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TRANSITION OPERATORS, GROUPS, NORMS,
AND SPECTRAL RADII

Laurent Saloff-Coste and Wolfgang Woess

Let P be a transition operator over a countable set which is
invariant under the action of a locally compact group G with
compact point stabilizers. We give upper bounds for the norm
and spectral radius of P acting on `s(X,µ), where 1 < s < ∞
and µ is a measure on X satisfying a compatibility condition
with respect to G. When G is amenable, our inequalities
become equalities involving the modular function of G. When
G, besides being amenable, acts with finitely many orbits then
this allows easy computation of norms and spectral radii via
reduction to a finite matrix. For unimodular groups there
are further simplifications. A variety of examples is given,
including the (linear) buildings of type Ãn−1 associated with
PGL(n,F) over a local field F. These results extend previous
work of Soardi and Woess, Salvatori, and Saloff-Coste and
Woess, where only reversible Markov operators and the case
s = 2 were studied.

1. Introduction.

The papers by Soardi and Woess [20], Salvatori [16] and Saloff-Coste and
Woess [15] develop a technique to compute the convergence radius ρ of dis-
crete reversible Markov chains which are invariant under the action of an
amenable, non necessarily discrete and typically nonunimodular group. For
a discrete, irreducible transition matrix P with kernel p(x, y), x, y ∈ X, the
convergence radius ρ = ρ(P ) is defined by

ρ(P ) = lim sup
n→+∞

[
p(n)(x, y)

]1/n
where (x, y) is any fixed pair of points in X × X. If P is reversible with
respect to a measure µ on X then ρ = ‖P‖2→2 = limn→+∞ ‖P n‖1/n2→2 where
the norm is taken with respect to the space `2(X,µ).

In [15], under the assumption that there is an amenable group G acting
on X with (typically finite) quotient I and such that p(gx, gy) = p(x, y) for
all g ∈ G, x, y ∈ X, we reduced the computation of ρ to that of the spectral
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radius of a symmetric matrix with rows and columns indexed by I. The
transitive case where I is a singleton had previously been studied in [20].

The aim of the present paper is to extend these results in two directions.
First, we shall consider non-reversible chains. Second, we aim to compute the
operator norms and spectral radii of P acting on `s(X,µ), where 1 < s < +∞
and µ is any “reasonable” measure on X. (We shall see examples with more
than one choice for µ.) That is, we shall try to compute the quantities

σs(P ) = ‖P‖s→s = sup
‖f‖s≤1

‖Pf‖s and ρs(P ) = lim
n→+∞ ‖P

n‖1/ns→s.

In fact, we shall work with operators P associated with nonnegative kernels
p, assuming only that

∑
y p(x, y) < +∞.

To put in perspective the approach developed here, let us review briefly
the other methods available to compute some of these quantities.

The most typical approach consists in computing the convergence ra-
dius ρ(P ) by studying the singularities of the Green function g(x, y|z) =∑∞
n=0 p

(n)(x, y)zn: one looks for an exact closed formula for the Green func-
tion via combinatorical considerations and a functional equation. See for
instance the survey by Mohar and Woess [12]. When it works, this method
not only gives ρ(P ) but often also yields a more precise description of the
behavior of p(n) (i.e., local limit theorems). When P is reversible with re-
spect to µ, this gives σ2(P, µ) = ρ2(P, µ) because these are equal to ρ(P ),
but yields no information concerning ρs or σs, s 6= 2.

Another approach available that yields exact values for ρs in rather spe-
cific cases consists in using sophisticated information concerning the relevant
harmonic analysis, e.g., the theory of group representions and more or less
explicit formulas for spherical functions. When applicable, this method offers
deep insight on the objects involved. In particular, a complete description
of the `s spectrum may be available through this approach; see for instance
Figà-Talamanca and Picardello [7] or Cartwright, M lotkowski and Steger
[4, 5]. Further references can be found in these papers and in [12]. It is not
clear to us what the machinery of representation theory says about whether
or not ρs = σs and about computing σs when ρs 6= σs. More recently, a
more C∗-algebraic approach is due to de la Harpe, Robertson and Valette
[9], which yields good informations on the `2-spectrum in several cases of
finitely generated groups.

The present work provides a simple combinatorial technique to compute
both ρs and σs. The class of examples for which our method and results
apply is closely related to the class of examples where the Green function
and / or the representation techniques apply. Roughly, all these techniques
require a tree like (or building like) structure.
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We are able to identify a large class of examples where ρs = σs (all graphs
on which an amenable group acts transitively, see Theorem 3.1). We also
give many examples where ρs 6= σs and where computations of both these
numbers are feasible. Let us emphazise here that exact formulas for σs are
seldom available even when ρs is known. This is not surprising since, for
a two by two matrix M , computing ρs(M) is essentially trivial (it amounts
to solving a quadratic equation) but computing the exact value of σs(M) is
hard (if not impossible) in general.

Let us now recall some well known facts about σs and ρs. Clearly, ρs ≤ σs.
It may well happen that ρs < σs and, in general, these are non-constant
functions of s. We always have

σ1(P ) = sup
y

∑
x

µ(x)
µ(y)

p(x, y) and σ∞(P ) = sup
x

∑
y

p(x, y).

Interpolation yields
σs ≤ σθrσ1−θ

t

where 1/s = θ/r+ (1− θ)/t, r ≤ s ≤ t. Duality shows that for s′ defined by
1/s+ 1/s′ = 1 (1 ≤ s, s′ ≤ +∞),

σs(P, µ) = σs′(P ∗, µ).

If P is self-adjoint with respect to µ (that is, (P, µ) is reversible), this yields
σs′ = σs. By interpolation, it follows that σs is minimal at s = 2 in this case.
In general, σs can be minimal for s 6= 2. All these facts are also satisfied
by the ρt’s. Note also that when P is not reversible with respect to µ, the
convergence radius ρ(P ) may well be strictly smaller than ρ2 and even smaller
than the smallest ρs. Vere-Jones’ papers [22, 23] contain useful information
concerning operators given by nonnegative kernels and their spectral theory.
For instance, Vere-Jones notes that ρs(P ) belongs to the `s-spectrum of P
(see also Schaefer [17]). We will use this fact in §4.

One of our basic tools will be the relation between norms and spectral
radii of convolution operators and amenability of locally compact groups.

Let G be a locally compact group with left Haar measure dg. Let q be a
bounded Borel measure on G and write Lq for the associated left convolution
operator:

Lqf(g) =
∫
G

f(h−1g) dq(h) = q ? f(g)

for any compactly supported continous function f . Let q(G) denote the total
mass of q and consider the norm ‖Lq‖s→s = sup{‖Lqf‖s : ‖f‖s ≤ 1} , where
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‖f‖ss =
∫
G |f(g)|s dg. Also, let supp(q) denote the support of q.

Theorem 1.1 (Berg-Christensen [2, 3]). Fix 1 < s < +∞. Then
(i) ‖Q‖s→s = q(G) if and only if the closed subgroup generated by

supp(q) supp(q)−1 is amenable.
(ii) lim

n→∞ ‖Q
n‖1/ns→s = q(G) if and only if the closed subgroup generated by

supp(q) is amenable.

The case where s = 2 is explicitly stated in [3]. The case where 1 < s <∞
follows easily by interpolation using the fact that one always has ‖Q‖1→1 =
‖Q‖∞→∞ = q(G). Earlier references can be found in [2, 3].

This paper is organized as follows. In §2, we study norms of transition
operators between two discrete homogeneous spaces of the same group G
and extend the method of [20, 15] of lifting such operators to a convolution
operator over G (Proposition 2.1). We use this to relate the norms with
amenability and with the modular function of the group.

In §3, we specialize the results of §2 to group invariant transition operators
on one homogeneous space, thereby extending the results of [20]. We give
a first collection of examples of random walks on graphs where our method
allows explicit computation of norms and / or spectral radii.

In §4, we consider transition operators on a discrete set which are invariant
under a group acting with finitely many orbits. Letting each pair of orbits
play the role of the two homogeneous spaces in §2, in the amenable case
we can reduce computations to a finite matrix. This extends the results of
[15]. Our examples comprise certain random walks on discrete, nonamenable
groups where it is possible to find an amenable, nondiscrete group acting
with finitely many orbits.

It is worthwhile noting that a good part of the methods used here is not
restricted to groups acting on discrete sets (graphs). We shall consider the
continuous setting in future work.

The authors acknowledge very helpful discussions on linear buildings with
D.I. Cartwright and T. Steger.

2. Norms of operators between homogeneous spaces.

Let X,Y be two discrete, countable sets on which a locally compact group G
acts continuously and transitively with compact point stabilizers. Through-
out this paper, dg denotes a fixed left Haar measure on G. Given any x ∈ X,
its stabilizer in G is open and compact, so that its measure |Gx| is positive
and finite. In particular, the restriction of dg to Gx is a (left and right) Haar
measure on Gx (this is a special feature of discrete homogeneous spaces).
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X can be identified with G/Gx in a canonical way, and for any integrable
function f on G, we have∫

G

f(g) dg =
∑
z∈X

∫
Gx

f(gzh) dh,

where, for each z, gz is any element of G which is sends x to z. We shall use
analogous notation for Y . Let µ and ν be positive measures on X and Y ,
respectively, such that, for all x ∈ X and all y ∈ Y ,

µ(gx)/µ(x) = ν(gy)/ν(y).(2.1)

Let P be a transition operator from X to Y , given by

Pf(x) =
∑
y∈Y

p(x, y)f(y)

with kernel p(x, y), x ∈ X, y ∈ Y . Thus, P transforms any function f : Y →
R with finite support into a function Pf : X → R. Assume that

p(x, y) ≥ 0,
∑
y∈Y

p(x, y) < +∞ and p(gx, gy) = p(x, y)

for all x, y and for all g ∈ G. We want to compute the norm ‖P‖s→s of P
from `s(Y, ν) to `s(X,µ). Define

ps(x, y) = µ(x)1/sp(x, y)ν(y)−1/s,

Φ[Q](g) = Φ(g) = 1
|Gy0 |

p(x0, g
−1y0),

Φs[Q](g) = Φs(g) = 1
|Gy0 |

ps(x0, g
−1y0),

(2.2)

where g ∈ G and x0 ∈ X, y0 ∈ Y are chosen once for all as “origins” in X
and Y , respectively. Observe that (2.1) implies that also ps is a G-invariant
kernel. Let Rv : u 7→ u ? v be the operator of convolution by v on the right,
where

u ? v(g) =
∫
G

u(h)v(h−1g) dh =
∫
G

u(gh)v(h−1) dh,

and denote by ‖Rv‖s→t the norm of this operator from Ls(G) to Lt(G).

Proposition 2.1. If P is G-invariant from `s(Y, ν) to `s(X,µ) and (2.1)
holds then

‖P‖s→s =
( |Gy0 |
|Gx0 |

)1/s

‖RΦs‖s→s.
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Proof. To start, assume that µ and ν are the counting measures on X and
Y , respectively. In this case, (2.1) holds and Φ = Φs does not depend on s.
Define SX : Ls(G)→ `s(X) by

SXu(x) =
1
|Gx0 |

∫
{g∈G : gx0=x}

u(g) dg(2.3)

and TX : `s(X)→ Ls(G) by

TXf(g) = f(gx0).(2.4)

Then we have

‖SX‖s→s ≤ |Gx0 |−1/s, ‖TX‖s→s = |Gx0 |1/s,

and
P = SXRΦTY and RΦ = TXPSY .

Indeed,

SXRΦTY f(x) =
1
|Gx0 |

∫
{g∈G : gx0=x}

∫
G

f(hy0)Φ(h−1g) dh dg

=
1

|Gx0 ||Gy0 |
∫
{g∈G : gx0=x}

∫
G

f(hy0)p(x0, g
−1hy0) dh dg

=
∑
y∈Y

p(x, y)f(y) = Pf(x).

A similar argument yields RΦ = TXPSY , compare with [20]. This clearly
proves the proposition when µ and ν are the counting measures on X and
Y , respectively.

In general, we consider the operator Ps associated with the kernel ps.
Since ps is invariant under the action of G, we can apply the result we just
proved, which shows that (|Gy0 |/|Gx0 |)1/s ‖RΦs‖s→s is the norm of Ps from
`s(Y ) to `s(X) with respect to the counting measures. By construction, this
is equal to ‖P‖s→s.

Proposition 2.1 is a special case of a more general result worth noting. Let
us drop the assumption that p is invariant, and let µ, ν be arbitrary fixed
measures on X,Y . Then we can compute the norm ‖P‖s→t of the operator
P from `s(Y, ν) to `t(X,µ) as

‖P‖s→t =

(
|Gy0 |1/s
|Gx0 |1/t

)
‖Ks,t‖s→t,
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where Ks,t is the operator associated with the kernel

ks,t(h, g) =
1
|Gy0 |

µ(hx0)1/tp(hx0, gy0)ν(gy0)−1/s

on G × G. Here, the norms on G are taken with respect to the fixed left
Haar measure. In general, Ks,t is not a convolution operator, even when p
is invariant. However, it is a convolution operator when p is invariant, µ, ν
are related by (2.1), and s = t, or also when p is invariant and µ and ν are
constant:

Lemma 2.2. Assume that µ and ν are proportional to the counting mea-
sures on X and Y , respectively. Then, for any invariant kernel p,

‖P‖s→t =
( |Gy0 |
ν(y0)

)1/s (
µ(x0)
|Gx0 |

)1/t

‖RΦ‖s→t.

We now use Proposition 2.1 to compute norms when G is amenable. To
this end, we need the modular function ∆ : G → ]0,+∞[ . This is the
function (a multiplicative homomorphism) which carries left Haar measure
to right Haar measure on G. It satisfies |Ug| = ∆(g)|U | for any measurable
set U ⊂ G and ∫

G

f(g) dg =
∫
G

f(g−1)∆(g−1) dg.(2.5)

For any function u ∈ L1(G), we denote by Lu the operator of convolution
on the left by u (i.e., Luf = u ? f). A well known argument (see e.g. Hewitt
and Ross [10]) shows that

‖Ru‖s→s = ‖Lũs‖s→s ≤
∫
G

∆(g)−1/s|u(g−1)| dg,(2.6)

where ũs = ∆(g)−1/su(g−1). Moreover, when G is amenable,

‖Lu‖s→s =
∫
G

|u(g)| dg for any u ∈ L1(G).

Proposition 2.3. Let X, Y be two countable sets on which a locally compact
group G acts transitively and continuously with compact stabilizers. Let µ
and ν be positive measures on X and Y , respectively, which satisfy (2.1). Let
p(x, y), (x, y) ∈ X×Y be an invariant nonnegative kernel. Fix 1 ≤ s ≤ +∞.
Then

‖P‖s→s ≤
(
µ(x0)
|Gx0 |

)1/s∑
y∈Y

( |Gy|
ν(y)

)1/s

p(x0, y).

Furthermore, define S = S(P ) ⊂ G by S = {g ∈ G : p(x0, gy0) > 0}. Then
the above inequality is an equality if and only if the group generated by SS−1

is amenable.
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Proof. By Proposition 2.1 and (2.6) we have

‖P‖s→s ≤
( |Gy0 |
|Gx0 |

)1/s 1
|Gy0 |

∫
G

∆(g)−1/s

(
µ(x0)
ν(gy0)

)1/s

p(x0, gy0) dg.

By definition of the modular function, we have

∆(g)|Ggy0 | = ∆(g)|gGy0g
−1| = |Gy0 |

and this gives the proposed inequality. The last statement follows from
Theorem 1.1, Proposition 2.1 and the above computation.

While Proposition 2.3 links the norms of P with amenability, we now want
to discuss unimodularity (that is, ∆ ≡ 1). Let us introduce some notation.
Set

σs(P ) = σs(P, µ, ν) = ‖P‖s→s .(2.7)

Write

as(P ) = as(P, µ, ν) =
(
µ(x0)
|Gx0 |

)1/s∑
y∈Y

( |Gy|
ν(y)

)1/s

p(x0, y)(2.8)

=
( |Gy0 |
|Gx0 |

)1/s 1
|Gy0 |

∫
G

∆(g)−1/s

(
µ(x0)
ν(gy0)

)1/s

p(x0, gy0) dg

for the upper bound in Proposition 2.3. Define P ∗, the (formal) adjoint of
P , by setting

∀ u ∈ `0(Y ), v ∈ `0(X) 〈Pu, v〉µ = 〈u, P ∗v〉ν ,
where `0(·) denotes finitely supported functions and each inner product is
weighted with the respective measure. The kernel p∗ of P ∗ is

p∗(y, x) =
µ(x)
ν(y)

p(x, y)

which is invariant by (2.1). Observe that p∗ depends also on µ and ν. Now
consider

b(P ) =
∑
y∈Y

p(x0, y) and b(P ∗) = b(P ∗, ν, µ) =
∑
x∈X

µ(x)
ν(y0)

p(x, y0).

(2.9)

Note that
b(P ) = σ∞(P ) , b(P ∗) = σ1(P )
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and

as(P ) = as′(P ∗),(2.10)

where s′ is defined as usual by 1/s+ 1/s′ = 1. To see (2.10), write

as(P ) =
( |Gy0 |
|Gx0 |

)1/s 1
|Gy0 |

∫
G

∆(g)−1/s

(
µ(x0)
ν(gy0)

)1/s

p(x0, gy0) dg

=
( |Gx0 |
|Gy0 |

)1−1/s 1
|Gx0 |

·
∫
G

∆(g−1)−(1−1/s)

(
µ(y0)

ν(g−1x0)

)1−1/s

p∗(y0, g
−1x0)∆(g−1) dg

= as′(P ∗),

where (2.5) has been used in the last identity.

Proposition 2.4. Let X,Y,G, P, µ, ν be as in Proposition 2.3. Then

as(P ) ≤ b(P )1/s′ b(P ∗)1/s

and the following properties are equivalent:
(1) as(P ) = b(P )1/s′ b(P ∗)1/s.

(2) There exists a constant c > 0 such that ∆(g) = cµ(x0)/ν(gy0) for all
g ∈ S = S(P ).

(3) ∆(g) = µ(y0)/µ(gy0) for all g in the closed subgroup generated by
SS−1.

Proof. We have

as(P ) =
1

|Gx0 |1/s
1

|Gy0 |1/s′
∫
G

∆(g)−1/s

(
µ(x0)
ν(gy0)

)1/s

p(x0, gy0) dg

=
1

|Gx0 |1/s
1

|Gy0 |1/s′
∫
G

[
∆(g−1)p∗(gy0, x0)

]1/s
p(x0, gy0)1/s′ dg.

Now, Hölder’s inequality and (2.5) yield

as(P ) ≤
(

1
|Gx0 |

∫
G

p∗(y0, gx0) dg
)1/s ( 1

|Gy0 |
∫
G

p(x0, gy0) dg
)1/s′

= b(P )1/s′b(P ∗)1/s,

with equality if and only if ∆(g)−1p∗(gy0, x0) and p(x0, gy0) are constant
multiples of each other, that is, ∆(g)ν(gy0) = c µ(x0) for some positive
constant c and all g ∈ S. The other equivalences easily follow.
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There is an analogous result of this type worth noting here. Set

bs(P ) = bs(P, µ, ν) = b(Ps) =
∑
y∈Y

p(x0, y)
(
µ(x0)
ν(y)

)1/s

.(2.11)

Note that as(P, µ, ν) = as(Ps), the latter taken with respect to the counting
measures. Also, p∗s′(gy0, x0) = ps(x0, gy0) and hence

bs′(P ∗) = bs′(P ∗, ν, µ) = b(P ∗s ) =
∑
x∈X

p(x, y0)
(
µ(x)
ν(y0)

)1/s

.

Applying Proposition 2.4 to Ps and the counting measures on X and Y , we
obtain the following.

Corollary 2.5. One always has as(P ) ≤ bs(P, µ, ν)1/s′ bs′(P ∗, ν, µ)1/s. Equ-
ality holds if and only if there exists c > 0 such that ∆(g) = c for all g ∈ S,
i.e., if and only if the closed subgroup generated by SS−1 is unimodular.

A final simple observation will be crucial in the sequel. Let X,Y, Z be
three countable sets on which the locally compact group G acts continu-
ously and transitively with compact point stabilizers. Let µ, ν, ξ be positive
measures on X,Y, Z, respectively, such that µ, ν and ν, ξ satisfy (2.1). Fix
origins x0 ∈ X0, y0 ∈ Y0, z0 ∈ Z0. Let P : `s(Y, ν) → `s(X,µ) be a G-
invariant operator with kernel p(x, y) > 0 satisfying

∑
y p(x, y) < +∞. Also,

let Q : `s(Z, ξ) → `s(Y, ν) be a G-invariant operator with kernel q(y, z) > 0
satisfying

∑
z q(y, z) < +∞. Consider Φ[P ], Φs[P ], Φ[Q] and Φs[Q], as de-

fined by (2.2). Then the following relations follow easily from the definitions
(2.2), (2.8), (2.9) and (2.11).

Lemma 2.6. Under the above hypotheses and notation,

Φ[PQ] = Φ[Q] ? Φ[P ] and Φs[PQ] = Φs[Q] ? Φs[P ] .

Moreover,

as(PQ) = as(Q)as(P ), b(PQ) = b(Q)b(P ) and bs(PQ) = bs(Q)bs(P ).

3. Invariant Markov chains: The transitive case.

This section specializes the previous considerations to the case where X = Y
and Pf =

∑
y p(x, y)f(y) is a Markov operator, i.e., p(x, y) ≥ 0,

∑
y p(x, y) =

1 (this last condition is merely a normalization here since p is invariant and



TRANSITION OPERATORS 343

G acts transitively). The results described below are more or less implicit
in [20] (for s = 2) but it seems worth stating them more explicitly.

Assume as above that there exists a locally compact group G which acts
continuously and transitively on X with compact point stabilizers and such
that p is invariant under the action of G (i.e, p(gx, gy) = p(x, y)). Instead
of two measures we only need one (ν = µ). Assume also that (2.1) holds,
that is,

µ(gx)/µ(x) = µ(gy)/µ(y) for all g ∈ G and all x, y ∈ X.(3.1)

We say that P is irreducible if for all x, y ∈ X, there exists n such that the
kernel of P n satisfies p(n)(x, y) > 0. Irreducibility implies that

S = {g ∈ G : p(x0, gx0) > 0}

satisfies
⋃
n S

n = G. Here, x0 (= y0) is our fixed origin in X. When P is ir-
reducible and µ is an invariant mesure for P (that is, µ(y) =

∑
x µ(x)p(x, y))

then (3.1) is automatically satisfied.
In addition to the quantities σs(P, µ) = ‖P‖s→s, as(P, µ), b(P ) = 1,

b(P ∗, µ) and bs(P, µ) introduced in Section 2 (obviously, here we omit ν
in our notation), define

ρs(P ) = ρs(P, µ) = lim
n→+∞ ‖P

n‖1/ns→s.(3.2)

Now fix 1 < s < +∞.

Theorem 3.1.
(1) If the Markov operator P is G-invariant, G acts transitively on X and

(3.1) holds, then
σs(P, µ) ≤ as(P, µ).

Equality holds if and only if the closed subgroup of G generated by SS−1

is amenable.
(2) Also,

ρs(P, µ) ≤ as(P, µ),

and equality holds if and only if the closed subgroup generated by S
is amenable. In particular, if the closed subgroup generated by S is
amenable, then

σs(P, µ) = ρs(P, µ) = as(P, µ) =
(
µ(x0)
|Gx0 |

)1/s∑
y∈Y

( |Gy|
µ(y)

)1/s

p(x0, y).

(3.3)
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(3) Furthermore,
as(P, µ) ≤ b(P ∗, µ)1/s.

This is an equality if and only if ∆(g) = µ(x0)/µ(gx0) for all g in the
closed subgroup generated by SS−1. If P is irreducible, equality holds
if and only if ∆(g) = µ(x0)/µ(gx0) for all g ∈ G.

(4) Finally,
as(P, µ) ≤ bs(P, µ)1/s′ bs′(P ∗, µ)1/s,

and equality holds if and only if the closed subgroup generated by SS−1

is unimodular. If P is irreducible, equality holds if and only if G is
unimodular.

Proof. Parts (1), (3) and (4) follow immediately from the results of Section
2. For (3) and (4), in the irreducible case, write id = g1 . . . gk with gi ∈ S
to show that the constant c of Proposition 2.4 and Corollary 2.5 must be
equal to 1. Part (2) uses Lemma 2.6, which yields as(P n) = [as(P )]n, and
Theorem 1.1.

Example 1: The homogeneous tree. This is the basic and most typical
example of a graph where an amenable, nonunimodular group acts transi-
tively. Let Tr (r ≥ 2) denote the homogeneous tree where each vertex has
exactly r + 1 neighbours. Choose one end ω0 of the tree and draw the tree
as a layer of horocycles with ω0 on top of the picture and all the other ends
at the bottom of the picture (see Figure 1).
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Figure 1. The tree T2.
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Let G be the subroup of the automorphism group of the Tr which fixes ω0.
This is an amenable, nonunimodular group, see Nebbia [13] and [20]. For
any x ∈ Tr, let x− be the neighbour of x which is on the geodesic from x to
ω0. Besides, x has r neighbours y1, · · · , yr such that y−i = x. It is not hard
to see [20] that

∆(g) =
|Gx|
|Ggx| =

{
1/r if gx = x−

r if gx = yi, 1 ≤ i ≤ r.

Consider the invariant kernel p given by

p(x−, x) = α, p(x, x−) = β, where rα+ β = 1, α, β ≥ 0.

We will consider P as an operator acting on the `s spaces with respect to
three different measures.

(1) To start, let us work with the counting mesure. Since G is amenable,
we can compute

ρs(P ) = σs(P ) = as(P ) =
∑
y∈Y

( |Gy|
|Gx|

)1/s

p(x, y) = r1/sβ + r1/s′α.

In the case α = β = 1/(r + 1), P is the simple random walk, and we find
the well known values

a2(P ) =
2
√
r

r + 1
and as(P ) =

r1/s + r1/s′

r + 1
.

In this case the minimum of the as(P ) is attained at s = 2. Indeed, P is
symmetric and thus reversible with respect to the counting measure. When
α 6= β, this is not true, nor is the counting measure invariant for P . The
minimum of as(P ) for s ∈ R is attained at s = s0 = 2 (1 + logr(α/β))−1

where logr(t) = log(t)/ log(r). This minimum is 2
√
rαβ. Observe however

that s0 does not always belong to [1,+∞]. When s0 /∈ [1,+∞], that is, when
α/β /∈ ]1/r, r], the minimum on [1,+∞] is taken at s = 1 and is equal to
b(P ∗) = α+ rβ.

(2) Consider now the measure

ν(x) = r−n if x ∈ Hn ,

where Hn, n ∈ Z, denotes the horocycle at level n with respect to our fixed
origin x0 ∈ H0. This measure is invariant for P and satisfies

∆(g) = ν(x0)/ν(gx0).
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Thus, for all s,

ρs(P, ν) = σs(P, ν) = as(P, ν) = b(P ∗, ν)1/s = 1.

(3) Finally, when α, β 6= 0, P is reversible with respect to the measure µ
defined by

µ(x) = (α/β)n if x ∈ Hn.

This measure satisfies (3.1). Thus, setting θ = rα/β, we can compute

ρs(P, µ) = σs(P, µ) = as(P, µ) = θ1/sβ + rθ−1/sα = β(θ1/s + θ1/s′).

This expression is minimal for s = 2 as it should be since (P, µ) is a reversible
chain. From this last result, we deduce that

ρ(P ) = lim sup
n→+∞

[pn(x, y)]1/n = 2
√
rαβ.

Example 2: The distance transitive graph Dm,` . The above compu-
tations can be generalized to a number of tree-like graphs. For instance,
it applies to the distance transitive infinite graph X = Dm,` which can be
viewed as the free product of m copies of the complete graph K` on ` ver-
tices. In this connected graph, each vertex x belongs to exactly m copies
of K` which are disjoint except for their commom vertex x. It is easy to
see that this graph has infinitely many ends and that the group G of all
automorphisms that fixes one given end acts transitively on X.

Let P be the simple random walk on Dm,`. Then P is G-invariant and
reversible with respect to the counting measure. Each vertex x has m(`− 1)
neighbours in Dm,` : One “father” x−, `− 2 “brothers” xk (k = 1, . . . , `− 2)
such that x−k = x− and (m − 1)(` − 1) “children” yi,j (1 ≤ i ≤ m − 1,
1 ≤ j ≤ ` − 1) such that y−i,j = x. We now compute the ratios |Gy|/|Gx|
where y and x are neighbours. In order to do so, we use the following simple
formula (see, for example, the proof of Lemma 1 in [20, 15]):

|Gy|/|Gx| = |Gyx|/|Gxy|.

(Note that | · | stands for Haar measure on the left and for cardinality on the
right hand side.) This yields

|Gy|
|Gx| =


(m− 1)(`− 1) if y = x−

1 if y is a brother of x
[(m− 1)(`− 1)]−1 if y is a child of x.
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Theorem 3.1 now gives

σs(P ) = ρs(P ) = as(P ) =
`− 2 + [(m− 1)(`− 1)]1/s + [(m− 1)(`− 1)]1/s

′

m(`− 1)
.

More generally, consider the regular tree Tr with one fixed end ω0 and
r = r1r2. Fix a connected vertex transitive graph Ξ with degree d on r2

vertices. In Tr, partition the children of any vertex x into r1 sets Ξ1, . . .Ξr1 ,
of r2 elements each. We give to each Ξi the graph structure of Ξ. We consider
the graph with vertex set X = Tr and an edge from x to y if and only if
either there is an edge from x to y in Tr or x, y have the same father in Tr,
belong to the same Ξi and are neighbours in Ξi. The graph X is regular of
degree r + d + 1. For the simple random walk on X, in the same way as
above, we compute

σs(P ) = ρs(P ) = as(P ) =
d+ r1/s + r1/s′

r + d+ 1
.

For d = 0, (i.e., r2 = 1), we recover the tree. For d = r2 − 1 = ` − 2,
Ξ = K`−1 and r1 = m − 1, we recover Dm,`. Non symmetric random walks
that preserve the “family structure” of these graphs can also be analysed as
in the case of the tree.

We refer the reader to [12] for references concerning Examples 1 and 2.

Example 3: The buildings of PGL(n,F), F a local field. Let F be a
(commutative) nonarchimedean local field with valuation v : F∗ → Z and
v(0) = ∞ (F∗ denotes the multiplicative group). Denote by O = {a ∈ F :
v(a) ≥ 0} the ring of integers and P = {a ∈ F : v(a) ≥ 1} the maximal
ideal in O. Let q be the (finite) order of the residual field K = O/P. The
absolute value of a ∈ F is |a| = q−v(a). It induces an ultrametric. Choose a
uniformizer p ∈ P, that is, |p| = q−1.
GL(n,F) is the group of invertible n×n matrices over F, and PGL(n,F) =

GL(n,F)/F∗, where, more precisely, F∗ stands for all nonzero multiples of the
identity matrix. Associated with PGL(n,F), there is a symmetric space X
which is called a (linear ) building of type Ãn−1. This is an (n−1)-dimensional
simplicial complex with several particular features, see e.g., Ronan [14]. In
order to understand its structure, it is enough to describe its one-skeleton,
which is a countable graph. X will stand for this graph, and PGL(n,F) ⊂
AUT (X) is closed and acts transitively. We now give a brief description of
X.

A lattice is an O-submodule of Fn of the form L = Ov1 + · · · + Ovn,
where {v1, . . . , vn} is a basis of Fn. Two lattices L,L′ are equivalent if
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L′ = aL for some a ∈ F∗. The equivalence class of L is denoted [L]. Then
X = {[L] : L a lattice}. Two points x, y ∈ X with x = [L] are neighbours in
the graph X if we can write y = [L′] such that pL ⊂ L′ ⊂ L strictly. For such
L′, the mapping [L′] 7→ L′/pL is an isomorphism from the neighbourhood
graph N(x) = {y ∈ X : y ∼ x} of x ∈ X onto the family of nontrivial
subspaces of Kn, where two elements are neighbours if one strictly contains
the other. Thus,

deg(x) =
n−1∑
k=1

(
n

k

)
q
, where

(
n

k

)
q

=
(qn − 1) · · · (qn−k+1 − 1)

(qk − 1) · · · (q − 1)
,

see, for instance, Goldman and Rota [8]. It seems that there is no useful
closed formula for W (n, q) =

∑n
k=0

(n
k

)
q
. However, W (n, q) satisfies W (n +

1, q) = 2W (n, q−1)+(qn−1)W (n−1, q), with W (0, q) = 1 and W (1, q) = 2,
see Andrews [1]. This gives W (2, q) = q + 3, W (3, q) = 2(q2 + q + 2) and
W (4, q) = q4 + 3q3 + 4q2 + 3q + 5. For n = 2, 3 one recovers the well known
values of deg(x) = W (n, q)− 2, that is, q + 1 and 2(q2 + q + 1).

The building associated with PGL(2,F) is the tree Tq. For any n ≥ 2,
the apartment of X associated with a given basis {v1, . . . , vn} of Fn is

A = A(v1, . . . , vn) = {[p`1Ov1 + · · ·+ p`nOvn] : `i ∈ Z}.
For n = 2, this is a two-sided infinite geodesic in the tree.

For n = 3, the subgraph of X induced by A is a tiling of the plane by
equilateral triangles. Furthermore, every edge in X is common to q + 1
triangles.

For any n, the group PGL(n,F) acts on X by matrix multiplication from
the left, i.e., g[L] = [gL] = [Ogv1 + · · · + Ogvn]. Here, we typically write
g as a matrix in GL(n,F), while thinking of it as an element of PGL(n,F)
consisting of all its nonzero multiples.

We now want to compute the norm and spectral radius of the simple ran-
dom walk operator P on X, acting on `s(X) with the counting measure. Let
G be the image in PGL(n,F) of the upper-triangular subgroup of GL(n,F).
It acts transitively on X.

To see this, we choose x0 = [On] = [Oe1 + · · · + Oen] as our basepoint
in X, where {e1, . . . , en} is the standard basis of Fn. The stabilizer of x0 in
PGL(n,F) is (isomorphic to) the group PGL(n,O) = GL(n,O)/O∗, where
O∗ = O \ P is the set of invertibles in O, and GL(n,O) consists of all
matrices g ∈ GL(n,F) such that g and g−1 have all entries in O. Now
consider h ∈ GL(n,F). Locate an entry hnj in row n whose absolute value
is largest in that row. By right multiplication by a permutation matrix
(an element of GL(n,O)), we can move this entry to position (n, n). Let
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Ei,j be the matrix with entry 1 in position (i, j) and 0 elsewhere. If a ∈
O, then I + aEi,j ∈ GL(n,O). By right multiplication by n − 1 matrices
I + ajEn,j, j = 1, . . . , n− 1, we can replace all entries in row n, except that
in position (n, n), by 0.

Now repeat with the (n− 1)× (n− 1) matrix at upper left of the new h
obtained in this way, and continue. At the end, we get k ∈ GL(n,O) such
that hk = g is upper triangular, i.e., in G. So k x0 = x0 and hx0 = g x0. As
every element of X is of the form hx0 for some h as above, we get transitivity
of G.

Also, it is well known that G is amenable, being solvable. From this we
can already conclude, thanks to Theorem 3.1, that the norm and spectral
radius of P on `s(X) are equal. We now proceed to compute these numbers
for 1 < s <∞.

For our computation, we have to understand the action of Gx0 on N(x0).
Write E = {0, 1}n \ {0, 1}, where 0 = (0, . . . , 0) and 1 = (1, · · · , 1). Let
A = A(e1, . . . , en). The neighbours of x0 in A are of the form

yε = [pε1Oe1 + · · ·+ pεnOen], where ε ∈ E .

We can represent Gx0 = G ∩ PGL(n,O) by the group

Gx0 ={g=(gij)i,j=1,...,n : gij ∈ F, |gii| = 1, |gij| ≤ 1 (i< j), gij = 0 (i> j)}.

Also, an element of G mapping x0 to yε is gε = diag(pεi)i=1,...,n. Hence, we
can represent

Gyε = gεGx0g
−1
ε = {h = (hij) : hij ∈ F,

|hii| = 1, |hij| ≤ qεj−εi (i < j), hij = 0 (i > j)}

and

Gx0 ∩Gyε = {g = (gij) : gij ∈ F,
|gii| = 1, |gij| ≤ q−max{0,εi−εj} (i < j), gij = 0 (i > j)}.

The left Haar measure on the group of upper triangular invertible n × n
matrices over F is given by

dg = |gn11g
n−1
22 · · · gnn|−1

∏
i≤j

dgij,

where dgij stands for the Lebesgue (Haar) measure λ on (the additive group)
F, compare with [10], p. 209 (where this is stated for matrices over R). The
above two stabilizers and their intersections are compact open subgroups, so
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that their left Haar measure coincides with their right Haar measure, which
is the restriction of the Haar measure on the whole group. If we normalize
λ so that λ(O) = 1 and hence λ(P) = 1/q, λ(O∗) = 1 − 1/q, the measures
of our stabilizers are |Gx0 | = (1− 1/q)n and |Gx0 ∩Gyε | = (1− 1/q)nq−M(ε),
where

M(ε) =
∑

1≤i<j≤n
max{0, εi − εj}

is the number of times that a 1 comes before a 0 in the vector ε. For
instance, if n = 5 then M((0, 1, 0, 1, 0)) = 3 and M((1, 0, 1, 1, 0)) = 4. With
this notation, we have

|Gx0yε| = |Gx0 |
/
|Gx0 ∩Gyε | = qM(ε).

Write |ε| =
∑
i εi and let W (n, k; q) =

∑
ε∈{0,1}n:|ε|=k q

M(ε). Then
W (n, 0; q) = W (n, n; q) = 1, and expanding with respect to the value of
εn, one obtains W (n, k; q) = W (n − 1, k − 1; q) + qkW (n − 1, k; q). The q-
binomial coefficients satisfy the same recursion, whence they coincide with
the W (n, k; q). Therefore,

∑
ε∈E q

M(ε) = deg(x0). Thus, every element of
N(x) is of the form gyε with g ∈ Gx0 and ε ∈ E , that is, N(x) =

⋃
ε∈E Gx0yε

(disjoint union).
Next, |Gyεx0| = |Gx0g

−1
ε yε| = |Gx0y1−ε| = qM(1−ε) . From this and Theo-

rem 3.1, we get

σs(P ) = ρs(P ) =

∑
ε∈E q

M(ε)/s′qM(1−ε)/s∑
ε∈E q

M(ε)
.

When n = 2, we obtain the norm of the simple random walk operator on
the tree Tq of Example 1 above. When n = 3, we find

σs(P ) = ρs(P ) =
q + q2/s + q2/s′

1 + q + q2
.

When n = 4, the above gives

σs(P ) = ρs(P )

=
q4/s + q4/s′ + 2(q3/s + q3/s′) + q(2q + q2/s + q2/s′) + 2q(q1/s + q1/s′)

q4 + 3q3 + 4q2 + 3q + 3

which, for s = 2, simplifies to

σ2(P ) = ρ2(P ) =
6q2 + 8q3/2

q4 + 3q3 + 4q2 + 3q + 3
.
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For general n and s = 2,

σ2(P ) = ρ2(P ) =

∑n−1

k=1

(n
k

)
qk(n−k)/2∑n−1

k=1

(n
k

)
q

(with ordinary binomial coefficients in the numerator).
Besides the cases n = 2 (well known) and n = 3, s = 2 (see [4]; for

arbitrary s also Mantero and Zappa [11]), these results are new.

To conclude this section, observe that several of the above results have
been obtained previously by other methods. The advantage of our method,
when it is applicable, is that it reduces computation to simple and easy
combinatorial considerations.

4. Invariant transition operators.

This section generalizes Theorem 3.1 to quasi-transitive transition operators.
Namely, let X be a countable set and let p(x, y) be a nonnegative kernel on
X with

∑
y p(x, y) < +∞. Assume that there is a locally compact group G

that acts continuously on X with compact point stabilizers and such that p
is G-invariant. We do not assume that G acts transitively, and we denote
by G\X = I the quotient space. We say that G acts quasi-transitively when
I is a finite set. Let us start this section with an easy corollary to the main
result of [16].

Theorem 4.1. Let P be a G-invariant Markov operator on X with invariant
measure µ satisfying (3.1). Assume further that PP ∗ is irreducible, that µ
is bounded and that I = G\X is finite. Then, for each fixed 1 < s < +∞,
‖P‖s→s = 1 if and only if G is amenable and unimodular.

Proof. If there exists 1 < s < +∞ such that ‖P‖s→s = 1, then interpolation
shows that ‖P‖2→2 = 1. Hence, ‖PP ∗‖2→2 = 1. We can then use Theorem
2 of [16] to conclude that G is amenable and unimodular. Conversely, if
G is unimodular and amenable, Theorem 2 of [16] implies ‖PP ∗‖2→2 =
‖P‖22→2 = 1. Since P is Markovian and µ invariant, ‖P‖1→1 = ‖P‖∞→∞ = 1.
Classical interpolation now implies that we must have ‖P‖s→s = 1 for all
1 ≤ s ≤ ∞.

To go further, denote by Xi, i ∈ I, the different orbits of G on X and, for
each orbit, fix an origin xi ∈ Xi. Let µi be the restriction of µ to Xi. Then
P induces a family {Pi,j : i, j ∈ I} of operators, where

Pi,j : `s(Xj, µj)→ `s(Xi, µi)
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has kernel pi,j defined by

pi,j(x, y) = p(x, y) if x ∈ Xi, y ∈ Xj.

These kernels are G-invariant and the pairs of measures µi, µj satisfy prop-
erty (2.1). Thus, the results of Section 2 apply. Referring to (2.7) and (2.8),
set

σs(i, j) = σs(Pi,j, µi, µj) and as(i, j) = as(Pi,j, µi, µj) .(4.1)

Form the following matrices over I :

Σs(P, µ) = (σs(i, j))i,j∈I and As(P, µ) = (as(i, j))i,j∈I .(4.2)

It is useful to observe that

As(P, µ) = As′(P ∗)t

where At is the transpose of A. This is not quite obvious but it follows from
(2.10), which shows that as(Pi,j) = as′([Pi,j]∗) = as′(P ∗j,i).

Given a matrix M indexed by I, we denote by σs(M) the norm of M
acting on `s(I) and by ρs(M) the spectral radius of M acting on `s(I). Here
and in what follows, I is endowed with its counting measure.

Set
S = S(P ) = {g ∈ G : ∃ i, j ∈ I, p(xi, gxj) > 0}.

When the action of G is not transitive, it is still true that G =
⋃
n≥1 S

n

if P is irreducible. However, it may well be that G =
⋃
n≥1 S

n and P is
not irreducible, as easy examples show. Our aim is to prove the following
generalization of Proposition 2.3.

Theorem 4.2. Let P be G-invariant on X, with I = G\X, and suppose
that the measure µ satisfies (3.1). Then, with the notation of (4.1) and (4.2),

‖P‖s→s = σs(P, µ) ≤ σs
(
Σs(P, µ)

)
≤ σs

(
As(P, µ)

)
.(4.3)

Moreover, if the subgroup generated by SS−1 is amenable,

σs(P, µ) = σs
(
As(P, µ)

)
.(4.4)

Finally, if I is finite and if PP ∗ is irreducible then σ2(P, µ) = σ2

(
A2(P, µ)

)
if and only if G is amenable.
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Proof of (4.3). The inequality σs(Σs) ≤ σs(As) follows from Proposition
2.3 which yields σs(i, j) ≤ as(i, j). We now prove that ‖P‖s→s = σs(P ) ≤
σs(Σs). To this end, write P =

∑
i,j Pi,j. Denote by Ri the operator of

restriction to Xi of a function f initially defined on X. Set fi = Rif . Then,
f =

∑
i fi, and

Pf =
∑
i,j

Pi,jfj.

Pick u ∈ `s(X,µ), v ∈ `s′(X,µ) with 1/s+ 1/s′ = 1. Then

〈Pu, v〉µ =
∑
i,j

〈Pi,juj, vi〉µi ≤
∑
i,j

σs(i, j)‖uj‖s‖vi‖s′

≤ σs (Σs)

∑
j

‖uj‖ss
1/s(∑

i

‖vi‖s′s′
)1/s′

= σs (Σs) ‖u‖s‖v‖s′ .

This clearly shows that ‖P‖s→s = σs(P ) ≤ σs(Σs).

Let us pause here to comment on what we just proved. Inequality (4.3)
shows that we can estimate the norm of P acting on `s(X,µ) by the `s-norm
of the matrix As(P, µ) whose rows and columns are indexed by the quotient
space I = G\X. In particular, if I is finite, (4.3) leads to computing the
`s-norm of a finite matrix.

Proof of (4.4). In order to prove (4.4), we may assume that the measure
µ is the counting measure (if not, consider the kernel ps(x, y) =
µ(x)1/sps(x, y)µ(y)−1/s and the associated operator acting on `s(X)). We
need to introduce some further notation. Fix an auxilliary homogeneous
space Z = G/Gz0 , endowed with the counting measure. Using the notation
(2.3), (2.4) define the operators Ks,i : `s(Z)→ `s(Xi) by

Ks,if(x) =
( |Gz0 |
|Gxi |

)−1/s

SXiTZf(x) =
( |Gz0 |
|Gxi |

)−1/s 1
|Gxi |

∫
g∈G:gxi=x

f(gz0) dg,

and define the operators K ′s,i : `s(Xi)→ `s(Z) by

K ′s,if(z) =
( |Gz0 |
|Gxi |

)1/s

SZTXif(z) =
( |Gz0 |
|Gxi |

)1/s 1
|Gz0 |

∫
g∈G:gz0=z

f(gxi) dg.

These operators satisfy

‖Ks,i‖s→s = ‖K ′s,i‖s→s = 1.

Observe that the formal adjoint (Ks,i)∗ : `s
′
(Xi)→ `s

′
(Z) of Ks,i, defined by

〈Ks,iu, v〉X = 〈u, (Ks,i)∗v〉Z for all u ∈ `s(Z) , v ∈ `s′(Xi),
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is given by (Ks,i)∗ = K ′s′,i.
Let ξ(i), i ∈ I and ζ(i), i ∈ I be non-negative functions on I, supported

on a finite set Ω ⊂ I and such that∑
i∈I

ξ(i)s =
∑
i∈I

ζ(i)s
′

= 1,

where 1/s + 1/s′ = 1. We now pick a homogeneous space Z adapted to Ω.
Since Ω is finite, the group

GΩ =
⋂
i∈Ω

Gxi

is a compact open subgroup of G. Thus, we can choose Z = G/GΩ which is
a countable set. We also choose z0 to be the identity element modulo GΩ , so
that Gz0 = GΩ. For this choice, we have Gz0 ⊂ Gxi for all i ∈ Ω. Consider
now the operators

K =
∑

ξ(i)Ks,i : `s(Z)→ `s(X) and K ′ =
∑
i

ζ(i)K ′s,iRi : `(X)s → `s(Z) .

It is easy to check that

‖K‖s→s ≤ 1, ‖K ′‖s→s ≤ 1.(4.5)

Consider also

K ′PK =
∑
i,j

K ′s,iPi,jKs,j : `s(Z)→ `s(Z).

This is an operator with invariant kernel

κ(z0, gz) =
1
|Gz0 |

∫
Gz0

∫
Gz0

∑
i,j

1
|Gxj |

(
|Gxi |
|Gxj |

)1/s

ξ(j) ζ(i) pi,j(αxi, gβxj) dα dβ

= |Gz0 |
∑
i,j

1
|Gxj |

(
|Gxi |
|Gxj |

)1/s

ξ(j) ζ(i) pi,j(xi, gxj).

This nice simplification arises because Gz0 ⊂ Gxi for all i ∈ Ω. Set

SΩ = {g ∈ G : ∃ i, j ∈ Ω, p(xi, gxj) > 0} ⊂ S

and observe that

s ∈ SΩ =⇒ ∃ i, j ∈ I such that GxisGxj ⊂ SΩ.
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This yields (using once more that Gz0 ⊂ Gxi for all i ∈ Ω)

S(K ′PK) = {g ∈ G : κ(z0, gz0) > 0} = Gz0SΩGz0 = SΩ ⊂ S.
By Proposition 2.4, if the closed subgroup of G generated by SS−1 is amen-
able, then

‖K ′PK‖s→s =
∑
z∈Z

( |Gz0 |
|Gz|

)1/s

κ(z0, z)

=
∑
z∈Z

( |Gz0 |
|Gz|

)1/s

|Gz0 |
∑
i,j

ξ(j)ζ(i)
|Gxj |

(
|Gxi |
|Gxj |

)1/s

pi,j(xi, gzxj)

=
∫
G

∆(h)1/s
∑
i,j

ξ(j)ζ(i)
|Gxj |

(
|Gxi |
|Gxj |

)1/s

pi,j(xi, hxj) dh

=
∫
G

∑
i,j

ξ(j)ζ(i)
|Gxj |

(
|Gxi |
|Gxj |

)1/s( |Gxj |
|Ghxj |

)1/s

pi,j(xi, hxj) dh

=
∑
i,j

ξ(j)ζ(i)
∑
y∈Xj

( |Gxi |
|Gy|

)1/s

pi,j(xi, y)

=
∑
i,j

as(i, j)ξ(i)ζ(j).

Now, since 1/s+ 1/s′ = 1, we have

‖P‖s→s = sup {〈Pũ, ṽ〉X : ‖ũ‖s ≤ 1, ‖ṽ‖s′ ≤ 1}
≥ sup {〈PKu, (K ′)∗v〉X : ‖Ku‖s ≤ 1, ‖(K ′)∗v‖s′ ≤ 1}
≥ sup {〈K ′PKu, v〉Z : ‖u‖s ≤ 1, ‖v‖s′ ≤ 1}
=
∑
i,j

as(i, j)ξ(j)ζ(i),

where (4.5) has been used to obtain the second inequality. Taking suprema
over ξ and ζ yields

‖P‖s→s = σs(P ) ≥ σs(As)
and thus σs(P ) = σs(As) by (4.3). This ends the proof of (4.4).

We postpone the the proof of the last statement of Theorem 4.2, giving
first its analogue for spectral radii in the place of norms.

Theorem 4.3. Under the same assumptions as in Theorem 4.2, we have

ρs(P, µ) ≤ ρs(Σs(P, µ)) ≤ ρs
(
As(P, µ)

)
.(4.6)
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Moreover, if the subgroup generated by S is amenable,

ρs(P, µ) = ρs
(
As(P, µ)

)
.(4.7)

Finally, if I is finite, 1 < s < +∞ and P irreducible then ρs(P, µ) =
ρs
(
As(P, µ)

)
if and only if G is amenable.

Proof. The following relations follow from Lemma 2.6.

Σs(P n) ≤ [Σs(P )]n and As(P n) = [As(P )]n .(4.8)

Inequality (4.6) is an now easy consequence of (4.3) because

[Σs(P )]n ≤ [As(P )]n.

To prove (4.7), we observe that the subgroup generated by S contains the
subgroup generated by SnS−n for each n. Thus, we can apply (4.4) and
(4.8) to conclude that

σs (P n, µ) = σs (Ans (P )) = σs ([As(P )]n)

and this yields ρs(P, µ) = ρs (As(P, µ)) .
We now prove the last statement of the theorem. Assume that I is finite

and P irreducible. Form Q = (I + P )m and choose m such that

Q1,1 = R1QR
∗
1 : `s(X1, µ1)→ `s(X1, µ1)

is irreducible (recall that R1 : `s(X,µ) → `s(X1, µ1) is simply the operator
of restriction to X1). See [15], Sect. 5, where it is proved that such an m
does exist (irreduciblility of P and finiteness of I are used here).

We now use the fact that ρs(Pm) belongs to the spectrum of Pm acting on
`s(X,µ); see [23], p. 602, and the references given there. On one hand, this

shows that ρs(Q) =
(
1 + ρs(P )

)m
. On the other hand, it is easy to check

that As(Q) =
(
I + As(P )

)m
so that ρ(As(Q)) =

(
1 + ρ

(
As(P )

))m
. Here,

we write ρ(As) instead of ρs(As) since this quantity is simply the largest
eigenvalue (in absolute value) of the finite dimensional matrix As.

Now, by hypothesis, ρs(P ) = ρ
(
As(P )

)
. This implies that ρs(Q) =

ρ
(
Σs(Q)

)
= ρ

(
As(Q)

)
. Since we also have

Σs(Q) ≤ As(Q)

elementwise and that Σs(Qk), As(Qk) have all their entries positive for k
large enough, we can conclude that Σs(Q) = As(Q) ; see for example Seneta
[18], p. 3. In particular, σs(Q1,1) = as(Q1,1). Since Q1,1 is irreducible,
Theorem 3.1 applies and shows that G is amenable.
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End of the proof of Theorem 4.2. Assume that I = G\X is finite, that
PP ∗ is irreducible, and that σ2

(
A2(P )

)
= σ2(P ). We want to conclude

that G is amenable. Considering the self-adjoint operator PP ∗ : `2(X,µ)→
`2(X,µ), we have

ρ2(PP ∗) = σ2(PP ∗) = σ2(P )2,

and

A2(PP ∗) = A2(P )A2(P ∗) = A2(P )A2(P )t,

so that

ρ
(
A2(P )A2(P )t

)
= σ2

(
A2(PP ∗)

)
= σ2

(
A2(P )

)2

.

Thus, the hypothesis σ2(P ) = σ2

(
A2(P )

)
implies ρ2(PP ∗) = ρ

(
A2(PP ∗)

)
.

Since PP ∗ is irreducible we can apply Theorem 4.3 which shows that G is
amenable. This concludes the proof of Theorem 4.2.

Remark. Concerning the last statement in Theorem 4.2 the reader may
wonder why only the `2 version is stated there. Indeed, we have not been
able to prove the `s version for s 6= 2. The obvious technique to obtain an
`s result in this context is to use interpolation to reduce the problem to `2 ;
see, e.g., [2, 3]. Here, the idea would be to apply Stein interpolation (Stein
and Weiss [21], p. 205) to the family of operators Ps = [σs(As(P, µ))]−1P ,
but this requires to extend the map t = 1/s 7→ Ps to complex values of t and
to show that this extention is analytic. It is not clear to us whether this is
possible or not.

We now turn our attention to unimodularity. Referring to (2.9), let us
consider the matrices

B = B(P ) =
(
b(i, j)

)
i,j∈I

and B∗ = B∗(P, µ) =
(
b∗(i, j)

)
i,j∈I

,(4.9)

where
b(i, j) = b(Pi,j) and b∗(j, i) = b(P ∗j,i, µi, µj) .

(Recall that P ∗j,i = RjP
∗Ri, where the adjoint P ∗ is taken with respect to

µ.) Proposition 2.4 yields

as(i, j) ≤ b(i, j)1/s′b∗(j, i)1/s .
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Hence, for any ξ(·) , ζ(·) ≥ 0 such that
∑
j ξ(j)

s =
∑
i ζ(i)s

′
= 1 ,∑

i,j

as(i, j)ξ(j)ζ(i) ≤
∑
i,j

[b(i, j)ξ(j)ζ(i)]1/s
′
[b∗(j, i)ξ(j)ζ(i)]1/s

=

∑
i,j

b(i, j)ξ(j)ζ(i)

1/s′ ∑
i,j

b∗(j, i)ξ(j)ζ(i)

1/s

≤ σs(B)1/s′σs′(B∗)1/s.

Thus, σs(As) ≤ σs(B)1/s′σs′(B∗)1/s. Furthermore, if we apply this to P n,
(4.8) yields

σs(Ans ) ≤ σs(Bn)1/s′σs′(Bn
∗ )1/s,

whence
ρs(As) ≤ ρs(B)1/s′ρs′(B∗)1/s.

In order to study the case when this last inequality is an equality, consider
the matrix C =

(
c(i, j)

)
i,j∈I

, where

c(i, j) = b(i, j)1/s′b∗(j, i)1/s.

Observe that [
Cn
]
i,j
≤
[
Bn
]1/s′
i,j

[
Bn
∗
]1/s
j,i
.

Indeed, by induction,[
Cn
]
i,j

=
∑
`

[
Cn−1

]
i,`

[
C
]
`,j

≤
∑
`

([
Bn−1

]
i,`
b(`, j)

)1/s′ (
b∗(j, `)

[
Bn−1
∗

]
`,i

)1/s

≤
[
Bn
]1/s′
i,j

[
Bn
∗
]1/s
j,i
.

This shows that

ρs(As) ≤ ρs(C) ≤ ρs(B)1/s′ρs′(B∗)1/s.

Now, assume that I is finite. If P is irreducible, so are the nonnegative
matrices As and C. If the equality

ρs(As) = ρs(B)1/s′ρs(B∗)1/s

holds true, it follows that ρs(As) = ρs(C), and this implies

as(i, j) = c(i, j) = b(i, j)1/s′b∗(j, i)1/s
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since As ≤ C elementwise (see [18], p. 22). Therefore, we can now apply
Proposition 2.4 to obtain that there exist positive constants δ(i, j) (i, j ∈ I)
such that

∆(g)
µ(gxj)
µ(xi)

= δ(i, j) for all i, j ∈ I and all g ∈ S(i, j) ,(4.10)

where S(i, j) = S(Pi,j) = {g ∈ G : pi,j(xi, gxj) > 0}. Using all this we obtain
the following result.

Proposition 4.4. Let P be G-invariant, I = G\X, and suppose that µ
satisfies (3.1).
(1) Referring to (4.2) and (4.9), we have

σs(As) ≤ σs(B)1/s′σs′(B∗)1/s

and

ρs(As) ≤ ρs(B)1/s′ρs′(B∗)1/s.

(2) Assume that I is finite and P irreducible. Then

ρ(As) = ρ(B)1/s′ρ(B∗)1/s

if and only if ∆(g) = µ(x)/µ(gx) for all g ∈ G.

Proof. Only (2) still needs to be proved. Observe that we have used the
notation ρ instead of ρs because, for finite non-negative matrices, ρs is simply
the largest eigenvalue (in modulus).

Assume first that P is irreducible and aperiodic. This means that, for any
finite set F ⊂ X, there exists an integer n = n(F ) such that P n(x, y) > 0 for
all x, y ∈ F . Also, for any k, P k is aperiodic and irreducible and As(P k) =
[As(P )]k, B(P k) = [B(P )]k, B∗(P k) = [B∗(P )]k.

Assume that ρs(As) = ρs(B)1/s′ρs′(B∗)1/s. It follows that, for any k,

ρs(As(P k)) = ρs(B(P k))1/s′ρs′(B∗(P k))1/s.

Set F = {xi, i ∈ I}, n = n(F ) as above (I finite is used here). Define
Sn(i, j) = {g ∈ G : pn(xi, gxj)}. Applying (4.10) to P n, and observing
that id ∈ Sn(i, j) for all i, j, we get ∆(g) = µ(x)/µ(gx) for all g ∈ Sn =⋃
i,j Sn(i, j) and all x. As G =

⋃
k S

k
n because P n is irreducible, it follows

that ∆(g) = µ(x)/µ(gx) for all g ∈ G.
If P is periodic of period d > 1, let Z0, . . . , Zd−1 be the cyclic (i.e., peri-

odicity) classes where the numbering is such that P k(x, y) > 0 if and only if
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x ∈ Zi, y ∈ Zj with k = j − i mod (k). Let p̃ be the kernel p(d) restricted to
Z0. Let H = {g ∈ G : gZ0 ⊂ Z0}. The following facts are either well known
or can be checked by simple elementary arguments:
(1) The operator P̃ associated to p̃ on Z0 is irreducible and aperiodic.
(2) H is a normal subgroup of G, G/H is isomorphic to the finite cyclic

group of order d and H = {g ∈ G : gZi ⊂ Zi} for each i = 0, . . . , d− 1.
(3) For any zi ∈ Zi, H = {g ∈ G : gzi ∈ Zi}. In particular, for any z,

Gz ⊂ H.
(4) H acts continuously on Z0 with compact stabilizers Hz = Gz. It has

finitely many orbits equal to those of the Xi ∩ Zo, i ∈ I, that are
non-empty. The kernel p̃ is invariant and the mesure µ restricted to
Z0 satisfies (3.1) under the action of H.

(5) Define J to be the subset of I given by

J = {j ∈ I : Xj ∩ Z0 6= ∅}.

Then the finite matrices As(H), B(H), B∗(H) indexed on J are equal
to the corresponding submatrices of As(P̃ ), B(P̃ ), B∗(P̃ ), respectively.
Further, if k ∈ J and ` 6∈ J , or if k 6∈ J and ` ∈ J , the (k, `) entries of
As(P̃ ), B(P̃ ), B∗(P̃ ), are zero.

(6) G is unimodular if and only if H is unimodular. More generally, two
multiplicative positive functions are equal on G if and only if they are
equal on H.

We now use these facts to finish the proof of Proposition 4.4. If ρ(As) =
ρ(B)1/s′ρ(B∗)1/s, then the Perron-Frobenius theorem and point five above
show that

ρ(As(P̃ )) = ρ(B(P̃ ))1/s′ρ(B∗(P̃ ))1/s.

As P̃ is irreducible and aperiodic, we obtain

∀ h ∈ H, ∆(h) = µ(x)/µ(hx).

Point six shows that this identity extends to G.

If we specialize to the case where P is a Markov kernel and µ an invariant
measure for P , we have ρs(B), ρs(B∗) ≤ 1 with equality if I is finite. We
obtain

Theorem 4.5. Let P be a G-invariant Markov operator on X with invariant
measure µ satisfying (3.1). Suppose that I = G\X is finite. Fix 1 < s <∞.
(1) If P is irreducible then ρ(As) = 1 if and only if ∆(g) = µ(x)/µ(gx)

for all g ∈ G.
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Furthermore, ρs(P ) = 1 if and only if G is amenable and ∆(g) =
µ(x)/µ(gx) for all g ∈ G.

(2) If PP ∗ is irreducible then σs(As) = 1 if and only if ∆(g) = µ(x)/µ(gx)
for all g ∈ G.
Furthermore, σs(P ) = 1 if and only if G is amenable and ∆(g) =
µ(x)/µ(gx) for all g ∈ G.

The second statement improves upon Theorem 4.1.

In the same spirit, consider the matrix Bs(P ) =
(
bs(i, j)

)
i,j∈I

where,

referring to (2.11),
bs(i, j) = bs(Pi,j, µi, µj).

Using the above line of reasoning and Corollary 2.5, we obtain the following.

Proposition 4.6. Under the assumptions of Theorem 4.3,

σs
(
As(P, µ)

)
≤ σs

(
Bs(P, µ)

)1/s′

σs′
(
Bs′(P ∗, µ)

)1/s

and

ρs
(
As(P, µ)

)
≤ ρs

(
Bs(P, µ)

)1/s′

ρs′
(
Bs′(P ∗, µ)

)1/s

.

Assume further that that I is finite and P irreducible. Then

ρs(As) = ρ
(
Bs(P )

)1/s′

ρ
(
Bs′(P ∗)

)1/s

if and only if G is unimodular.

Remarks.
(1) When G is not unimodular the bounds in Propositions 4.4 and 4.6

appear to be poor in general, compare with [16], Ex. 2.
(2) In our previous paper [15] the “only if” stated in Lemma 5(2) is wrong

as one can see from Example 3, Case 2 of the same paper (in the
formula for a(i, i + 1) in this example, 1/di under the square root
should be replaced by di). The correct statement for Lemma 5(2) of
[15] is that, assuming that I is finite, ρ(A) = ρ(B) if and only if G is
unimodular. This is a special case of Proposition 4.6, with s = s′ and
P = P ∗.

We now give some examples. It must be emphasized that being able to
deal with quasi-transitive actions is of interest even in the context of Cayley
graphs, as in the following case.
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Example 4: The free products Zα∗Zβ. Let a and b denote the generators
of the finite cyclic groups Zα and Zβ, respectively (written multiplicatively).
The Cayley graph of the group Zα ∗ Zβ (α, β ≥ 2) with respect to the
generating set

S = {ai : i = 1, . . . , α− 1} ∪ {bj : j = 1, . . . , β − 1}

looks as in Figure 2 (we give two examples).
The group G of automorphisms of the Cayley graph which fix the end ω0

acts on the graph with two orbits, which are represented in the figure by x1

and x2. This group is amenable and nonunimodular.
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Figure 2.

Let P correspond to the simple random walk on this graph (≡ the random
walk on the free product whose law q is the equidistribution on S) and let
µ be the counting measure. We can easily compute the 2-by-2 matrices
As(P, µ) whose entries are indexed by I × I with I = {1, 2}. We have

as(i, j) =
1

α+ β − 2

∑
y∈Xj

( |Gy|
|Gxi |

)1/s

.

To compute, we use once more the identity |Gy|/|Gxi | = |Gyxi|/|Gxiy| and
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obtain

As =
1

α+ β − 2

 α− 2 (α− 1)1/s + (β − 1)1−1/s

(β − 1)1/s + (α− 1)1−1/s β − 2


for 1 ≤ s ≤ ∞. This gives

ρs(P ) = ρ(As) =
α+ β − 4

2(α+ β − 2)

+

√
(α+ β − 4)2 + 4 ((α− 1)1/s + (β − 1)1/s′) ((α− 1)1/s′ + (β − 1)1/s)

2(α+ β − 2)
.

For s = 2, this value is known: See Woess [24] and Cartwright and Soardi
[6], where a precise description of the `2-spectrum is given. The above com-
putation is however much simpler than the arguments used in [24, 6].

It is well known that the modular group PSL2(Z), is isomorphic to the
free product of Z2 with Z3. More precisely, if S : z → −1/z and T : z → z+1
are viewed as elements of PSL2(Z), then S and ST can be interpreted as
the canonical generators of Z2 ∗ Z3 ' PSL2(Z); See, e.g., [19], pp. 127-131.
Thus, for the simple random walk on the Cayley graph of PSL2(Z) with
generators {S;ST ; (ST )−1}, we obtain

ρs(P ) = ρ(As) =
1 +

√
1 + 4 (1 + 21/s) (1 + 21/s′)

6
.

For s = 2, we get

ρ2(P ) = ρ(A2) =
1 +

√
13 + 8

√
2

6
,

compare again with [24, 6].
The slightly more general random walks on the group Zα ∗ Zβ with law

qθ, given for s ∈ S by

qθ(s) =


θ

α−1
if s = ai,

1−θ
β−1

if s = bj,

where 0 < θ < 1 is a fixed parameter, can also be studied by the present
method. The `2-radius of these walks was first computed in [24].
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Example 5: Biregular trees. Let Tr1,r2 be the biregular tree where the
origin o has r1 +1 neighbours, the vertices at odd distance from o have r2 +1
neighbours and the vertices at even distance from o have r1 + 1 neighbours.
Fix an end ω0 of this tree. The group of the automorphisms of Tr1,r2 that
fixes ω0 acts on Tr1,r2 with two orbits. Let Xi be the orbit consisting of the
vertices with degree ri + 1, i = 1, 2. Consider the simple random walk P on
this tree. It is reversible with respect to the measure given by µ(x) = ri + 1
for x ∈ Xi. Here

as(i, j) =
1

ri + 1

∑
y∈Xj

(
µ(xi)|Gy|
µ(y)|Gxi |

)1/s

.

We compute

as(1, 1) = as(2, 2) = 0,

as(1, 2) =
(
r

1/s
2 + r1−s

1

)
(r1 + 1)−1/s′(r2 + 1)−1/s,

as(2, 1) =
(
r

1/s
1 + r1−s

2

)
(r2 + 1)−1/s′(r1 + 1)−1/s.

This gives

ρs(P, µ) =
[(
r

1/s
2 + r1−s

1

) (
r

1/s
1 + r1−s

2

)]1/2
[(r1 + 1)(r2 + 1)]−1/2

.

Here, we can also explicitly compute ‖P‖s→s = σs(P, µ) which is equal to

max{as(1, 2), as(2, 1)}

= max

{
r

1/s
2 + r1−s

1

(r1 + 1)1/s′(r2 + 1)1/s
,

r
1/s
1 + r1−s

2

(r2 + 1)1/s′(r1 + 1)1/s

}
.

Example 6: Another random walk on the building of PGL(3,F).
Let X be the building associated with PGL(3,F), as considered in Example
3. The vertices of the dual graph Y is the collection of all triangles (two-
dimensionial simplices) in the building, and two triangles are adjacent if
they have a common side. In this graph, deg(t) = 3q for any triangle t. We
consider P , the transition operator of the simple random walk on Y , and µ
equal to the counting measure.

If A is an apartment of X and x, x′, x′′ are the vertices of a triangle t in
A, then we write w′ and w′′ for the half lines in A starting at x and going
through x′ and x′′, respectively. The sector in X with base vertex x and base
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chamber t is the “sixth” of A bounded by the two “walls” w′ and w′′. Two
sectors in X are called equivalent if their intersection is again a sector. We
write Ω for the set of equivalence classes of sectors. The action of PGL(3,F)
preserves equivalence and hence extends to Ω, see, for example, [5]. Now,
the action of G, the projective group of upper triangular invertible matrices,
is such that it fixes a (unique) ω0 ∈ Ω: This is the equivalence class of the
sector {[p`1Oe1 + p`2Oe2 + p`3Oe3] : `1 ≥ `2 ≥ `3} . Our group acts on the
dual graph Y with two orbits: one consists of the triangles pointing away
from ω0, like u0 in the figure below, which represents a typical apartment A
of X ; the other consists of the triangles pointing towards ω0 (like v0), see
Figure 3.
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Figure 3.

Besides v0, the triangle u0 has two more neighbours v1, v2 in A. Let u′0
be one of the q − 1 triangles adjacent both with u0 and v0. For i = 1, 2, let
v′i be one of the q − 1 triangles adjacent with u0 and vi. (Notation is such
that the u-triangles are in one G-orbit and the v-triangles in the other.) We
compute

|Gu0u
′
0| = q − 1, |Gu0v0| = 1, |Gu0v1| = |Gu0v2| = q

and

|Gv0u0| = q, |Gv1u0| = |Gv2u0| = 1, |Gv1v
′
1| = |Gv2v

′
2| = q − 1.
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Hence

As =
1
3q

 q − 1 q1/s + 2q1/s′

2q1/s + q1/s′ 2(q − 1)

 ,
and

ρs(P ) =
3(q − 1) +

√
(q − 1)2 + 20q + 8q2/s + 8q2/s′

6q
.

In particular, ρ2(P ) = σ2(P ) is the norm of P .
It is clear that this example can be generalized to the dual graph (on

(n− 1)-simplices) of the building associated with PGL(n,F).
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