
pacific journal of mathematics
Vol. 180, No. 2, 1997

TWO SUBFACTORS ARISING FROM A
NON-DEGENERATE COMMUTING SQUARE

An answer to a question raised by V.F.R. Jones

Nobuya Sato

When we have a non-degenerate commuting square of fi-
nite dimensional C∗-algebras, we can construct a subfactor in
two ways. One is by a repetition of basic constructions in a
horizontal direction and the other in a vertical direction. We
prove that if one of the two is of finite depth, so is the other.
Furthermore, we prove the two have the same global indices
in the sense of A. Ocneanu. This gives an answer to a question
V.F.R. Jones raised in his talk at Aarhus in June, 1995. We
actually prove a more general result on flatness and also give
an example of a new finite principal graph as its application.

1. Introduction.

We study a relation between two subfactors, “vertical” one and “horizon-
tal”one, arising from a non-degenerate commuting square of finite dimen-
sional C∗-algebras. We prove that if one of the two is of finite depth, so is
the other. Furthermore, we prove the two have the same global indices in
the sense of A. Ocneanu. This gives an answer to a question V.F.R. Jones
raised in his talk at Aarhus in June, 1995. We actually prove a more general
result on flatness and also give an example of a new finite principal graph
as its application.

In the progress of subfactor theory, A. Ocneanu presented his striking
theory “paragroups” in 1987. A. Ocneanu perceived a new combinatorial
structure of an irreducible inclusion of AFD factors N ⊂M of type II1 with
finite depth and finite Jones index and axiomatized it as a paragroup. In
a certain class of subfactors, namely, irreducible inclusions of AFD II1 fac-
tors N ⊂ M with finite Jones index and finite depth, paragroups give the
complete classification. This completeness is due to a theorem of S. Popa
called generating property. He also studied the necessary and sufficient con-
dition for subfactor to be approximated by certain series of finite dimensional
C∗-algebras [P1, P2].

A paragroup is constructed from two finite graphs and a complex val-
ued function called biunitary connection with some unitarity conditions. In
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the axioms of the paragroup theory, the most important one is the flatness
condition. On one hand, it makes the “parallel transport” on the graphs
well-defined. On the other hand, the associativity of the group is exactly
the flatness condition. It is also true that flatness condition is equivalent
to the pentagonal relation in the depth two case. For details, see [S] and
references cited.

V.F.R. Jones raised the following question in his talk at Aarhus in June,
1995.

Question (V.F.R. Jones).

Suppose that we have a finite dimensional non-degenerate commuting square
as follows.

R00 ⊂ R01

∩ ∩
R10 ⊂ R11

.

Iterating the basic constructions for the above commuting square, we get
the following series of commuting squares of period 2.

R00 ⊂ R01 ⊂ R02 ⊂ · · · ⊂ R0∞
∩ ∩ ∩ ∩
R10 ⊂ R11 ⊂ R12 ⊂ · · · ⊂ R1∞
∩ ∩ ∩ ∩
R20 ⊂ R21 ⊂ R22 ⊂ · · · ⊂ R2∞

...
...

...
...

R∞0 ⊂ R∞1 ⊂ R∞2 ⊂ · · ·

.

Then is there any relation between two subfactors R0∞ ⊂ R1∞ and R∞0 ⊂
R∞1? Moreover, is the finite depth condition for R0∞ ⊂ R1∞ related to that
for R∞0 ⊂ R∞1?

Note that we cannot expect simple relations between Jones indices of these
two subfactors. We will answer to this question by the techniques associated
with flatness in paragroup theory. More precisely, we will prove a new the-
orem related to flatness and will answer to the question as its application.
Also, we will give a new example of a principal graph as another application.
For the answer to the first question, the above two subfactors have the same
global indices. For the second question, we have the affirmative answer.

The author is much indebted to Prof. Kawahigashi for valuable discussions
and expresses his gratitude.
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2. An answer to the question.

We consider the string algebra picture rather than that of the commuting
square and freely use the notations on string algebras in [O3] and [K].

Consider the sequence of string algebras

A0,0 ⊂ A0,1 ⊂ A0,2 ⊂ · · · ⊂ N = A0,∞
∩ ∩ ∩ ∩
A1,0 ⊂ A1,1 ⊂ A1,2 ⊂ · · · ⊂M = A1,∞
∩ ∩ ∩ ∩
A2,0 ⊂ A2,1 ⊂ A2,2 ⊂ · · · ⊂M1 = A2,∞

...
...

...
...

P = A∞,0 ⊂ Q = A∞,1 ⊂ Q1 = A∞,2 ⊂ · · ·
constructed from four finite, bipartite connected graphs, a biunitary con-
nection W on those graphs and a fixed starting vertex ∗. We get Jones
towers of AFD II1 factors N ⊂ M ⊂ M1 ⊂ · · · in the vertical direction and
P ⊂ Q ⊂ Q1 ⊂ · · · in the horizontal direction as above. Observe that

N ′ ∩Mk−1 ⊂ Ak,0
∩ ∩

N ′ ∩Mk ⊂ Ak+1,0

(2.1)

is a commuting square since the conditional expectations are implemented
by the Jones projections of the sequence of string algebras above ([E-K],
Proposition 3.1). We denote the biunitary connection corresponding to this
commuting square by W ′. Note that the horizontal inclusion graphs in (2.1)
are not necessarily connected. However, all inclusion graphs in the following
commuting square are trivially connected (since “disconnected × connected
= connected”).

N ′ ∩Mk−1 ⊂ Ak,1
∩ ∩

N ′ ∩Mk ⊂ Ak+1,1

.(2.2)

We call the biunitary connection corresponding to this commuting square
the composite connection and denote this by W ′ ·W .

We have the following theorem under the above notations.

Theorem 2.1. Suppose that the subfactor N ⊂ M is of finite depth. The
composite connection W ′ ·W gives a flat connection.

Proof. First, we establish some notations. We denote the set of even vertices
in the initial upper horizontal graph by V0 and the set of even vertices in the
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principal graph of N ⊂M by V ′0 . We have the distinguished vertex ∗′ ∈ V ′0
as the starting point of the string algebras {Ck,l}k,l≥0 for the composite
connection W ′ · W . Also we have the distinguished vertex ∗ ∈ V0 as the
starting point for the initial string algebras {Ak,l}k,l≥0. See Figure 1.

Take a string σ0 ∈ N ′ ∩Mk−1. Note that N ′ ∩Mk−1 ⊂ Ak,0 by Ocneanu’s
compactness argument [O3, II.6] and we have σ0 ∈ Ak,0. Apply the canonical
shift Γ in the sense of [O1] to σ0 ∈ N ′ ∩Mk−1 for n times (see [B2] for
more detailed exposition on the canonical shift), then we have Γn(σ0) ∈
M ′

2n−1 ∩Mk+2n−1 ⊂ Ak+2n,0. Because Γn(σ0) commutes with any element
in M2n−1, we have the following expression for Γn(σ0) ∈ N ′ ∩Mk+2n−1 and
denote this string by σ.

σ = Γn(σ0) =
∑
x∈V0

′
id(2n) ·z(x),

where id(2n) means an identity field of length 2n, that is, id(2n) =∑
|ρ|=2n(ρ, ρ) ∈ A2n,0 and · means a concatenation of strings. Thus we get a

field of strings z = {z(x)}x∈V ′0 . Because the canonical shift is the same as
parallel transport [O3, II.5] on the canonical commuting square of N ⊂M ,
we get σ(∗) = σ0 by flatness of the biunitary connection arising from the
canonical commuting square of N ⊂M .

We claim the field of strings z = {z(x)}x∈V ′0 is flat with respect to the
composite connection W ′ ·W . (See [O3, II.5] for the definition of flatness
of a field of strings.) That is, we claim the field of strings z = {z(x)}x∈V ′0
satisfies the following identity via the connection W ′ ·W .

-?
=

-

?
z z

id(4)

id(4)

,

where id(4) means an identity field of length four. This means the composite
connection W ′ ·W is a flat connection in the sense of [O3, II.6]. We show
this identity by embedding z successively via connections W ′ and W . See
Figure 1.

Our claim for the first embedding is obvious because the embedding via
connection W ′ is just a natural embedding of N ′∩Mk−1 into Ak,0. We denote
this embedded field by z′ = {z′(y)}y∈V0 . The claim for the second and third
embeddings follow from the fact that the field {z′(y)}y∈V0 is a flat field for
connection W . For the fourth embedding, we have the following argument.

Recall that we have the Jones projection e ∈ C2n,2 for string algebras
{Ck,l}k,l≥0 and that the Jones projection satisfies ze = ez as shown by direct
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computations. Also we have zξ = ξz for any ξ ∈ C2n,1.

· · ·

· · ·

· · ·

∗′ ∗
C0,0 C0,1 C0,2

C2n+k,0 C2n+k,1 C2n+k,2

C2n,0
C2n,1 C2n,2

W ′ W W W ′

z z′ z′ z′′

U� U� U� U�

Figure 1. Composite connection W ′ ·W and its string algebras.

These commutativity relations mean that we have zξ = ξz for any ξ ∈
C2n,2 because C2n,2 is generated by C2n,1 and Jones projection e ∈ C2n,2.
Thus we get the following identity via the biunitary connection W ′ ·W

-?
=

-

?
z z′′

id(4)

id(4)

,

where z′′ is a field z′′ = {z′′(x)}x∈V ′0 . By the same argument as in [O3] (on
the eleventh line in page 33 of Section II.6), we get z′′ = z. Thus we have
proved the field z = {z(x)}x∈V ′0 is flat. So we are done.

Corollary 2.2 (An answer to the second question). N ⊂ M is of
finite depth iff the same holds for P ⊂ Q.

Proof. Follows from the previous theorem and [B1, Theorem 2.6], since P is
an intermediate subfactor of B∞ ⊂ Q.

In the rest of the paper, we show that the natural numerical relation
between the two subfactors is given by the global indices. This notion was
firstly introduced by A. Ocneanu [O1] as Jones index of the asymptotic
inclusion subfactor M ∨ (M ′ ∩M∞) ⊂M∞.
Definition 2.3. The global index for the inclusion of II1 factors N ⊂ M
is defined by ∑

MXM

(dimM XM)2,
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where summation runs through all the irreducible M -M bimodules MXM

arising from the subfactor N ⊂ M . We denote the global index of N ⊂ M
by [[M : N ]].

By definition, we easily know the value of the global index [[M : N ]] is
infinity if the inclusion is of infinite depth.

The following lemma is essentially contained in [Y, Proposition 2.4].

Lemma 2.4. Suppose that we have an inclusion N ⊂ M with finite index
and that there exists an intermediate subfactor P . Then we have [[M : P ]] ≤
[[M : N ]].

Proof. Recall that all the irreducible M -M bimodules for the inclusion N ⊂
M arise from the irreducible decomposition of the relative tensor products

MM ⊗N M ⊗M M ⊗N · · · ⊗N MM .

Note that NMM
∼=N P ⊗P MM and apply this to the above decomposition,

then we have

MM ⊗P P ⊗N P ⊗P M ⊗M M ⊗P P ⊗N P ⊗P M ⊗M ⊗ · · · ⊗N P ⊗P MM .

Because the P -P bimodule PP⊗N PP contains the irreducible P -P bimodule
PPP , we can conclude the above relative tensor product contains the relative
tensor product

MM ⊗P M ⊗M M ⊗P · · · ⊗P MM .

All the irreducible M -M bimodules for the inclusion P ⊂ M arise from
the irreducible decomposition of these relative tensor products. This means
the equivalence classes of the irreducible M -M bimodules for the inclusion
N ⊂ M contain those for the inclusion P ⊂ M . Thus we get the above
inequality.

Corollary 2.5 (An answer to the first question). The global indices
for N ⊂M and P ⊂ Q are equal.

Proof. First we assume that the inclusion N ⊂M is of finite depth. We note
that the principal graph of B∞ ⊂ Q and the principal graph of N ⊂M have
the same even vertices. With this fact and Lemma 2.4, we get the following
inequality for global indices.

[[Q : P ]] ≤ [[Q : B∞]] = [[M : N ]].

By symmetry, we get the inequality [[Q : P ]] ≥ [[M : N ]]. Thus we get
[[Q : P ]] = [[M : N ]].
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Next we assume the inclusion N ⊂ M is of infinite depth. Then the
inclusion P ⊂ Q is also of infinite depth by the previous corollary. In this
case, global indices of these inclusions are both infinite. This completes the
proof.

Corollary 2.6. If the horizontal graphs associated with the commuting
square (2.1) are connected, then the connection arising from this commuting
square is also flat.

Proof. The proof is similar to that of Theorem 2.1.

Finally, we give the following instructive example.

Example 2.7. Consider the commuting square with all the graphs being
Dynkin diagram E7 as in [E-K]. We know that we have two and only two
such commuting squares, i.e. two and only two biunitary connections, and
that these two are not flat. Flat part of this biunitary connection Bk =
N ′∩Mk−1 is already studied by D. Evans and Y. Kawahigashi in [E-K] and
the principal graph for the inclusion N ⊂ M is given by Dynkin diagram
D10. Looking at the entries of Perron-Frobenius eigenvectors, the relation
between the two upper horizontal graphs E7 and D10 is given by Figure 2.
By Theorem 2.1, we know the graph with the middle stage skipped in Figure
2 is the principal graph for the inclusion B∞ ⊂ Q. The principal graph is
given by Figure 3.

∗

D10

E7

Figure 2. The connecting relation between the two upper horizontal
graphs.

∗

Figure 3. The principal graph for B∞ ⊂ Q.
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