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RIEMANN SUMS AND MODULAR FUNCTIONS
ON LOCALLY COMPACT GROUPS

Kenneth A. Ross and George Willis

Dedicated to the memory of Karl Stromberg (1931-1994)

In 1967 the first author and Karl Stromberg published a
theorem concerning generalized limits of Riemann sums on lo-
cally compact groups. The setting is a locally compact group
G and an increasing sequence Hn of closed subgroups whose
union is dense in G. The theorem was shown to hold provided
that the restriction of the modular function on G to Hn agrees
with the modular function of Hn for all large n. This hypoth-
esis holds in many cases and, in fact, Ross and Stromberg
were unable to determine whether the hypothesis was really
needed for the theorem or even whether this hypothesis al-
ways holds. An example is provided which shows that this
hypothesis does not always hold. It is then shown that the
theorem fails without the hypothesis.

In 1967 the first author and Karl Stromberg [R&S] proved a generaliza-
tion of Jessen’s theorem [J] on Riemann sums as follows. Let {Hn} be an
increasing sequence of closed subgroups of a locally compact group G whose
union is dense in G. For each n, let ∆n and λn denote the modular function
and left Haar measure on Hn. Similarly, let ∆ and λ denote the modular
function and left Haar measure on G. Then Theorem 1 in [R&S] shows that
the measures λn can be normalised so that limn

∫
Hn
fdλn =

∫
G fdλ for all

continuous functions on G with compact support. For a function f on G
and x in G, let xf denote the translation defined by xf(y) = f(xy) for y in
G.

Theorem (Jessen; Ross and Stromberg). If

(P) the restriction of ∆ to Hn agrees with ∆n for all large n,

then for every f in L1(G,λ)

lim
n

∫
Hn

xfdλn =
∫
G

fdλ

for λ locally almost all x in G.
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The key tool in proving the theorem was a theorem of Edwards and Hewitt
[E&H] on pointwise limits of sublinear operators whose ranges are families of
measurable functions. One of the hypotheses of the Edwards-Hewitt theorem
translated to the requirement that, for some n0, supn≥n0

∫
Hn x

fdλn < ∞
locally almost everywhere for all non-negative integrable functions f on G.
The hypothesis (P) was only needed in order to verify this.

Property (P) holds if the Hn’s are unimodular (hence if they are abelian,
compact or discrete) or if the Hn’s are open subgroups or normal subgroups.
It was not determined whether hypothesis (P) was needed in the theorem nor
whether property (P) can ever fail. The authors wrote, “It seems unlikely
that (P) must hold, but the authors unfortunately have not been able to
produce an example to settle this question.” After 28 years, the second
author provided an example to show that (P) can fail and the first author
observed that the theorem must fail without the presence of (P).

The example is a totally disconnected group and the next couple of para-
graphs discuss property (P) for such groups. The remainder of the paper
gives the example and the explanation of why the theorem fails.

Theorem 4 in [R&S] asserts that, if F is a compact subset of one of the
closed subgroups, Hm say, of G, then

(1) lim
n

∆n(x) = ∆(x)

uniformly for x in F . In the case of totally disconnected groups a sharper
conclusion can be made. It is shown in [W2] that, if G is totally discon-
nected, there is an n0 ≥ m such that

(2) ∆n(x) = ∆(x)

for every x in F and every n ≥ n0. The proof makes use of the scale function
of a totally disconnected group G, which is shown to exist in [W1]. The scale
function, s, is a continuous function on G which takes positive integer values
and satisfies

(3) ∆(x) = s(x)s(x−1)−1

for every x in G. It is shown in [W2] that, for each x in G, the sequence
{sn(x)}∞n=1 is constant after finitely many terms and that this convergence
occurs uniformly for x in compact subsets of G. This fact, together with
(1) and (3), implies (2). Note that, although sn(x) becomes constant as
n increases, it does not necessarily become equal to s(x); see [W2] for an
example.

If Hm is compactly generated, then (2) implies that ∆n|Hm = ∆|Hm for all
sufficiently large n. At first glance, this seems to be very close to saying that
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the condition (P) is satisfied. However the apparently slight gap between
this statement and condition (P) cannot be closed as the example below
shows. These remarks serve to indicate what a group which fails to satisfy
(P) must be like and indeed in the example, ∆n+1|Hn = ∆|Hn for all n but
∆n|Hn 6= ∆|Hn .

The Group and Subgroups.

In the following description of the example, Z2 denotes the group {0, 1} with
addition modulo 2. Let N be the set of functions

h : Z× N→ Z2 : (i, j) 7→ hij

such that hij = 1 for only finitely many (i, j) with i ≤ 0. In other words, h
belongs to N if there are p in Z and q in N, depending on h, such that

hij = 0 if i < p or if i ≤ 0 and j > q.

Then N becomes an abelian group when equipped with pointwise addition.
Let K be the subgroup

K = {h ∈ N : hij = 0 if i ≤ 0}
and for each finite subset, F , of N× N let

UF = {h ∈ K : hij = 0 if (i, j) ∈ F}.
Then {h+UF : h ∈ N ; F a finite subset of N×N} is a base of neighbourhoods
for a topology on N which makes N a topological group. With respect to
this topology, K is a compact, open subgroup of N . K is compact because
it is just the infinite product of finite groups, that is, K = ΠN×NZ2 with the
product topology. The quotient group N/K is discrete and is isomorphic to
the direct sum of countably many copies of Z2.

For each p in N define αp : N → N by

(αp(h))ij =

{
hi+1 j, if j = p

hij, if j 6= p
.

Then αp is a continuous automorphism of N and the αp’s commute with
each other. Let A = ⊕p>0Z be the direct sum of copies of the group of
integers and denote elements of A by k = (k1, k2, k3, . . . ), where kp is an
integer and kp 6= 0 for only finitely many p’s. A will be equipped with the
discrete topology. Define a homomorphism α : A→ Aut(N) by

α(k1, k2, k3, . . . ) = αk1
1 α

k2
2 α

k3
3 . . . .
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The apparently infinite product on the right hand side makes sense because
only finitely many of the exponents are non-zero. This product will also be
denoted αk. Finally, define G to be the semi-direct product

G = A×α N.

The automorphisms αp are regarded as belonging to G, and N is regarded
as being a subgroup of G. Then the base of neighbourhoods of the identity
in N described above is also a base of neighbourhoods of the identity in G.
General elements of G have the form αkh and the product of two elements
αmg and αkh is

αmgαkh = αm+k
(
αk(g) + h

)
.

For each n ≥ 1 let Nn be the closed subgroup of N

Nn = {h ∈ N : hij = 0 if j > n}

and let Kn = Nn ∩ K. Then
⋃∞
n=1Kn is dense in K because K has the

product topology. It is also clear that
⋃∞
n=1Nn is dense in N . Since K

is an open subgroup of N , it follows that N =
⋃∞
n=1Nn + K. Let Hn be

the closed subgroup of G generated by Nn and α1, α2, . . . , αn, αn+1. Then
H =

⋃∞
n=1Hn is dense in G. Since K is an open subgroup of G, it follows

that G is equal to the increasing unions

(4) G =
∞⋃
n=1

HnK =
∞⋃
n=1

KHn.

For each natural number p we have

(5) α−1
p Kαp = αp(K) = K ∪ (h(p) +K),

where

h
(p)
ij =

{
1, if i = 0 and j = p

0, otherwise.

Hence HnK is not a subgroup of G for any n. For the same reason αn+1

does not belong to Z(G), the centre of G. Note however that, for each n,
αn+1 does belong to Z(Hn). This observation is the key to the example.

Haar Measures and Modular Functions.

Let λ be the left invariant Haar measure on G, normalised so that λ(K) = 1.
Since G is the disjoint union of K-cosets, in order to describe the Haar
measure on G it suffices to describe its restriction to K. Since K is an
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infinite product of copies of Z2 = {0, 1}, its invariant measure is the product
of copies of the measure 1

2
δ0 + 1

2
δ1 on Z2.

The modular function on G is given by ∆(x) = λ(Kx)/λ(K) = λ(x−1Kx).
Since N is abelian and K is a subgroup of N , ∆(h) = 1 for every h in N .
It follows from (5) that, for each natural number p, ∆(αp) = λ(α−1

p Kαp) =
λ(K) + λ(h(p) +K) = 2. For a general element of G we therefore have

(6) ∆(αkh) = 2σ(k),

where σ(k) = k1 + k2 + k3 + · · · .
Denote the modular function on Hn by ∆n. For p ≤ n a similar argument

to the one given above shows that

α−1
p Knαp = αp(Kn) = Kn ∪

(
h(p) +Kn

)
,

so that ∆n(αp) = 2. However, since αn+1 belongs to Z(Hn), it follows that
∆n(αn+1) = 1. Hence ∆n is not equal to the restriction of ∆ to Hn for any
n, and hypothesis (P) fails in this example. For αkh in Hn we have

(7) ∆n(αkh) = 2σn(k),

where σn(k) = k1 + k2 + k3 + · · ·+ kn = σ(k)− kn+1.

A Counterexample to the Extension of Jessen’s Theorem.

In order to show that Jessen’s Theorem cannot be extended to the group G
it suffices to exhibit a function f1 in L1(G,λ) such that

(8) sup
n

∫
Hn

xf1dλn =∞

for all x in G, where the measures λn are normalised as in [R&S]. This will
show that Lemma 3 in [R&S] also fails in this example. In fact, we show
that such a function f1 exists whenever the hypothesis (P) fails. Thus we
suppose only that

(P′) ∆|Hn 6= ∆n for infinitely many n.

To obtain (8), we lose no generality in assuming that

(9) ∆|Hn 6= ∆n for all n.

Let f0 be any nonzero continuous function with compact support satisfy-
ing 0 ≤ f0 ≤ 1 on G. Let V be any symmetric neighbourhood of the identity
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having compact closure, and let W = V · supp(f0). Observe that W has
compact closure and that

(10) 0 ≤ f0 ≤ vIW for all v in W,

where IW denotes the characteristic function of W .
For each n,∆n/∆ is a nontrivial homomorphism of Hn into the group of

positive real numbers. Thus there exists yn inHn so that ∆n(yn) > 4n·∆(yn).
Let Bn = Wyn and define

f1 =
∞∑
k=1

2−k∆(yk)−1IBk .

Then f1 is a non-negative function and∫
G

f1dλ =
∞∑
k=1

2−k∆(yk)−1λ(Bk) =
∞∑
k=1

2−k∆(yk)−1λ(W )∆(yk)

= λ(W ) <∞.

Hence f1 belongs to L1(G,λ).

To see that (8) holds, consider x in G. Since G
∞⋃
n=1

V Hn, we can write

x = vz where v is in V and z is in Hn for sufficiently large n. For all n, we
have ∫

Hn
xf1(y)dλn(y) ≥ 2−n∆(yn)−1

∫
Hn

IBn(xy)dλn(y).

For large n, by the invariance of λn under left translation by z, we have∫
Hn

IBn(xy)dλn(y) =
∫
Hn

IBn(vzy)dλn(y) =
∫
Hn

IBn(vy)dλn(y).

For y in Hn we have by (10)

IBn(vy) = IWyn(vy) = vIW (yy−1
n ) ≥ f0(yy−1

n ).

Therefore for large n∫
Hn

IBn(xy)dλn(y) ≥
∫
Hn

f0(yy−1
n )dλn(y) = ∆n(yn)

∫
Hn

f0dλn

and ∫
Hn

xf1(y)dλn(y) ≥ 2−n∆(yn)−1∆n(yn)
∫
Hn

f0dλn > 2n
∫
Hn

f0dλn.
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Since limn

∫
Hn
f0dλn =

∫
G f0dλ > 0, we see that (8) holds.

Thus Jessen’s Theorem does not extend to any locally compact group G,
and subgroups Hn, that do not satisfy hypothesis (P). In the example, one
can take f0 = IK and V = K, so that W = K.
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