. In
fact,

ρ̄ =
√

1
H

(∣∣X̄∣∣2H + 2X̄ · N̄
)
.

The equality (i) is clearly satisfied. Moreover, by the evident monotonicity
of Ĥ(X̄, ρ) in ρ, we conclude that ρ̄ > ρ1 and that (ii) holds.

Since ρ̄ > ρ1, Corollary 12 applies to all (X, ρ) with |X| ≥ ρ ≥ ρ̄. Hence,

Ĥ(X, ρ) ≤ Ĥ (
X̄, ρ

)
=

1
ρ2

(∣∣X̄∣∣2H + 2X̄ · N̄
)

≤ 1
ρ̄2

(∣∣X̄∣∣2H + 2X̄ · N̄
)

= Ĥ
(
X̄, ρ̄

)
= H.

This is condition (iii).
Finally, since |X̄| ≥ ρ1, X̄ · N̄ ≤ 0, and it cannot be the case that |X̄| < ρ̄

(just write out condition (i)). Therefore, |X̄| > ρ1, and the equality condition
of Lemma 6 applies. This means that the condition |X̄| = ρ̄ implies

Ĥ
(
X̄, ρ̄

)
= H +

2
ρ̄2
X̄ · N̄

< H

again contradicting (i). This establishes that |X̄| > ρ̄.

The following observation is crucial for us.

Lemma 14. X̄ ∈ ∂S.
Proof. We know that (ū, v̄) ∈ ∂Ω1. The image if ∂Ω1 under X con-
sists of points in ∂S and points on Sρ1 . X̄ is not in the latter set by
Lemma 13.

Let us summarize our position. We are proving Lemma 9 which means
verifying that the boundedness property holds under “most” circumstances.
We have reduced our consideration to the contact angles 0 < γ1, γ2 < π and
shown that the boundedness property holds unless H > 0 and c 6= 0. We
now rule out the possibility that c < 0. Recall that we have postulated a
violation of the boundedness property which occurs for the “first time” at
(X̄, ρ̄) as described by Lemma 13. Thus, we obtain a contradiction via

Theorem 15. If c < 0, then there is some point ¯̄X ∈ ∂S with | ¯̄X| ≥ ρ̄
such that ¯̄X is a (T4) touching point.
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Proof. The idea of the proof is simple.
(i) According to the reflected mean curvature formula (2), the osculating

sphere (the sphere of radius 1/H with center at C(X) = X + (1/H)N)
reflects to a sphere of radius |1/Ĥ|. The osculating sphere at X̄, there-
fore, is invariant under reflection about Sρ̄.

(ii) The osculating sphere intersects Π (the plane containing X̄) in a circle,
C, which is invariant to the reflection.

(iii) The component of ∂S containing X̄ is a curve β that curves “more
tightly” than C. By comparing β and C we can obtain a (T4) touching
point.

Some of the details:

Let us first note two consequences of the contact angle condition. As
noted above β has normal curvature k2. Therefore, β has curvature k given
by k2 = k sin γ as a plane curve in Π with respect to its inward normal n.
Also, the circle

C ≡ S 1
H

(C(X̄)) ∩Π

has radius (1/H) sin γ and curvature

k̃ ≡ H

sin γ
.

Now, since k2 = H − c/2E > H, we have the relation

k > k̃.(3)

As noted, since Ĥ(X̄, ρ̄) = H, reflection about the circle ∂Bρ̄(0) in the
plane Π leaves C invariant. For this to be true, it is necessary that 0 be
outside of C and that the two unique tangent segments from 0 to C be of
length ρ̄ (see Figure 5).

Figure 5. The Plane Π (first view).
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The points of tangency of these two tangent segments divide C into two
arcs, and since |X̄| > ρ̄, X̄ is in the outer one. Without loss of generality,
we may take the y-axis through the center of C and X̄ in the first quadrant.
Moreover, we assume β is a parameterization by arclength and that β̃ is a
parameterization of C by arclength so that

β(0) = β̃(0) = X̄

and
X̄ · β̇(0) = X̄ · ˙̃

β(0) ≤ 0

(see Figure 6).

Figure 6. The Plane Π (second view).

We are interested in the quantities φ = |β|2 and ψ = (1/k)β · β̈.
Vanishing of ψ indicates a (T4) touching point. Our contradiction arises

from the fact that ψ vanishes at a point where φ > ρ2
1. In fact, ψ(0) < 0,

and it can be shown that, at least locally, ψ increases and φ decreases. On
the other hand, by comparison to C using the inequality (3) and the explicit
expression for β in terms of an integral involving its curvature, one sees that
these monotonicity properties persist until ψ vanishes. Furthermore, at this
point φ ≥ ρ̄2 > ρ2

1. This contradicts statement NT4 of Theorem 4 and
completes the proof of Theorem 15, and hence, of Lemma 9.

Thus, we have shown that H, c > 0. It is a general consequence of these
inequalities that γ1 + γ2 > π + α. In order to show this we turn to planar
reflection.
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Proof of Lemma 10. A CMC spanning surface possesses a plane of sym-
metry Σ with normal parallel to the vertex, l, of the wedge. This plane is
obtained via the conventional reflection procedure and, as a consequence,
divides S into two halves each of which is a graph over Σ. Notice that the
wedge intersects Σ in two half lines Π1 and Π2 which emanate from the point
of intersection l0 of l with Σ. In each of these half lines Π, there is an open
segment B which is the intersection of the wetted region B with Σ. The
endpoints of these intervals a and b (which may be a single point in the case
γ = π) are the intersection of ∂S with Σ.

Let us fix a frame of reference x1, x2, x3 with the x1-axis along l, B lying
along the positive x2-axis, and the inward normal, N ′, to B along the positive
x3-axis (see Figure 7).

Figure 7. The Plane of Symmetry Σ.

Since the normal N to S along S ∩ Σ is invariant under reflection in Σ, it
must be the case that N lies in Σ. S is therefore transverse to Σ (at a for
example), and intersects Σ in a unique smooth curve ca with endpoint a.
For points X ∈ int S ∩ Σ the corresponding curve through X contains X
in its interior. Thus, the curve, ca, starting at a continues until it reaches
some other endpoint a′ or b′. In this way, the endpoints ∂S∩Σ are connected
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to each other in pairs by two smooth curves (see Figure 8).

Figure 8. The Plane Σ.

Since S meets Σ orthogonally along ca and cb these curves are curvature
lines which have normal curvatures (and hence curvatures) given by

k1 = H +
c

2E
> H.

It follows from this that γ 6= 0. Moreover, if we let

pθ ≡ {(0, τ cos θ, τ sin θ) : τ > 0},

then for small, positive θ, pθ ∩ {ca} consists of a unique point. In this way,
ca and cb can be locally parameterized by θ. Also, for θ small and positive
the straight line segment between ca(θ) and cb(θ) will lie entirely in D. We
define θ0 to be the largest angle for which this condition holds (and the
parameterizations remain valid).

An analysis of the (plane) geometry of these curves as described above
results in the condition γ1 +γ2 > π+α. For example, if ca(θ0) is in ∂S, then
draw the chord from a to ca(θ0), and consider the triangle 4 0 ca(θ0) a. Due
to the curvature of ca, the contact angle at a, γ = γ1, is greater than the
exterior angle at a. Thus, if φ is the angle of the triangle at ca(θ0), then

γ1 > θ0 + φ

= α+ φ.

On the other hand, γ2 > π − φ. Therefore,

γ1 > α+ π − γ2.

This concludes the proof of Lemma 10 and, hence, that of Theorem 1.
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4. Appendix A. Some Touchy Points.

In this section we present the modifications of standard reflection techniques
necessary for spherical reflection of spanning drops. The discussion of §2
applies to compact spanning surfaces with arbitrary genus and any number
of boundary components. Our discussion below treats some of these surfaces.

A spanning drop, for our purposes, spans a wedge. For convenience we fix
the vertex of our wedge to be the X3-axis, and define a wedge to be a family
of open half planes Π1,Π2, . . . ,Πk whose boundaries are all the X3-axis.

We require the drop surface S to be a compact, connected, orientable,
CMC surface with k boundary components β1, β2, . . . , βk each lying entirely
in the open half plane of the same index. Notice that we did not require
the half planes to be distinct. We also explicitly assume that ∂S is smooth
although this can be proved, at least in some cases, under a reasonable
stability assumption; see [13] and references therein. Each βj, furthermore,
should be a simple closed curve along which the drop adheres to the plane Πj.
In order to understand what we mean by adherence, let Bj be the topological
disk in Πj bounded by βj. We require that three conditions hold. First,

A1. S ∪B1 ∪B2 ∪ · · · ∪Bk is a piecewise smooth simple closed surface all of
whose singularity lies in ∪{βj} (see Figure 9).

Figure 9. A Surface Ruled Out by Condition A1.

Note that by the theorem of Jordan and Brouwer, [6, p. 100], ∪Bj ∪S = ∂D
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for some open set D ⊂ R3. We will call D the drop region. Secondly, we
want

A2. About each Bj, D lies locally to one side of Πj. That is, for each Bj,
there is a neighborhood Vj of Bj in R3 and a half space Hj bounded by the
plane containing Πj such that D ∩ Vj ∩Hj = ∅ (see Figure 10).

Figure 10. A Surface Ruled Out by Condition A2.

Finally we require

A3. (Contact angle condition.) If N ′j is the unit normal to Bj pointing into
D and N is the unit normal to S pointing into D, then N ′j · N = cj is a
constant along βj.

Note. When no confusion should arise, we will suppress the index j in
regard to ∂S. Notice that with our choice of normals, the constant c =
− cos γ.

Remark. Strictly speaking, the wetted regions may be allowed to occupy
any part of the plane containing Π as long as at least one line through the
origin of reflection intersects S in some set other than a connected segment.
It is somewhat natural to ask if this condition can be relaxed as well, but
the present method does not seem to apply.

For such a surface S, let us consider carefully the reflection procedure
outlined in §2. Let the origin 0 ∈ R3 be any fixed point on the vertex of
the wedge. Recall that we begin with a sphere Bρ(0) ⊇ D and decrease its
radius to a first value ρ0 where S ∩ Sρ0(0) 6= ∅. For ρ < ρ0 we wish to apply
the map (2.1) to obtain a reflected “comparison” surface Ŝ.
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Proof of Theorems 4 and 6. It is natural to think of NT1-NT4 as conditions
on ρ and on the sets

NT1(ρ) = {X ∈ int S : |X| > ρ},
NT2(ρ) = {X ∈ ∂S : |X| > ρ},
NT3(ρ) = {X ∈ int S : |X| = ρ}, and

NT4(ρ) = {X ∈ ∂S : |X| = ρ}
in particular. Notice that these sets give a disjoint decomposition of S−(ρ)
for any ρ. Let us also add the conditions X ·N < 0 and X ·n < 0 to conditions
NT1 and NT2 respectively.5 The proof then reduces, by compactness, to
showing the following local result.

Theorem 16. If P satisfies one of NT1-NT4(ρ), then there is some
neighborhood U of P in S and some ε > 0 such that each X ∈ U satisfies
one of NT1-NT4(ρ− ε).6

We give the details of the reduction in two steps.

Step 1. We claim that for some ε > 0, every X in S−(ρ0 − ε) satisfies one of
NT1-NT4(ρ0 − ε).
S−(ρ0) = NT3(ρ0) ∪ NT4(ρ0). If X ∈ NT3(ρ0), then S is tangent to Sρ0

at X. Consequently, X ·N = −|X| < 0. Therefore, NT3(ρ0) is satisfied. If
X ∈ NT4(ρ0), then ∂S is tangent to Sρ0 ∩ Π at X. Consequently, X · n =
−|X| < 0. Therefore, NT4(ρ0) is satisfied.

Hence, the compact set S−(ρ0) is covered by neighborhoods U = U(X)
from Theorem 16. Let U1, . . . ,Uk be finitely many of these neighborhoods
that cover S−(ρ0) and let ε1, . . . , εk be the associated ε’s from Theorem 16.
S\ ∪ Ui is a compact set which is disjoint from Sρ0 . Let d be the distance

between these two sets. Take ε = min{d/2, ε1, . . . , εk}.
If X ∈ S−(ρ0 − ε), then X ∈ Ui for some Ui. Therefore, X satisfies one

of NT1-NT4(ρ0 − εi). By the footnote to Theorem 16, X satisfies one of
NT1-NT4(ρ0 − ε).
Step 2. Let ρ1 = inf{ρ: every X ∈ S−(ρ) satisfies one of NT1-NT4(ρ)}. By
Step 1, ρ1 < ρ0. By examining points on ∂S with respect to NT2 we see
that 0 < ρ1.

We claim that one of NT1-NT4(ρ1) must not be satisfied by some point
X ∈ S−(ρ1).

Otherwise, we can take finitely many open sets U1, . . . ,Uk from Theo-
rem 16 as before. Letting ε = min{d/2, ε1, . . . , εk} where d = dist(S\ ∪

5If the theorem is true, then these conditions evidently follow from NT3 and NT4.
6Notice that NTk(ρ− ε) implies NTk(ρ′) for ρ− ε ≤ ρ′ ≤ ρ0.
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Ui, Sρ1), we see that each X ∈ S−(ρ1 − ε) satisfies one of NT1-NT4(ρ1 − ε)
which, in this case, is a contradiction.

We may, therefore, consider each of the possible failures in turn.
If NT1(ρ1) is not satisfied at P ∈ NT1(ρ1), then it is still the case, for

some neighborhood U of P in S, that each X ∈ U satisfies (1− δ)X ∈ D for
δ ∈ (0, 1 − ρ2

1/|X|2). Therefore, X̂ = (ρ2
1/|X|2)X ∈ D or ∂D. In the latter

case, since A2 rules out the possibility that X̂ ∈ B̄, X̂ ∈ int S. It is evident
in particular, since D is an open set, that P̂ ∈ int S.

Shifting our frame of reference to orthonormal coordinates x, z with x ∈
TP̂S = TP̂S+(ρ1) and N(P̂ ) lying along the positive z direction, S is given
locally as the graph of a function u = u(x). It is well known that the
map ψ : (x, z) 7→ (x, z − u(x)) is a local diffeomorphism of neighborhoods
V1 −→ V2 of P̂ in R3. Moreover, we can require that V1 ∩ D maps under ψ
to the “positive z”-half space. For U small enough, the reflection Û of U will
lie in V ∩ (D ∪ S). Thus, ψÛ is a neighborhood of a smooth surface in the
“positive z”-half space which passes through P̂ = ψ(P̂ ) = (0, 0). Clearly,
then, ψÛ is tangent to TP̂S at P̂ . Consequently, Û ⊂ Ŝ is tangent to S+ at
P̂ . Moreover, we note the following important fact.

T1a. If S+ and Ŝ are expressed locally as graphs of functions u and û over
a neighborhood η of their common tangent plane TP̂S (oriented as above),
then u ≤ û near P̂ .

If NT2(ρ1) is not satisfied at P ∈ NT2(ρ1), then it is still the case, for
some neighborhood U of P in S, that each X ∈ U satisfies (1− δ)X ∈ D∪B
for δ ∈ (0, 1 − ρ2

1/|X|2). Focusing our attention on the points on β near P ,
we can show, by an argument similar to that for the T1 case above (except
in one less dimension), that the reflection of β, β̂, is tangent to β at P̂ .
Letting v be the unit vector in TPS pointing into S and perpendicular to
β at P , we see that v · n = cos γ, and by the conformality of the reflection,
v̂ ∈ TP̂S satisfies v̂ · n̂ = cos γ and is perpendicular to β̂. Thus, Ŝ is tangent
to S+ at P̂ as before. The map ψ in this case allows us to define a curve
b = ψ ◦ β near P̂ , and by choosing the positive x2-axis along v̂ we have
that b is tangent to the x1-axis. Thus, b is locally the graph of a function
x2 = b(x1), and S is given locally as a graph over {x : x2 ≥ b(x1)} in TP̂S.
A similar discussion yields a curve b̂ = ψ ◦ β̂ such that Ŝ is given locally as a
graph over {x : x2 ≥ b̂(x1)} in TP̂S. Both surfaces are represented as graphs
over η = {x : x2 ≥ b0(x1) ≡ max {b(x1), b̂(x1)}},7 and by the same use of ψ
as in the T1 case we see that Ŝ lies locally above S+. In summary,

7b0(x1) ≡ max {b(x1), b̂(x1)} is really just one of the curves being compared because b̂
is locally in the closure of B and b = ∂B. In fact, if γ ≤ π/2, then b0 = b̂, and if γ ≥ π/2,
then b0 = b.



SPHERICAL REFLECTION AND SPANNING DROPS 309

T2a. If S+ and Ŝ are expressed locally as graphs of functions u and û over
η = {x : x2 ≥ b0(x1)} in TP̂S as above, then u ≤ û.

The arguments proceed similarly in the T3 and T4 cases except that b is
determined by the projection of Sρ1 ∩S onto TPS = TP̂S in the T3 case, and
two curves are necessary in the T4 case. The following statements summarize
the situation.

If NT3(ρ1) fails at X ∈ NT3(ρ1), then T3(ρ1) holds for X̂ = X, and
T3a. For an appropriate choice of x, z-coordinates at X = X̂ with N(X)
along the positive z-axis, S+ and Ŝ are expressed locally as the graphs of
functions u and û over η = {x : x2 ≥ b1(x1)} ⊂ TXS where {b1} is the
projection ψ(Sρ1 ∩ S) near X. Moreover, u ≤ û on η.

If NT4(ρ1) fails at X ∈ NT4(ρ1), then T4(ρ1) holds for X̂ = X, and
T4a. Let b0(x1) = max{b(x1), b̂(x1)} as in T2a and let {b1} be the projection
near X of Sρ1 ∩ S onto TXS. b1 can be expressed as a graph8 x1 = b1(x2)
near X, and b′0(0) = 0 = b′1(0). S+ and Ŝ can be expressed locally as graphs
of functions u and û on η = {x : ±x1 ≥ ±b1(x2), x2 ≥ b0(x1)},9 and u ≤ û.

This completes the reduction to Theorem 16.
Our next reduction is to the following explanation of the local behavior

of the inward normal N .

Theorem 17. If P ∈ int S and P ·N(P ) < 0, then there is some neigh-
borhood U of P in S such that X ·N < 0 for every X ∈ U .

If P ∈ ∂S and P · n(P ) < 0, then there is some neighborhood U of P ∈ S
such that X · n < 0 for every X ∈ U ∩ ∂S and X · N < 0 for every X ∈
U ∩ int S.

As the properties described in this theorem will be used repeatedly, we
give some notation which saves space. The normal N at a point X ∈ int S
(or the point X itself) is said to be central if X ·N < 0. Similarly, n = n(X)
for X ∈ ∂S is central if X ·n < 0. We will also need the following properties
of N and n.

Lemma 18. Let v be a unit vector. If X ∈ int S and v · N < 0, then
there is some δ0 > 0 such that X − δv ∈ D and X + δv ∈ Dc for every
δ ∈ (0, δ0].

Proof. Introduce new coordinates (x1, x2, x3) with origin at X such that
TXS is the x1, x2-plane and N is a positive orientation. Let v = (v1, v2, v3)

8This is explained more fully below.
9The + sign is taken if X · (1, 0) = −|X| < 0. The minus sign is taken if X · (1, 0) =

|X| > 0.
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in these new coordinates. The condition v ·N < 0 evidently becomes, in the
new coordinates, v3 < 0.

As is well known, S is locally given as the graph of a function u = u(x1, x2)
over TXS, and the map

(x1, x2, x3) 7−→ (x1, x2, x3 − u(x1, x2))(4)

is a local diffeomorphism of neighborhoods of (x1, x2, x3) = (0, 0, 0) in R3

such that S maps into the x1, x2-plane, x3 > 0 corresponds locally to a
portion of D and x3 < 0 corresponds locally to a portion of Dc.

Now, x−δv is given in our new coordinates by −δv, and the image of this
point under (4) has x3-component

x3 = −δv3 − u(−δv1,−δv2) = −δv3 + ◦(δ).(5)

For δ > 0 small enough, this point satisfies x3 > 0 and, hence, corresponds
to the point x− δv ∈ D.

Corollary 19. If X ∈ int S and v is a unit vector such that for some
sequence of δj ↘ 0, X + δjv ∈ D or X − δjv ∈ Dc, then v ·N ≥ 0.

Proof. Assume the statement is false. Lemma 18 gives an immediate
contradiction.

Similarly we have

Lemma 20. Let v be a unit vector in Π. If X ∈ ∂S and v · n < 0, then
there is some δ0 > 0 such that X − δv ∈ B and X + δv ∈ Bc for every
δ ∈ (0, δ0].

Corollary 21. If X ∈ ∂S and v is a unit vector such that for some
sequence of δj ↘ 0, X + δjv ∈ B or X − δjv ∈ Π\B, then v · n ≥ 0.

Proof of Theorem 16. As discussed above, there is no generality lost in
adding the condition X ·N < 0 to NT1 and the condition X ·n < 0 to NT2.

Say P satisfies one of NT1-NT4(ρ). Let U = U(P ) be the neighborhood
of P in S given by Theorem 17. For each X ∈ U ∩ int S there is some δ0 > 0
such (1 − δ)X ∈ D for δ ∈ (0, δ0). This follows from Lemma 18. By taking
the supremum over all such δ0, we may assume that δ0 = δ0(X) is taken as
large as possible. Similarly, for X ∈ U ∩ ∂S we can take the largest possible
δ0 = δ0(X) such that (1 − δ)X ∈ B for δ ∈ (0, δ0). That δ0 > 0 follows
from Lemma 20. Notice that in either case Y = (1 − δ0)X ∈ S. Moreover,
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by Corollary 19 and Corollary 21, if X ∈ int S, then Y · N(Y ) ≥ 0 and if
X ∈ ∂S, then Y · n(Y ) ≥ 0.

For η > 0 let Uη = Bη(P ) ∩ S. Notice that for η small enough Uη ⊂ U .
We claim that if

lim
η↘0

inf
X∈Uη

δ0(X) > 1− ρ2/|P |2(6)

then for η small enough there is some ε > 0 such that each X ∈ Uη satisfies
one of NT1-NT4(ρ − ε). In fact, one of NT3(ρ − ε) or NT4(ρ − ε) clearly
follows for points with |X| = ρ−ε by Lemma 17 as long as η is small enough.
On the other hand, since supX∈Uη |X−P | → 0 as η → 0, if η is small enough,
then according to (6)

inf
X∈Uη

δ0(X) > sup
X∈Uη

(1− ρ2/|X|2).

Carrying this one step further, since

lim
ε→0

sup
X∈Uη

(
1− (ρ− ε)2

|X|2
)

= sup
X∈Uη

(
1− ρ2

|X|2
)
,

we see that for some ε > 0

inf
X∈Uη

δ0(X) > sup
X∈Uη

(
1− (ρ− ε)2

|X|2
)
.

Thus, for any particular X ∈ Uη, δ0(X) > 1− (ρ− ε)2/|X|2. Our claim then
follows from the definition of δ0.

It remains to verify (6). If (6) were false, then we obtain a sequence Xj →
P with δ00 = limj→∞ δ0(Xj) ≤ 1−ρ2/|P |2. Recall that Yj ≡ (1−δ0(Xj))Xj ∈
S and has a non-central normal. Thus, Y = limj→∞ Yj = (1 − δ00)P ∈ S.
If δ00 ∈ (0, 1 − ρ2/|P |2], then |P | > ρ and this contradicts the fact that P
satisfies one of NT1-NT4(ρ). The only other possibility is that δ00 = 0. In
that case Y = P and Y · N(Y ) ≥ 0 (or Y · n(Y ) ≥ 0 if P ∈ ∂S). This
contradicts the fact that P has a central normal.

This completes the reduction to Theorem 17.

Proof of Theorem 17. If P ∈ int S and is central, then it follows by the
continuity of N that points nearby P in S are central. Similarly, if P ∈ ∂S
and is central, then the points in ∂S near P are central. The following
observation gives an easy extension to a full neighborhood of S when 0 <
γ < π.

Lemma 22. If P ∈ ∂S is central and 0 < γ < π, then P ·N(P ) < 0.
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Proof. Since n and N ′ span the plane orthogonal to β,

P ·N(P ) = (N(P ) · n(P ))(P · n(P )).

Therefore, Lemma 22 follows from

Lemma 23. N · n ≥ 0 on ∂S with equality if and only if γ = 0 or π. If
γ = 0, then N = −N ′. If γ = π, then N = N ′.

Proof. This result follows essentially from the facts that D̄ ∩ V = ∅ and
B ⊂ D̄; see Figure 7. For convenience, let us express vectors in terms of
the orthonormal basis {n,N ′}. N lies in the plane normal to {β} and,
consequently, S intersects that plane in some curve C = C(s) ∈ int S near
X. If N ·N ′ > 0, but N · n < 0, then C enters the first quadrant (because
it cannot enter V ). By considering C − δN which for some δ0 = δ0(s) is
in B, we obtain a sequence of points Xj ∈ S which converge to X and
satisfy Xj − δN ∈ D for δ ∈ (0, δ1) and Xj − δ1N = C(s) − δ0(s)N ∈ B
for some s. By Corollary 19, N(Xj) · N ≤ 0. Since N(Xj) → N , this is a
contradiction.

The other cases follow similarly.

Thus, the proof of Theorem 17 will be complete if we can give an analysis
for the extreme angles 0 and π.

Theorem 24. If P ∈ ∂S and P · n(P ) < 0 and γ = 0 or π at P , then
there is a neighborhood U of P in S such that X · N(X) < 0, i.e., X is
central, for every X ∈ U ∩ int S.

Proof. Assume γ = 0. The argument for γ = π is similar.
Let β be parameterized near P by its arclength s. For an appropriate

orientation of β, the vectors β̇(0), n(0) andN ′ constitute a positively oriented
orthonormal frame at P . Let us express points in coordinates (x, z) with
respect to this frame where x = (x1, x2) ∈ R2 and z ∈ R1. Since TPS =
Π and P · n(P ) < 0, the center of reflection 0 ∈ l is given in these new
coordinates by (ξ, 0) for some ξ ∈ R2 with ξ2 > 0.

It will be convenient for us to use square balls Br(P ) ≡ {x : −r < x1, x2 <
r} as well as the standard balls Br(P ).

We claim that there exist smooth real valued functions, b defined in a
neighborhood of 0 ∈ R and u defined in a neighborhood of 0 ∈ R2, which
satisfy b′(0) = 0 = b(0) and u(x1, b(x1)) = 0 = ∇u(x1, b(x1)) and for which,
if r is small enough, the following hold.
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(i) ∂S ∩ Br(P ) = {(x1, b(x1)) : |x1| < r}.
(ii) B ∩ Br(P ) = Er ≡ {x ∈ Br(P ) : x2 > b(x1)}.

(iii) (Π\D̄) ∩ Br(P ) = Fr ≡ {x ∈ Br(P ) : x2 < b(x1)}.
(iv) S ∩Br(P ) ⊂ {(x, u(x)) : x ∈ Ēr} ⊂ S and u(x) ≥ 0 for x ∈ Ēr.
(v) µ(x1) ≡ (ξ − β(s)) · n(s) > (1/2)ξ2 > 0 for |x1| ≤ r where s = s(x1) =∫ x1

0

√
1 + b′2.

Notes. (i)-(iii) follow from the zero contact angle; see Figure 11. (iv),
that S is given locally as a graph, also follows from zero contact angle. That
u ≥ 0 follows from the adherence condition A2. (v) follows from continuity
since µ(0) = ξ2.

Let us consider such a neighborhood determined by r < |ξ|/2 and calculate
the normal curvature of a curve in an arbitrary direction v ∈ Π at β(s). A
suitable curve for this calculation is given by

α(t) = (β(s) + tv, u(β(s) + tv)).(7)

It will be convenient to express vectors in terms of the adapted frame
{β̇(s), n(s)}. In particular, we write

∇u = (∇u · β̇)β̇ + (∇u · n)n

= us1β̇ + us2n;

v = vs1β̇ + vs2n.

With this notation we see that α′ = (v, us1v
s
1 + us2v

s
2). Therefore, since

α̇ =
α′

|α′|

where “ ˙ ” denotes differentiation with respect to arclength, we will need to
take the second directional derivatives

∇us1 = (∇us1 · β̇)β̇ + (∇us1 · n)n

= us11β̇ + us12n;

∇us2 = us21β̇ + us22n.
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Using the fact that ∇u ≡ 0 along β, we see that

α̈(0) = (0, us11(vs1)2 + 2us12v
s
1v
s
2 + us22(vs2)2).

Thus, the normal curvature kv is given by

kv = −(us11(vs1)2 + 2us12v
s
1v
s
2 + us22(vs2)2).(8)

Taking v = β̇ we have

kβ̇ = −us11 = −∂
2u

∂β̇2
(β(s)).

Clearly, the normal curvature of β is 0. Thus, us11 ≡ 0.
On the other hand, since S meets the plane Π in a constant contact angle,

we may apply Joachimstahl’s theorem [3, p. 152] to conclude that β is a
curvature line for S. Therefore, taking v = n, the other principal direction,

kn = −us22 = 2H.

If we assume that H ≥ 0, then we obtain a contradiction from the
Hopf boundary point comparison theorem (Theorem 26). Therefore, us22 ≡
−2H > 0 along β.

Finally,

us2 =
∂u

∂n
(β(s)) ≡ 0.

This allows us to calculate us12 = us21 “along β.” That is

0 = lim
h→0

1
h
{us+h2 − us2}

= lim
h→0

1
h

{
∂u

∂n(s)
(β(s+ h))− ∂u

∂n(s)
(β(s))

}
= lim

h→0
∇us2(β(s∗)) · β̇(s∗)

for some s∗ ∈ (s, s+ h). Evaluating the limit on the right we obtain

us12 = 0.

Thus, (8) becomes
kv = 2H(vs2)2.

Let us take a (perhaps) smaller r < 1 satisfying two additional conditions
(aside from (i)-(v)). The first of these additional requirements is the simple
continuity condition that for |x| < r,

1
|ξ2 − x2| <

2
ξ2

<∞.(9)
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The second condition arises from Taylor’s formula for α′. Since α′(0) = (v, 0)
and α′′(0) = (0, us22(vs2)2), we can express α′ as

α′ = (v, us22(vs2)2t+ (1/2)T (x∗)t2)(10)

where x∗ ∈ Br(P ) and T is the third derivative of u along α. Following
previous notation

T =
2∑

i,j,k=1

vivjvku
s
ijk

which can be expressed in terms of the third derivatives of u.
Notice that |T | ≤∑ |usijk| which is a continuous function. Thus, setting

M = max
X∈Br(P )

∑
|usijk| <∞,

we have a bound on |T | independent of s or v. We take r such that if t < r,
then

1
2
Mt2 ≤ |H| ξ2

2

16|ξ|2 t.(11)

Having chosen r, we take r1 < r/2 such that if |x1| < r1, then

|b′(x1)| < ε ≡ 1
1 + 24 |ξ|

ξ2

.(12)

In particular, |b(x1)| = |b(x1)− b(0)| ≤ ε|x1|.
We are interested in the particular choice

v =
ξ − β
|ξ − β|(13)

and the associated curve on S given by (7). Such curves exhaust an entire
neighborhood of P in S; see Figure 11.
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Figure 11. A Neighborhood Covered by Rays to the Origin of Reflection.

Claim 26. Let

ε1 = r1 min{1/2, ε}.

If x ∈ Eε1, then there is some β(s) ∈ Br1(P ) such that (x, u(x)) lies on the
curve α determined by the direction (13). Moreover, there is some t ∈ (0, r)
such that α(t) = (x, u(x)).

Proof. Let w = (x − ξ)/|x − ξ| and consider the line y(τ) = x + τw.
y(0) ∈ Eε1 . Therefore,

b(y1(0)) < y2(0).(14)

Setting τ1 = (x2 − 2ε1)|ξ − x|/(ξ2 − x2), we see that y(τ1) ∈ Br1(P ). In
fact,

|y2(τ1)| = | − 2ε1| < r1,

and
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|y1(τ1)| =
∣∣∣∣x1 +

(x2 + 2ε1)|x− ξ|
ξ2 − x2

(x1 − ξ1)
∣∣∣∣

< |x1|+ 8
|ξ|
ξ2

3ε1

<

(
1 + 24

|ξ|
ξ2

)
ε1(15)

≤ r1.

Here we used (9) and the definition of ε1. Thus, according to (12) and (15),

|b(y1(τ1))| ≤ ε|y1(τ1)| < ε1.

On the other hand, y2(τ1) = −2ε1. We conclude that y(τ1) ∈ Fr1 . In
particular,

y2(τ1) < b(y1(τ1)).(16)

Comparing (16) and (14), we see that for some τ ∈ (0, τ1), y2(τ) =
b(y1(τ)).

This is the point we want in ∂S; β(s) = y(τ).
It is clear that −w = v where v is given in (13). Furthermore, β(s)−τw =

x, so that we take t = τ . Finally, since x, y(τ1) ∈ Br1(P ) and r1 < r/2, we
see that t <

√
2r1 < r. This completes the proof of the claim.

In order to finish the proof of Theorem 24, consider X = (x, u(x)) in a
small enough neighborhood of P in S so that x is in Eε1 . If N is the normal
at this point, then

X ·N = (x− ξ, u(x)) · (∇u,−1)

≤ (x− ξ) · ∇u
= −|x− ξ|v · ∇u.
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On the other hand, since α′ is tangent to S,

0 = N · α′
= v · ∇u−

(
us22(vs2)2t+

1
2
T (x∗)t2

)
by (10)

≤ v · ∇u+ 2H(v · n)2t+
1
2
Mt2

≤ v · ∇u+ 2H
(
µ(s)
|ξ − β|

)2

t−H ξ2
2

16|ξ|2 t by (11)

≤ v · ∇u+

(
2H
(
ξ2

4|ξ|
)2

−H ξ2
2

16|ξ|2
)
t by (v)

= v · ∇u+H
ξ2

2

16|ξ|2 t.

Thus,

X ·N ≤ |x− ξ|H ξ2
2

16|ξ|2 t
< 0.

Having established Theorem 4 and the occurrence of T1a-T4a in partic-
ular, we note that the fundamental mechanism that allows one to conclude
the coincidence of reflected and unreflected portions of a surface is a “com-
parison theorem.” Our treatment of spherical reflection requires the use of
three such theorems. We now state these results and check carefully the
hypotheses of each application. Furthermore, we give a generalization of
Serrin’s boundary point lemma at a corner [11] that is used to prove the
third comparison theorem. Our treatment of this lemma clarifies the regu-
larity of the coefficients assumed by Serrin and by Gidas, Ni and Nirenberg
[5] at least for two dimensional domains with corners of angle π/2.

For a (T1) touching point we apply10

Theorem 25. Let M be the mean curvature operator, i.e., for a smooth
real valued function u = u(x, y) defined on an open set in R2, Mu =
Mu(x, y) is the mean curvature of the graph of u at (x, y, u(x, y)) with re-
spect to the upward pointing normal. If u and û are defined in a neighborhood
of (x0, y0) and

u ≤ û,(17)

u(x0, y0) = û(x0, y0),(18)

Mu ≥Mû,(19)
10These results are essentially well known; see also [7].
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then u ≡ û.

The tangency is set up by condition T1 and described in the terms of our
comparison theorem in T1a. (17) and (18) follow from these statements.
(19) evidently follows from the boundedness property when it holds.

The other two comparison theorems apply to an operator defined on the
closure of an open connected set Ω in R2 bounded by two C2 curves γj :
[0, sj] → R2 which intersect in the point γj(0) = x0 and an arc of a circle
centered at x0 and connecting γ1(s1) to γ2(s2).

Theorem 26 (E. Hopf Boundary Point Comparison Theorem).
Assume Ω is a half neighborhood, i.e., γ1 extends smoothly across x0. i.e.,
γ1(−ε) = γ2(ε) for ε small and positive.11 Let M be the mean curvature
operator as in Theorem 25. If u and û are defined in a neighborhood of x0,

u ≤ û on Ω,(20)

u(x0) = û(x0),(21)

Mu ≥Mû on Ω,(22)

and

∂u

∂m
(x0) =

∂û

∂m
(x0)

where m is the inward normal to ∂Ω at x0, then u ≡ û on Ω.

Theorem 27 (Serrin’s Corner Comparison Theorem). Assume
γ̇1(0) · γ̇2(0) = 0. If u and û are defined in a neighborhood of x0, (20), (21)
and (22) hold, and

∂u

∂m
(x0)− ∂û

∂m
(x0) = 0 =

∂2u

∂m2
(x0)− ∂2û

∂m2
(x0)

where m is any direction which is non-tangential to ∂Ω and enters Ω at x0,
then u ≡ û on Ω.

(T2) and (T3) touching points are handled by Theorem 26. The additional
condition follows simply from the fact that S and Ŝ are tangent at the point
of touching.

Theorem 27 applies in the (T4) case. The agreement of the first order
directional derivatives follows from the tangency as before, since um(0) =
Du(0) ·m = 0. The second derivative condition is obtained by showing that

11 Here we are assuming that s is an arclength parameter.
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all the second partial derivatives of û and u agree at 0 ∈ TXS.12 Let us
recall the situation from T4 and T4a (see Figure 12). The surface

Figure 12. A (T4) Touching Point.

S is represented as graph u on a neighborhood η = {x : x2 ≥ b(x1)} where
graph b is the projection ψ{β} of the boundary curve {β} onto TXS.13

Assume for definiteness, that ξ = (ρ1, 0, 0) gives the coordinates of 0 ∈ l.
Let us consider the intersection of graph u with Sρ1 , or more precisely, its
projection onto TXS. This is the set

I = {x : |x− ξ|2 + (u(x))2 = ρ2
1}.

Since S is transverse to Sρ1 at 0 ∈ TXS,

∂

∂x1

{|x− ξ|2 + (u(x))2} = 2(x1 − ρ1) + 2uu1,(23)

and
∂

∂x2

{|x− ξ|2 + (u(x))2} = 2x2 + 2uu2,

we see that I is a curve given implicitly as the graph of a function b1(x2) = x1

with b1(0) = 0 = b′1(0).

12Any second directional derivative can be expressed in terms of first and second partial
derivatives.

13Here η is a “half neighborhood” as in Theorem 26, not the “corner domain” given in
T4a.
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Furthermore, since (23) is strictly negative near x = 0, we see that, for a
small enough half neighborhood η of 0,

G− ≡ {(x, u(x)) : x1 ≤ b1(x2)} ⊂ S−(ρ1)

and
G+ ≡ {(x, u(x)) : x1 ≥ b1(x2)} ⊂ S+(ρ1).

Thus, the comparison of u and û makes sense on the corner domain Ω =
{x : x1 ≥ b1(x2) and x2 ≥ b0(x1)}.

If R is the reflection map restricted to TXS, then û is given on Ω by
û = u ◦R.14

Dû = Du ◦DR, and as noted above, this vector vanishes at x = 0. One
also checks, by direct calculation, that û11(0) = u11(0), û12(0) = −u12(0),
and û22(0) = u22(0).15 On the other hand, we can calculate u12(0) along
{β} as follows.

∂

∂x1

[u2(x1, b(x1))]
∣∣∣∣
x=0

= u12(0) + u22(0)b′(0)

= u12(0).

Recall, however, that along this curve the contact angle condition is ex-
pressed by

− cos γ = N ·N ′ =
1√

1 + |Du|2 (−N ′2u2 +N ′3)(24)

where N ′2 ≥ 0 with equality holding if and only if γ = 0 or π. If N ′2 = 0,
then Π = TXS and

u(x1, b(x1)) ≡ 0 = u2(x1, b(x1)) =
∂

∂x1

[u2(x1, b(x1))] .

If N ′2 6= 0, then by differentiating (24) we obtain

N ′2
∂

∂x1

[u2(x1, b(x1))] =
Du · ∂

∂x1
(Du)√

1 + |Du|2 N ′3.

The right hand side of this equation vanishes with Du at x = 0. In either
case, û12(0) = −u12(0) = 0.

For convenience, we state the general principle demonstrated by this ar-
gument.

Lemma 28. Let S be a surface that meets a plane at a constant contact
angle along a portion of its boundary near X ∈ ∂S. If S is expressed as the
graph of a function u on TXS, then u12(0) = 0.

14This replaces the explicit formula û(x) = u(−x1, x2) that arises in planar reflection.
15Notice that D2R plays no role in these calculations due to multiplication by Du(0) = 0.
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We conclude this section with some remarks on the derivation of Theo-
rem 27. As outlined in [7] Theorem 27 is derived from the following.

Lemma 29. Let L be an elliptic linear operator of the form

L =
2∑

i,j=1

aij(x)DiDj +
2∑
j=1

bj(x)Dj + c(x)

with bounded coefficients satisfying aij = aji on the closure of a corner do-
main Ω ∈ R2 as in Theorem 27. We require, furthermore, that for some
constant K > 0, the coefficients satisfy∣∣∣∑ aij(x)γ̇1

i(0)γ̇2
j(0)

∣∣∣ ≤ K|x− x0|(25)

for x ∈ Ω where γj = (γ1
j , γ

2
j) for j = 1, 2.

If u ∈ C2(Ω), u ≥ 0, Lu ≤ 0, and u(x0) = 0 = um(x0) = umm(x0) for
every nontangential direction m, then u ≡ 0 on Ω.

Remark. Serrin [11] proved a similar result under a regularity assumption
on the coefficients which was stricter than (25) and under the hypothesis
that one of the curves γj that bound Ω was a straight line (which is enough
for planar reflection). Gidas, Ni, and Nirenberg [5] relaxed the condition on
the boundary curve and extended the result to corner domains with angle
smaller than π/2 but assumed that the coefficients were C1. By combining
the methods of these two papers, one can obtain the result as stated above.
In fact, if γ̇1(0) = (0, 1) and γ̇2(0) = (1, 0), then one obtains the result under
the condition |a12(x)| ≤ K(|x1|+ |x2|). (25) can easily be shown a sufficient
condition from this case by a change of variables.
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